Thermal Energy Storage for Medium Temperature Industrial Process Heating ------Progress Dan Zhou CREST Loughborough University Progress • Materials Update • System Update • System Performance Materials Table 1 Potential molten salt mixture as medium temperature heat storage media PCMs Latent heat (kJ/kg) Price ($/kg) ZnCl2 - NaCl - KCl NaOH - Na2CO3 KNO3 (54wt%) - NaNO3 (46wt%) NaNO3 - NaNO2 Ca(NO3)2 (45wt%) - NaNO3 (55wt%) Ca(NO3)2 - NaNO2 Ca(NO3)2 - LiNO3 LiNO3(12wt%) - NaNO3(18wt%) - KNO3(70wt%) Melting temperature (°C) 203 210 222 226-233 230 200-223 235 200 161 ~0.62 ~110 ~0.33 LiNO3(57wt%) - NaNO3(43wt%) LiNO3(49wt%) - NaNO3(51wt%) 193 194 248 265 ~5.8 ~5.1 LiNO3(87wt%) - NaCl(13wt%) LiNO3(45wt%) - NaNO3(47wt%) - Sr(NO3)2(8wt%) 208 200 360 199 ~8.7 ~4.9 Table 2 Market prices of some salts Salt Ca(NO3)2 NaNO3 KNO3 LiNO3 NaNO2 NaCl ZnCl2 KCl Na2CO3 Sr(NO3)2 NaOH Price (per Metric Ton) $250 ~ $280 $300 ~ $500 $700 ~ $900 Around $10,000 $400 ~ $500 $50 ~ $100 $950 ~ $1000 $500 ~ $900 $180 ~ $250 Around $3,000 $350 ~ $450 ~1.84 Material investigations contain two parts: 1. Research stage 1) Binary system with lithium nitrate 2) Ternary system of LiNO3(12wt%) - NaNO3(18wt%) KNO3(70wt%) 2. Industrial application stage 1) KNO3 (54wt%) - NaNO3 (46wt%) 2) Ca(NO3)2 (45wt%) - NaNO3 (55wt%) 3) Ternary system of LiNO3(12wt%) - NaNO3(18wt%) KNO3(70wt%) 4) Other new ternary or quaternary systems Binary system with lithium nitrate (Research stage) • LiNO3(87wt%)- NaCl(13wt%) • LiNO3(57wt%)-NaNO3(43wt%) • Ca(NO3)2-LiNO3 (To be test….) Heat storage system 0.2 m 0.4 m 0.14 m 1.5 do O.D 0.015 m Helical coiled tube Double pipes heat exchanger: heat transfer pipe can be smoothed pipe or enhanced pipes Outside pipe diameter Do: 50 mm Inside pipe diameter Din: 20 mm Pipe length: 1 m Heat storage system • • • High temperature heat exchanger: Exergy tube –in-tube heat exchanger ½’’ NPT male inner tube connections and 1’’ NPT female outer tube boss. High temperature oil pump (Turbine pump) M pumps CM MAG-M series magnetically coupled centrifugal pump. Differential head: 6m; capacity: 2-15 L/min; working temperature: up to 300°C . • • • • IC-LPM industrial paddle wheel series flow meter: 2-20L/min Operating temperature: 350 °C Highly dynamic temperature control system: Julabo U-value calculation 1. Mass of the PCM (1) Cross area: (A) (2) Volume of the PCM (VP) (3) Mass of the PCM (MP) Pipe 1: 𝐴1 = 𝜋( 𝐷𝑂 2 ) = 2 1.96 × 10−3 𝑚2 ; Pipe 2: 𝐴2 = 𝜋( 𝐷𝑖𝑛 2 ) = 2 3.14 × 10−4 𝑚2 𝑽𝑷 = 𝐴1 − 𝐴2 𝑳 = 1.646 × 10−3 𝑚3 𝑴𝑷 = 𝝆𝑷 ∙ 𝑽𝑷 = 𝟐𝟑𝟓𝟓 × 1.646 × 10−3 𝒌𝒈 = 3.88𝒌𝒈 (4) Suppose the latent heat of the PCM 𝑯𝑷 = 300𝒌𝑱 ; 𝒌𝒈 total latent heat: 𝑳𝒉𝒆𝒂𝒕 = 𝑴𝑷 ∙ 𝑯𝑷 = 3.88 × 300 𝒌𝑱 = 1162.9 𝒌𝑱 2. Suppose the flow rate inside the heat transfer tube is 𝒗𝒇 = 𝟎. 𝟓𝒎/𝒔 0.𝟓𝒎𝟑 = 𝟏. 𝟓𝟕 × 𝟏𝟎−𝟒 𝒎𝟑 /𝒔 𝒔 𝟕𝟒𝟔𝒌𝒈 𝟏𝟎−𝟒 × 𝒔 = 𝟎. 𝟏𝟏𝟕𝒌𝒈/𝒔 (1) The volume flow rate (𝒗𝒇 ) 𝒗𝒇 = 𝑨𝟐 ∙ 𝒗𝒇 = 3.14 × 10−4 × (2) The mass flow rate (𝒎𝒇 ) 𝒎𝒇 = 𝒗𝒇 ∙ 𝝆𝒇 = 𝟏. 𝟓𝟕 × (3) Reynolds number at T=250°C 𝑅𝑒 = (4) The Prantle number (Pr) 𝑃𝑟 = (5) The Nusselt number 𝒗𝒇 ∙𝒅𝒊 𝜂𝑓 0.5×0.02 = 1.2×𝟏𝟎−𝟔 = 8333.333 𝜂𝑓 ∙𝐶𝑃 𝑓 ∙𝜌𝑓 𝑘𝑓 = 1.2×𝟏𝟎−𝟔 ×2.72×713 0.118×𝟏𝟎−𝟑 So the flow is turbulent flow = 19.722 𝑁𝑢 = 0.023 × 𝑅𝑒 0.8 × 𝑃𝑟 0.4 = 0.023 × 8333.3330.8 × 19.7220.4 = 103.84 (6) The heat transfer inside the tube (ℎ𝑖 ) ℎ𝑖 = 𝑁𝑢𝑓 ×𝑘𝑓 Din = 103.84×0.118 0.02 = 612.656 𝑊/𝑚2 𝐾 (7) The minimum overall effective heat transfer coefficient estimation 1 1 𝑈= = = 43.3𝑊/𝑚2 𝐾 1 𝜆𝑠 𝜆𝑃 1 0.001 0.015 + + + 19 + 0.7 ℎ𝑖𝑐 𝑘𝑠 𝑘𝑃 612.656 Suppose the inlet temperature of the heat transfer oil is 300 °C The charging time is around 1 hour. The charging time can be shorten by enhanced pipes, such as finned pipe. Performance calculation Figure 2 Influence of inlet temperature on the performance Figure 1 Heat storage system performance Figure 4 Influence of effective heat transfer rate on the performance Figure 3 Influence of heat transfer fluid velocity on the performance
© Copyright 2026 Paperzz