Enantioselective Radical Reactions Justin Potnick March 12, 2004 Outline • • • • • • • Introduction to Radical Reactions Atom Transfers Reductive Alkylations Fragmentations Tandem Addition-Trapping Reactions Oxidations Summary Introduction Initiation Precursor Propagation Radical-1 Termination Radical-2 Neutral Product Chain transfer • Typical radical reactions go through 3 steps 1. Generation of radical from non-radical species 2. Propagation/Chain transfer process 3. Termination Radical Properties • Short lived, highly reactive species; difficult to use • Proceed under mild, neutral conditions – Radical reactions have been performed in aqueous media • Compatible with many functional groups, inert toward -OH or -NH • Early, reactant-like TS‡ allows for prediction of product stereochemistry from ground state structure C. P. Jasperse, D. P. Curran, T. L. Fevig, Chem Rev. 1991, 91, 1237 Creating Selectivity • Chiral source must be present during reaction 1. Chiral source bound to achiral substrate (complex-controlled) * * * SUB + 2. LA SUB LA * LA A• PROD* PROD* + LA Chiral source bound to the reagent (reagent-controlled) * * SUB + H M * SUB R H M * SUB-H* + R •M R Outline • Introduction to Radical Reactions • Atom Transfers • • • • • Reductive Alkylations Fragmentations Tandem Addition-Trapping Reactions Oxidations Summary Atom Transfer Reactions R1 R2 Z• R1 R2 • • • R1 + R2 A-Z + Z• A Typically involve transfer of a hydrogen or halogen atom Transfer of atom from a chain-transfer agent to a radical species to generate another radical 1. * Chiral Lewis Acid LA 2. Chiral Reagent * R SnH Enantioselective Atom Transfer • Lewis acids have been used to enhance and catalyze radical reactions O Cl Al O O O O Al O O BuI Bu3SnH Et3B/O2 toluene O * * O Bu O 47%, 28% ee • Conjugate addition followed by selective H-atom transfer Urabe, H.; Yamashita, K.; Suzuki, K.; Kobayashi, K.; Sato, F. J. Org. Chem. 1995, 60, 3576 • Bu Radical Initiator Et3B/O2 • • • • Trialkylboranes give free alkyl radicals upon treatment with oxygen Et3B/O2 works as a radical initiator even at -78 °C Advantageous for stereoselective reactions: improved selectivities at lower temperatures Alternate methods of radical generation typically involve high temperatures Initiation: Propagation: Et 3B + O 2 R-I + Et • Et 2BOO • + Et • R• Ollivier, C.; Renaud, P. Chem. Rev. 2001, 101, 3415-3434 + Et-I Enantioselective Atom Transfer Entry R Yield (%) ee (%) 1 -CH2 OMe 88 62 (R) R 2 -CH2 OEt 84 65 (R) O 3 -CH2 OBn 89 58 (R) 4 -Me 78 30 (R) OBn N I O N R O H BnO MgI2/Et2O Bu3 SnH, CH2Cl 2 -78° C O • Selectivity was dependent on concentration of reactants – Low ee at low concentration – Suggests uncomplexed radical reacting to give racemic product in competing background reaction Murakata, M.; Tsutsui, H.; Takeuchi, N.; Hoshino, O. Tetrahedron 1999, 55, 10295 Acyclic Systems • • With previous cyclic system, selectivity is easier to control Acyclic systems require more control 1. 2. 3. The complexing chiral group must be fixed relative to the prochiral center The chiral group must shield one face of the radical or alkene Reactivity of the complex must exceed reactivity of the free substrate H• O R2 I OR R1 R2 O R1 OR LA* R2 • O LA* R1 OR • H Murakata, M.; Tsutsui, H.; Takeuchi, N.; Hoshino, O. Tetrahedron 1999, 55, 10295 Rotamer Control • • Rotamer control in radical transformations is important for selectivity Achiral auxiliaries can provide a handle to control rotamers of acyclic substrates – Oxazolidinone templates were chosen based on success of chiral auxiliaries in Lewis acid promoted free radical transformations – S-cis favored due to A1,3 strain No rotamer control H • R3 O R1 3 • R R2 Rotamer control R1 H O R2 O • H R 2 O H O M* O M* N 3 R • R H s-cis R1 O O R • H O R1 • R N 3 M* O O R2 Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163 O O N • H R H s-trans Acyclic Rotamer Control O O N N 1 O H N 2-naph OMe Mg(ClO4)2 , ligand 1 RX, Bu3 SnH, Et3 B/O2 2-naph CH2Cl2 , -78 °C, 3h O H H N O Entry RX Yield (%) ee (%) 1 AcBr 76 80 2 MeOCH2Br 71 65 3 EtI 72 85 (R) 4 iBuI 76 79 5 iPrI 62 83 (R) 6 cHexI 62 55 (R) 7 tBuI 54 27 (R) Sibi, M. P.; Asano, Y.; Sausker, J.B. Agnew. Chem., Int. Ed. 2001, 40, 1293 O OMe R O O N N M O 2-naph O OMe N H Conjugate Additions to α-Methacrylates O O O O MgBr2• Et2O, Ligand 1 O N O i-PrX, Bu 3SnH, Et3 B/O2 CH2Cl2 , -78 °C O MgBr2• Et2 O, N O O S N O N acetyl-X, Bu3 SnH, Et3B/O2 O CH2 Cl2, -78 °C 75% yield, 75% ee MgBr2•Et2O, Ligand 1 N O O S O N R R-X, Bu 3SnH, Et3 B/O2 CH2Cl2 , -78 °C O O N MgBr2•Et2 O, Ligand 1 acetyl-X, Bu3SnH, Et3B/O2 CH2Cl2 , -78 °C N 1 Ligand 1 O O N 80% yield, 65% ee O O O 25-96% yield, 18-90% ee O O N O 55% yield, 22% ee Sibi, M. P.; Sausker, J. B., J. Am. Chem. Soc. 2002, 124, 984-991. Achiral Napthosultam Template O O O S N MgBr 2•Et 2O, Ligand 1 O O O S N R O N N R-X, Bu3SnH, Et3B/O 2 CH 2Cl2 1 Entry R Temp (°C) LA (equiv.) Yield (%) ee (%) 1 i-Pr -78 none <5 0 2 i-Pr -78 (1.0) 90 78 3 i-Pr -78 (0.3) 80 80 4 i-Pr -40 (0.3) 71 59 5 i-Pr 0 (0.3) 52 5 6a i-Pr -78 (0.3) 55 80 7 t-Bu -78 (0.3) 84 89 8 c-Hex -78 (0.3) 71 82 9 MeOCH2 -78 (0.3) 89 90 aPh SnH 3 O was used as H-atom donor Sibi, M. P.; Sausker, J. B., J. Am. Chem. Soc. 2002, 124, 984-991. Predicted Transition State to Account for Selectivity O O O S N MgBr2•Et 2O, Ligand 1 O O S O O N O R-X, Bu3SnH, Et 3B/O2 CH2Cl 2, -78 °C O N N 1 25-96% yield, 18-90% ee Attack from re face S-trans rotamer Attack occurs before any rotamer interconversion: precursor geometry imparts on product stereochemistry Sibi, M. P.; Sausker, J. B., J. Am. Chem. Soc. 2002, 124, 984-991. α-Substituted ß-Amino Acids R MgI2 /3 R1 X, Et3B/O2 O O O R N 1a R 1 = Me 1b R 1 = t-Bu Bu3SnH CH 2Cl2 , -78 °C O O O * O N R1 O O N 2a-b Entry RX Compd 1 Isopropyl-I 2 O N 3 LA mol % Yield (%) ee (%) 1a No LA 99 — Isopropyl-I 1a 100 91 40 3 Cyclohexyl-I 1a 100 71 79 4 Cyclohexyl-I 1a 30 76 40 5 CH3CH2-I 1b 100 85 68 6 CH3CH2-I 1b 30 78 36 7 Cl(CH2)3(CH3)2C-Br 1b 100 72 98 8 Cyclopentyl-I 1b 100 86 94 9 Cyclohexyl-I 1b 100 95 88 10 Cyclohexyl-I 1b 30 86 90 11 1-adamantyl-I 1b 100 71 97 Sibi, M. P.; Patil, K. Agnew. Chem., Int. Ed. 2004, 43, 1235 Reasons for selectivity • Radical reactions proceed through an early transition state ? resembles starting complex • H-atom transfer occurs rapidly on rotamer conformation timescale – Atom transfer or radical addition to a neutral molecule proceed at high rates: approximately 104-108 dm3M-1s-1 – Geometry of starting material affects product stereochemistry • Exploitation of relatively slow conformation changes is possible Sibi, M. P.; Manyem, S.; Zimmerman, J., Chemical Reviews 2003, 103, 3263-3295. Memory of Chirality O Ph >97% ee CO2H N OH • • 1. DIPDI, DMAP, S 2. hν , 1 M PhSH, -78 °C PhSH O • O Ph Atom transfer occurs at a high rate Dependent on temperature and concentration of H-atom donor Ph H 93 7 PhSH Ph Entry • O 86% ee O Ph O CN >97% ee Li/NH3 O Ph THF -78 °C e , H+ Ph Ph H H [PhSH] (M) O % yield % ee Entry [Li] (M) % ee 1 1.0 92 86 1 0.8 30 2 0.5 75 70 2 3.5 30 3 0.05 58 23 3 5.4 54 4 0.01 67 4.3 4 6.4 90 Buckmelter, A. J.; Kim, A. I.; Rychnovsky, S. D., J. Am. Chem. Soc. 2000, 122, 9386-9390. Chiral Reagents Reduction of α-bromoketones Me Sn H + Ph Br Ph Et3B/O2 Ph Ph H O PhMe, -78 °C O 30% yield, 41% ee Reduction of α-bromoesters O Sn t-Bu + H Br Ph O Et3B/O2 OMe t-Bu H * OMe Ph t-Bu Et2O, -78 °C 52% ee Hydrometallation of methyl methacrylate R CH3 S Ge S R aR=H b R = TMS c Tin-Hydride t-Bu CO2Me H AIBN, hν or Et3B/O2 R R S Ge t-Bu S R S Ge + CO2Me S t-Bu CO 2Me R a 61% yield, 3/1 dr b 55% yield, 25/1 dr c 60% yield, 1.3/1 dr Nanni, D.; Curran, D. P. Tetrahedron: Asymmetry 1996, 7, 2417. Blumenstein, M.; Schwarzkopf, K.; Metzger, J. O., Angew. Chem., Int. Ed. Eng. 1997, 36, 235-236. Curran, D. P.; Gualtieri, G., Synlett 2001, 1038-1041. Hydrosilylation of Alkenes OAc Ph Ph O O 1 (0.05 eq.), 60 °C AcO AcO Ph Ph Ph3SiH, TBHN (0.05 eq.) Ph 3Si * O O SH AcO AcO 1a OAc O Entry Thiol Solvent Yield (%) ee (%) 1 1a Dioxane 88 80 2 1a Benzene 92 86 3 1a Hexane/Dioxane (5:1) 93 87 4 1b Hexane/Dioxane (5:1) 90 95 5 1c Hexane/Dioxane (4:1) 73 85 6 1d Hexane/Dioxane (4:1) 87 94 R'O R'O R'O OAc OAc O SH 1b O SH OR' R' = 2-BrC6H4C(O)1c AcO AcO AcO OMesitylcarbonyl O SH 1d t-BuON=NOt-Bu (TBHN) R3SiCH2C(H)R1R2 XS• R3SiH XSH XSH • R3SiCH2CR1R2 R3Si • R1 R2 Cai, Y.; Roberts, B. P.; Tocher, D. A., J. Chem. Soc. Perkin Trans. 1 2002, 1376-1386. Haque, M. B.; Roberts, B. P., Tetrahedron Lett. 1996, 37, 9123-9126. Haque, M. B.; Roberts, B. P.; Tocher, D. A., J. Chem. Soc., Perkin Trans. 1 1998, 2881-2890. Halogen Atom Transfer initiatior R-X • • • • R R • + R' X R-X • R R' R' + R• Addition of R-X to C-C double bond Good atom economy Product has halide group, allowing for further functionalization Reaction can be slow for R ? EWG O O I O N N O O + Ph N O Ph * Zn(OTf)2 0.5 equiv. Et3B/O2 N I O O Yield: 5-15% best ee approx. 40% Mero, C. L.; Porter, N. A., J. Am. Chem. Soc. 1999, 121, 5155-5160. Atom Transfer Radical Cyclizations R'' R'' • X •R + + RX R' R' R'' R'' • R' X R'' • R' R'' R'' R' + R' • R' X • Transfer of halogen atom from one C to another followed by ring formation • Halogen atom is retained in the product • Can be promoted or catalyzed by Lewis acids Radical Cyclizations O O 2 N O O N O t-Bu OEt Br n O N t-Bu Mg(ClO4)2 Et3B/O2, -78 °C n R1 Entry Substr Catalyst (equiv.) Solvent Time (h) 1 1a 1.1 CH2Cl2 2 1a 1.1 3a 1a 4a 2a 2b 2c 2d n = 1, R1 = R2 = Me n = 2, R1 = Et, R2 = H n = 2, R1 = H, R2 = Et n = 2, R1 = R2 = Me ee (%) 7.5 68 71 toluene 5 67 94 0.3 toluene 7 68 92 1b 0.3 toluene 12 58 (1/1)b 74/87c 5a 1c 0.3 toluene 9.5 81 (1/1.4)b 74/95c 6 1d 1.1 toluene 7.5 62 93 7a 1d 0.5 toluene 7.5 53 94 b ratio of 2b:2c; c O • EtO Yield (%) 4Å added; O R1 Br R2 R n = 1, R1 = R2 = Me n = 2, R1 = Et, R2 = H n = 2, R1 = H, R2 = Et n = 2, R1 = R2 = Me N Mg CO2Et 1a 1b 1c 1d a MS O O O N N Mg O O • EtO O CO2 Et ee for 2b/2c Br Yang, D.; Gu, S.; Yan, Y.-L.; Zhu, N.-Y.; Cheung, K.-K., J. Am. Chem. Soc. 2001, 123, 8612-8613. Tandem Atom Transfer Cyclizations O O O Br OEt CH3 1a O CO 2Et Me H O N N t-Bu t-Bu Mg(ClO4 )2 O O Br OEt CH3 Me Br 1b O Et3B/O2, solvent CO2Et Me H Me 2b 2a Br • Entry Substrate T (°C) Solvent Product Yield (%) ee (%) 1 1a -78 CH2Cl2 2a 41 13 2 1a -78 CH2Cl2 2a 24 33 3 2a -40 toluene 2b 23 82 4 2a -20 toluene 2b 16 84 Sets four stereocenters in one step with a single diastereomer observed Yang, D.; Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y., Angew. Chem. Int. Ed. 2002, 41, 3014-3017. Outline • Introduction to Radical Reactions • Atom Transfers • Reductive Alkylations • • • • Fragmentations Tandem Addition-Trapping Reactions Oxidations Summary Reductive Alkylations • Addition to carbon-carbon or carbon-heteroatom multiple bonds, followed by trapping with an H-atom source – Conjugate additions – Addition to imines – Cyclizations • Catalysis is possible with the use of Lewis acids O R'' H Y R''' Y = C or N R'-X H-atom source Initiator O R'' R' Y • O •H R''' R'' R' Y H R''' Conjugate Additions O O O N O Ph O i-PrI, Bu 3SnH, Et3 B/O2 O N Ph O O N LA, Chiral Ligand 1, CH2Cl2, -78 °C N R Entry LA Ligand (eq) Temp (°C) Yield (%) ee (%) 1 MgI2 1a (1.0) -78 88 82 (R) 2 MgI2 1a (0.5) -78 86 79 (R) 3 MgI2 1b (1.0) -78 88 47 (S) 4 Zn(OTf)2 1b (1.0) -78 88 61 (S) 5 MgI2 1c (1.0) -78 88 93 (R) 6 MgI2 1c (0.3) -78 91 97 (R) 7 MgI2 1c (0.3) -20 93 95 (R) 8 MgI2 1c (0.3) 25 87 93 (R) 9 Zn(OTf)2 1c (1.0) -78 - 53 (R) R 1a R = i-Bu 1b R = Ph O O N N 1c Sibi, M. P.; Ji, J., J. Am. Chem. Soc. 1996, 118, 9200. Sibi, M. P.; Ji, J., J. Org. Chem. 1997, 62, 3800. Conjugate Additions O O O N O Ph O i-PrI, Bu 3SnH, Et3 B/O2 O N Ph O O N LA, Chiral Ligand 1, CH2Cl2, -78 °C N R Entry LA Ligand (eq) Temp (°C) Yield (%) ee (%) 1 MgI2 1a (1.0) -78 88 82 (R) 2 MgI2 1a (0.5) -78 86 79 (R) 3 MgI2 1b (1.0) -78 88 47 (S) 4 Zn(OTf)2 1b (1.0) -78 88 61 (S) 5 MgI2 1c (1.0) -78 88 93 (R) 6 MgI2 1c (0.3) -78 91 97 (R) 7 MgI2 1c (0.3) -20 93 95 (R) 8 MgI2 1c (0.3) 25 87 93 (R) 9 Zn(OTf)2 1c (1.0) -78 - 53 (R) R 1a R = i-Bu 1b R = Ph O O N N 1c Sibi, M. P.; Ji, J., J. Am. Chem. Soc. 1996, 118, 9200. Sibi, M. P.; Ji, J., J. Org. Chem. 1997, 62, 3800. Achiral Additives • Achiral additives were used in an attempt to increase selectivity O O Ph N R1 R O O O R-I, Bu3SnH, Et3B/O2 Ph Zn(OTf)2 N O Ph R1 Ph Et Entry R1 1 (equiv) Additive R Yield (%) ee (%) Et O O N 1 H 1.0 none t-Bu 88 9 (S) 2 H 1.0 2b t-Bu 78 52 (S) 3 Ph 1.0 none t-Bu 80 3 (S) 4 Ph 1.0 2b t-Bu 96 88 (R) 5 Ph 1.0 2b i-Pr 86 82 (R) 6 Ph 1.0 2c i-Pr 98 29 (S) 7 Ph 0.25 2b i-Pr 92 80 (R) Murakata, M.; Tsutsui, H.; Hoshino, O., Org. Lett. 2001, 3, 299-302. Ph N 1 Ph O R3 N O 2 R R2 2 2a R = R3 = H 2b R2 = Ph; R3 = H 2c R2 = Ph; R 3 = Me Pyrazole Template O O N N 1 O Me O N N R-I, Bu 3SnH, Et3B/O2 Ph Me Zn(OTf)2/1 Me Entry R N N Ph Me Ligand (equiv) Yield (%) ee (%) 1 i-Pr 1.0 76 51 (S) 2 i-Pr 0.3 84 39 (S) 3 Et 1.0 80 39 (R) 4 cyclohexyl 1.0 81 81 5 cyclohexyl 0.3 76 39 Sibi, M. P.; Shay, J. J.; Ji, J., Tetrahedron Lett. 1997, 38, 5955-5958. R Other Lewis Acids O O Sm(OTf)3 , i-PrI, 1, additive Bu3 SnH, Et3 B/O2 O N Ph O O O N Ph CH2 Cl 2, -78 °C EtO O Additive: O • N O N Ph O 63% yield, 92% ee No additive: 84% y, 79% ee Ph Ph OH 1 Lanthanide Lewis acids can be used Sibi, M. P.; Manyem, S., Org. Lett. 2002, 4, 2929-2932. O Z Ph 30 mol% Mg(NTf2)2 , 2 i-PrI, Bu3SnH, Et3B/O2 O O N Z 2 O O N 99% yield, 98% ee O Z= N Ph CH 2 Cl2 , -78 °C Z= O N 95% yield, 98% ee Sibi, M. P.; Petrovic, G. Tetrahedron: Asymmetry 2003, 14, 2879. Aldol-Type Products O •R X • • R1 O 1 OR X H• X OR • R1 O OR ß-Alkoxy groups prone to elimination with ionic nucleophiles Nucleophilic radical addition avoids this O O N O O t-Bu O N N 1 t-Bu O O 1 OCOPh MgI2, Ligand 1, R X, Bu3 SnH O N R1 OCOPh Et 3B/O2 , CH2 Cl2/THF, -78 °C R1I i-PrI t-BuI Yield (%) 90 91 Sibi, M.P.; Zimmerman, J.; Rheault, T. Angew. Chem. Int. Ed. 2003, 42, 4521. ee (%) 93 89 Addition to Imines MeO2C NOBn MgBr2, 1, i-PrI, Bu 3SnH H MeO2C NOBn O CH2Cl2, Et3B, -78 °C H O N 97% Yield, 52% ee (R) Ph N 1 Ph Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T., J. Org. Chem. 2000, 65, 176-185. EtO2C NOBn H i-PrI, 2, Et 3B/O2 EtO2C Tol P Tol CuPF4 NHOBn CH2Cl2, r.t. P Tol Tol 56% Yield, 15% ee Halland, N.; Anker Jorgensen, K., J. Chem. Soc. Perkin Trans. 1 2001, 1290-1295. O N R1 N O i-PrI, Et3B/O 2 Cu(1)(H2O) 2(OTf)2 CH2Cl2, 25 °C HN R1 N i-Pr 66% Yield, 95% ee (R) Friestad, G. K.; Shen, Y. H.; Ruggles, E. L., Angew. Chem. Int. Ed. 2003, 42, 5061-5063. 2 Enantioselective 5-Exo Cyclization O Me O Ti(Oi-Pr)4 (1 eq.), 1 (1 eq.) tosyl Et3 B/O, Bu3 SnH N Br OH H Me N tosyl Me CH2 Cl 2, -78 °C H OH Ph Ph OH Ph Ph HO 1 53% Yield, 77% ee Hiroi, K.; Ishii, M., Tetrahedron Lett. 2000, 41, 7071-7074. • Cyclization using “memory of chirality” RZ O RE N O RN Me Bu3SnH Et3B/O2 I RZ R C 6H 6, 25 °C Me E RZ Up to 93% Yield, 94% ee O RE N RN I Me O Bu3 SnH Et3 B/O2 C 6H 6, 25 °C Me O RE Me Me RZ RN N N RN Me • RN N RZ Me RE Me Curran, D. P.; Liu, W.; Chen, C. H.-T., J. Am. Chem. Soc. 1999, 121, 11012-11013. Me Outline • Introduction to Radical Reactions • Atom Transfers • Reductive Alkylations • Fragmentations • Tandem Addition-Trapping Reactions • Oxidations • Summary Fragmentation Reactions 1. Addition of radical to a neutral molecule 2. ß-elimination of resultant radical to generate terminal olefin R1 R R1 * Z + X + X-Z R Z• Z 1 R R • + R1 * R + Z• Z-X X = halide; Z = Sn(Bu)3, Si(Me)3, Si(Si(Me)3)3 Fragmentation Reactions O R1 O O N O + Z Br MX2, 1, Et3B/O2 O R1 N O O + Z-Br O N CH2Cl2, -78 °C Ph Entry MX 2 Z Yield (%) ee (%) 1 Zn(OTf)2 SnBu3 84 42 2 Zn(OTf)2 SiMe3 88 90 3 MgI2 SiMe3 86 68 Porter, N. A.; Wu, J. H.; Zhang, G.; Reed, A. D., J. Org. Chem. 1997, 62, 6702-6703. O O N I R O SnBu3 O * 1-nap O N 1-nap OH O O O OH 1-nap 1-nap Me3Al/2, Et3B/O 2 -78 °C 2 Entry R Yield (%) ee (%) 1 Me 93 34 2 H 90 32 Fhal, A.-R.; Renaud, P., Tetrahedron Lett. 1997, 38, 2661-2664. N 1 Ph Fragmentation Reactions O Br N N R + SiMe 3 O MX2 , Et3 B/O2 O N N Ligand, CH2 Cl2 O N R 1 Ph Entry R Ligand MX2 (eq.) T(°C) Yield (%) ee (%) 1 H 1 Zn(OTf)2 (1.0) -78 70 59 2 H 2 Zn(OTf)2 (1.0) -78 75 96 3 H 3 Zn(OTf)2 (1.0) -78 42 75 4 H 2 MgBr2 -78 54 84 H 2 Zn(OTf)2 (2.0) -78 83 >99 6 H 2 Zn(OTf)2 (2.0) -20 94 95 7 H 2 Zn(OTf)2 (1.0) -20 93 91 8 4-Me 2 Zn(OTf)2 (1.0) -20 85 70 9 5-Cl 2 Zn(OTf)2 (1.0) -20 88 67 10 5-CO2Me 2 Zn(OTf)2 (1.0) -20 91 80 11 H 2 Zn(OTf)2 (0.2) -20 69 81 Porter, N. A.; Feng, H.; Kavrakova, I. K., Tetrahedron Lett. 1999, 40, 6713-6716. Ph O O N N 2 O O N N i-Pr 5 N N 3 i-Pr Fragmentation Reactions O Br N N R + SiMe 3 O MX2 , Et3 B/O2 O N N Ligand, CH2 Cl2 O N R 1 Ph Entry R Ligand MX2 (eq.) T(°C) Yield (%) ee (%) 1 H 1 Zn(OTf)2 (1.0) -78 70 59 2 H 2 Zn(OTf)2 (1.0) -78 75 96 3 H 3 Zn(OTf)2 (1.0) -78 42 75 4 H 2 MgBr2 -78 54 84 H 2 Zn(OTf)2 (2.0) -78 83 >99 6 H 2 Zn(OTf)2 (2.0) -20 94 95 7 H 2 Zn(OTf)2 (1.0) -20 93 91 8 4-Me 2 Zn(OTf)2 (1.0) -20 85 70 9 5-Cl 2 Zn(OTf)2 (1.0) -20 88 67 10 5-CO2Me 2 Zn(OTf)2 (1.0) -20 91 80 11 H 2 Zn(OTf)2 (0.2) -20 69 81 Porter, N. A.; Feng, H.; Kavrakova, I. K., Tetrahedron Lett. 1999, 40, 6713-6716. Ph O O N N 2 O O N N i-Pr 5 N N 3 i-Pr Fragmentation Reactions of αIodolactones • Single point binding chiral Lewis acid SiPh3 I OH Me3Al, additive, 1 R O O R SnBu3 O OH O SiPh3 Entry R Additive Yield (%) ee (%) 1 Me None 72 27 2 Me Et2O 84 81 3 CH2OEt Et2O 85 85 4 CH2OBn Et2O 76 91 I OBn O O 1 Ph SnBu3 LA, PhMe, 2 OBn O Et3B/O2, -78 C RO2SHN O Entry 2 (eq.) LA (eq.) Yield (%) ee (%) 1 1 Me3Al (2) 76 51 2 1 i-Bu3Al (2) 75 43 3 0.5 Me3Al (2) 72 54 4 0.5 i-Bu3Al (2) 72 37 Murakata, M.; Jono, T.; Mizuno, Y.; Hoshino, O., J. Am. Chem. Soc. 1997, 119, 11713-11714. Murakata, M.; Jono, T.; Hoshino, O., Tetrahedron: Asymmetry 1998, 9, 2087-2092. Ph NHSO2R 2 R = C6F5 Allylation Using an Acyclic Template Me SnBu3 Ts Br N Bn NHTs Ph NHTs TsHN LA, *Ligand, Et3 B/O2 CH2Cl2, -78 °C Me H Ts N Bn 1 Entry Ligand LA Yield (%) ee (%) 1 1 Et3Al 68 60 2 2 Et3Al 80 64 O 3 3 Mg(OTf)2 65 52 4 4 Mg(OTf)2 41 83 5 Ph HO Mg(OTf)2 64 50 S p-Tol 4 O O p-Tol S S •• NHTs 2 Ph 5 Ph O 3 •• O S p-Tol p-Tol •• O OH •• 5 Ph O O O p-Tol S O S p-Tol M •• N Bn O • H Hiroi, K.; Ishii, M., Tetrahedron Lett. 2000, 41, 7071-7074. SnBu3 Outline • • • • Introduction to Radical Reactions Atom Transfers Reductive Alkylations Fragmentations • Tandem Addition-Trapping Reactions • Oxidations • Summary Tandem Radical Reactions • Addition of a radical to a neutral molecule followed by trapping of the resultant radical • Potential of forming two stereogenic centers R-I + R1 R1 * Z + + I-Z R * Z• R• R1 • R * Z R1 * + Z• R * Z = Sn(Bu)3, Si(Me)3, Si(Si(Me)3)3 • Downside is possibility of reactive byproduct formed Enantioselective Tandem Addition O O N Ph + 2 Ph N O + SnBu3 Zn(OTf)2 , Ligand 2 O O O O R-I N R N O + Bu3Sn-I CH2Cl2 , Et3B/O2 , -78 C Entry R (equiv.) Acrylate:M:L* Solvent Yield (%) ee (%) 1 c-hexyl (10) 1:1:1 CH2Cl2 62 50 2 c-hexyl (10) 1:1:1 Et2O 90 64 3 c-hexyl (10) 1:2:2 Et2O 61 80 4 c-hexyl (1.5) 1:1:1.2 CH2Cl2/pent 6:4 62 68 5 c-hexyl (1.5) 1:2:2.4 CH2Cl2/pent 6:4 92 72 6 t-Bu (5) 1:1:1.2 CH2Cl2/pent 6:4 78 88 7 t-Bu (5) 1:1:1.2 CH2Cl2/pent 6:4 92 90 8 t-Bu (5) 1:2:2.1 Et2O 55 88 Wu, J. H.; Radinov, R.; Porter, N. A., J. Am. Chem. Soc. 1995, 117, 11029-30. Tandem Reaction vs. Fragmentation LA* O O N 1 O Zn(OTf)2 LA* O O N R • Br LA* R 1-I O LA* O O N • R H 3 Bu3 Sn • 2 O N R 3a 3b 3c 3d O O allyl stannane R t-Bu cyclohexyl ethyl methyl O * ee of product Entry Precursor LA eq. 3a 3b 3c 3d 1 1 0.6 84 76 62 56 2 1 1.0 90 78 69 61 3 1 2.0 90 80 75 67 4 2 0.6 64 43 36 25 5 2 1.0 74 58 50 42 6 2 2.0 76 64 53 46 Higher selectivity of tandem reaction pathway may be due to catalysis of background reaction by tin bromide byproduct Wu, J. H.; Zhang, G.; Porter, N. A., Tetrahedron Lett. 1997, 38, 2067-2070. Lanthanide Lewis Acids • • • Lanthanide triflates are generally air and moisture stable Strong Lewis acidity Ionic radii of lanthanide metals increase in a small and regular manner: easy to modify chiral environment O O R-I + N SnBu3 O + Y(OTf)3 (30 mol%) Chiral Ligand 1 O O R N O CH2Cl2, Et 3B/O2, -78 °C Ph Entry R Yield (%) ee (%) 1 ClCH2- 56 42 2 Et 61 70 3 n-Pr 57 60 4 n-Bu 41 38 5 i-Pr 50 56 6 t-Bu 40 24 7 c-Hex 53 31 Sibi, M. P.; Manyem, S.; Subramaniam, R. Tetrahedron 2003, 59, 10575 N EtO Ph OH O 1 Allylation of an α-Sulfonyl Radical O O S Ar Zn(OTf)2 , 1 allyltin, t-BuI, Et3B/O 2 O O S O Ar N CH2Cl2, -78 °C t-Bu Ph Ar = 2-(1-benzylbenzimidazolyl) Entry Allylstannane Time (min) 1 AllylBu3Sn 120 Yield (%) ee (%) 35 80 2 AllylPh3Sn 180 49 16 3 Allyl2Bu2Sn 120 74 50 4 Allyl2Bu2Sn (5 eq.) 50 86 78 5 Allyl2Bu2Sn (10 eq.) O 20 80 84 Br Zn Br O O S N • N Bn s-cis 0 kcal/mol Watanabe, Y.; Mase, N.; Furue, R.; Toru, T. Tetrahedron Lett. 2001, 42, 2981 N 1 Ph O O • S Br Zn Br N N Bn s-trans 2.5 kcal/mol Control of α and ß carbon selectivity O O N N 1 O X Lewis Acid, 1, R1X Et 3B/O2, CH2Cl 2, -78 °C O N R O X O R1 N R Yield (%) dr ee (%) Sn(R2)3 R2 = Bu or Ph X = O, R = Ph 2 X = O, R = CH3 3 X = CH2, R = CH3 4 R1X Entry Sub. LA (0.3 eq.) 1 2 EtI MgI2 79 32:1 77 2 2 c-HexI MgI2 80 60:1 92 3 2 t-BuI MgI2 84 99:1 97 4 2 t-BuI Cu(OTf)2 90 99:1 -96 5 3 c-HexI Mg(ClO4)2 83 4:1 62 6 4 EtI Mg(ClO4)2 83 7:1 66 7 4 t-BuI Mg(ClO4)2 85 19:1 92 8 4 t-BuI Cu(OTf)2 66 50:1 -83 Sibi, M. P.; Chen, J., J. Am. Chem. Soc. 2001, 123, 9472-9473. Control of α and ß carbon selectivity O O N N 1 O X Lewis Acid, 1, R1X Et 3B/O2, CH2Cl 2, -78 °C O N R Sub. X O R1 N R Yield (%) dr ee (%) Sn(R2)3 R2 = Bu or Ph X = O, R = Ph 2 X = O, R = CH3 3 X = CH2, R = CH3 4 Entry O R1X LA (0.3 eq.) 1 2 EtI MgI2 79 32:1 77 2 2 c-HexI MgI2 80 60:1 92 3 2 t-BuI MgI2 84 99:1 97 4 2 t-BuI Cu(OTf)2 90 99:1 -96 5 3 c-HexI Mg(ClO4)2 83 4:1 62 6 4 EtI Mg(ClO4)2 83 7:1 66 7 4 t-BuI Mg(ClO4)2 85 19:1 92 8 4 t-BuI Cu(OTf)2 66 50:1 -83 Sibi, M. P.; Chen, J., J. Am. Chem. Soc. 2001, 123, 9472-9473. Control of α and ß Carbon Selectivity O O N N 1 O X Lewis Acid, 1, R1X Et3B/O2, CH2Cl 2, -78 °C O N R O O N Ph Br Mg(ClO 4)2, AllylSnBu3 Et3B/O2 O N R1 R R2 = Bu or Ph O O CH2Cl2, -78 °C Yield %, (dr) Ligand 1 83 (12:1) No ligand 87 (5:1) Enantiomer of 1 87 (8:1) • X Sn(R2)3 X = O, R = Ph 2 X = O, R = CH3 3 X = CH2, R = CH3 4 O O O N Ph Mg(ClO4 )2 , AllylSnBu 3 Et3B/O2 CH2 Cl2 , -78 °C Yield %, (dr) 82 (7:1) 84 (6:1) 84 (13:1) O O O N Ph Br Ligand 1 No ligand Enantiomer of 1 Following addition, trapping occurs in an anti manner • • R1 blocks syn trapping Results suggest the stereochemistry at the ß-carbon is primary determinant of α-stereochemistry Sibi, M. P.; Chen, J., J. Am. Chem. Soc. 2001, 123, 9472-9473. Outline • • • • • Introduction to Radical Reactions Atom Transfers Reductive Alkylations Fragmentations Tandem Addition-Trapping Reactions • Oxidations • Summary Enantioselective Radical Oxidations • Examples shown to this point involved reductive generation of radical species • Oxidative generation of cationic radical species is also possible – Can undergo coupling reactions – Oxidation of activated C-H bonds – Oxidation of alcohols and amines Cross-Coupling Reactions OTMS R O VO(OEt)Cl2, 1 -e-TMS+ • O -e -TMS+ Ph R ∗ OTMS - OH O 1 58% yield, 85% ee Kurihara, M.; Hayashi, T.; Miyata, N., Chem. Lett. 2001, 1324-1325. O O O N O O TiCl 4, 2, Et3 N Ph O ∗ Ph N Fe(Cp)2 BF4 ∗ N O Ph 91% O O dl : meso = 25:75 76% ee Ph HO Ph O HO O Ph 2 Ph Nguyen, P. Q.; Schaefer, H. J., Org. Lett. 2001, 3, 2993-2995. Y Y OH H N 10 mol% CuCl/3 O2 , solvent, OH OH NH Y Yield (%) Y=H 89 Y = CO 2 Me 81 ee (%) 17 93 Li, X.; Yang, J.; Kozlowski, M. C., Org. Lett. 2001, 3, 1137-1140. 3 Activated C-H Bond Oxidation • • Benzylic hydrogens are activated towards oxidation Several groups have used porphyrin complexes to effect this transformation enantioselectively 1 (catalytic) Cl2PyNO X X OH N O N Ru N O N Yields: 28-72% ee's: 62-76% (Ketone accounts for remainder of yield) X = H, Me, Cl, OMe 1 2 (2 mol%), PhIO + R C6H5 Cl OH 2a 25% yield, 90% ee 2b 17% yield, 81% ee O R N N Mn+ O O Ar Ar O N i-Pr Ph O N N 3 2 mol% CuOTf/3 t-BuOOH MeCN, -18 °C 12 d PF6- i-Pr Ph OOt-Bu 70% yield, 4% ee 2 2a Ar = 4-[t-Bu(C6H5) 2]SiC6H4 R = 3,5-(CH3)2C6H3 2b Ar = 4-[t-Bu(C6H5)2]SiC6 H4 R = (CH2) 4 Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M., Chem. Commun. 1999, 1791-1792. Hamada, T.; Irie, R.; Mihara, J.; Hamachi, K.; Katsuki, T., Tetrahedron 1998, 54, 10017-10028. Hamachi, K.; Irie, R.; Katsuki, T., Tetrahedron Lett. 1996, 37, 4979-4982. Insight into Mechanism • Known to proceed by radical mechanism H H O Mn V Path b: SET • H O MnV H OH • OH Mn IV Path a: H-atom abstraction H H O MnIV •+ Kinetic isotope effect result supports path a H H D D kH = 4.6 kD Hamada, T.; Irie, R.; Mihara, J.; Hamachi, K.; Katsuki, T., Tetrahedron 1998, 54, 10017-10028 Oxidation of Alcohols: Kinetic Resolution 1 (catalytic) OH R Me O R solvent OH Me + R Me Entry R1 solvent Conversion (%) ee (%) 1 Ph-CH=CH- C6H6 76 97 2 Ph- C6H5Cl 65 95 3 Ph-C=C- C6H5Cl 65 >99 4 PhCH2- C6H5CH3 58 82 N NO N Ru O Cl O PhPh Masutani, K.; Uchida, T.; Irie, R.; Katsuki, T., Tetrahedron Lett. 2000, 41, 5119-5123. 1 Conclusion • Much development concerning enantioselective radical reactions has occurred over the last ten years – Formation of C-H, C-X, and C-C bonds is possible – Asymmetric catalysis is now possible in many systems – Reactions proceed under mild conditions and are tolerant of functional groups • Many areas left to explore – Enantioselective group transfer has not been developed – Use of alternate reaction conditions (aqueous media, polymer support) – Introduction of more functional groups – Use in a total synthesis Acknowledgements Advisor: Jeff Johnson Johnson Group: Cory Bausch Ashley Berman Roy Bowman Jody Karol Xin Linghu Mary Robert Nahm David Nicewicz Patrick Pohlhaus Application of Tandem Radical Reaction R4 O O O N R R1 + I 2 R 3 O SnBu3 Ln(OTf)2 (0.3-1.0 eq.) CH2Cl2/THF 2:1 Et3 B/O2, -78 °C O R2 O R1 N R4 R3 47-72% 1 O R O RCM O R2 N R3 R4 • • Example is not enantioselective Possibility for enantioselective reaction exists and is current focus Sibi, M. P.; Aasmul, M.; Hasegawa, H.; Subramanian, T., Org. Lett. 2003, 5, 2883-2886. Up to 88%
© Copyright 2026 Paperzz