1 = (a)

Math 110,
29/5/1431H
Test 2–Version B
1
Instructions. (30 points) Solve each of the following problems.
(1pts )
π‘₯4 βˆ’ 1
=
π‘₯β†’βˆ’1 π‘₯ βˆ’ 1
(a) βˆ’4
1. lim
(b) Does Not Exist
(c) 4
Solution:
(d)
 0
(βˆ’1)4 βˆ’ 1
π‘₯4 βˆ’ 1
=
π‘₯β†’βˆ’1 π‘₯ βˆ’ 1
βˆ’1 βˆ’ 1
1βˆ’1
=
βˆ’2
0
=0
=
βˆ’2
lim
(1pts )
2. If cos π‘₯ =
βˆ’3
4
(a)
3
,
5
3πœ‹
< π‘₯ < 2πœ‹ then sin π‘₯ =
2
βˆ’5
4
Solution:
(c)
(b)
βˆ’4
3
(d)

βˆ’4
5
adjacent
3
=
we draw a triangle is shown below:
5
hypotenuse
5
3πœ‹
< π‘₯ < 2πœ‹,
Now, 𝐻 2 = 𝐴2 + 𝑂2 β‡’ 25 = 9 + 𝑂2 β‡’ 𝑂 = 4. Since
2
then π‘₯ lies in the forth quadrant. Hence since the π‘¦βˆ’ axis is π‘₯
3
negative, then sin π‘₯ < 0 and since the π‘₯βˆ’axis is positive then
βˆ’4
.
cos π‘₯ > 0. Hence sin π‘₯ =
5
Since cos π‘₯ =
(1pts )
π‘₯ βˆ’ 4π‘₯3
=
π‘₯β†’βˆž 2π‘₯3 βˆ’ 1
βˆ’1
(a)
2
4
3. lim
(b) ∞
(c) 0
(d)
 βˆ’2
Solution:
Since lim (π‘₯ βˆ’ 4π‘₯3 ) = βˆ’βˆž, lim (2π‘₯3 βˆ’ 1) = ∞ we have I.F. type βˆ’βˆž/∞. Divide
π‘₯β†’βˆž
π‘₯β†’βˆž
each term in the numerator and each term in the denominator by the highest power in the
Math 110,
29/5/1431H
Test 2–Version B
2
denominator.
π‘₯ βˆ’ 4π‘₯3
π‘₯βˆ’
π‘₯3
= lim
lim
3
3
π‘₯β†’βˆž 2π‘₯ βˆ’ 1
π‘₯β†’βˆž 2π‘₯ + 1
π‘₯3
π‘₯
4π‘₯3
βˆ’
3
3
= lim π‘₯ 3 π‘₯
π‘₯β†’βˆž 2π‘₯
1
βˆ’ 3
3
π‘₯
π‘₯
1
βˆ’4
2
= lim π‘₯
1
π‘₯β†’βˆž
2βˆ’ 3
π‘₯
0βˆ’4
=
= βˆ’2
2βˆ’0+0
4π‘₯3
)
( )
(πœ‹)
(πœ‹)
7πœ‹
7πœ‹
cos
βˆ’ sin
cos
=
4. sin
18
18
18
18
1
(b) 2
(a)
2
√
3
(d) 0
(c)

2
Solution:
(
(1
pts
)
(
sin
(1pts )
(c) π‘₯ = 0,
Solution:
)
( )
(
)
(πœ‹)
(πœ‹)
7πœ‹
7πœ‹
πœ‹
cos
βˆ’ sin
cos
= sin
βˆ’
18
18
18
18
18
(πœ‹ )
== sin
3
√
3
.
=
2
π‘₯2 βˆ’ 2π‘₯ βˆ’ 3
π‘₯3 βˆ’ 9π‘₯
π‘₯ = ±3
5. The curve 𝑓 (π‘₯) =
(a) π‘₯ = 0,
7πœ‹
18
has a vertical asymptote at
π‘₯=3
(b) 𝑦 = 0,
𝑦 = βˆ’3
(d)
 π‘₯ = 0,
π‘₯ = βˆ’3
(π‘₯ βˆ’ 3)(π‘₯ + 1)
. The zeroes of the denominator are βˆ’3, 0, and 3. To check
π‘₯(π‘₯ βˆ’ 3)(π‘₯ + 3)
that π‘₯ = 3 is a vertical asymptote or not we take the limit at 3 from both sides. lim 𝑓 (π‘₯) =
Write 𝑓 (π‘₯) =
π‘₯β†’3
+ 1)
4
2
(π‘₯
βˆ’3)(π‘₯
π‘₯+1
= lim
=
= . Hence π‘₯ = 3 is not a vertical asymptote.
lim
π‘₯β†’3 π‘₯
π‘₯β†’3 π‘₯(π‘₯ + 3)
(π‘₯
βˆ’ 3)(π‘₯ + 3)
18
9
+
(π‘₯ βˆ’ 3)(π‘₯ + 1)
= ∞. Hence
+
π‘₯(π‘₯ βˆ’ 3)(π‘₯ + 3)
π‘₯ = βˆ’3 is a vertical asymptote. To check that π‘₯ = 0 we take the limit lim 𝑓 (π‘₯) =
To check that π‘₯ = βˆ’3 we take the limit
lim 𝑓 (π‘₯) = lim
π‘₯β†’βˆ’3+
π‘₯β†’βˆ’3+
π‘₯β†’0+
Math 110,
29/5/1431H
Test 2–Version B
3
βˆ’
(π‘₯ βˆ’ 3)(π‘₯ + 1)
lim
βˆ’
π‘₯β†’0+
= ∞. Hence π‘₯ = 0 is a vertical asymptote. Thus the function has
π‘₯(π‘₯ βˆ’ 3)(π‘₯ + 3)
vertical asymptote at π‘₯ = 0, and π‘₯ = βˆ’3.
(1pts )
6. If
⎧
π‘₯ + 2,
if π‘₯ < βˆ’3;


⎨
2,
if π‘₯ = βˆ’3;
Then
𝑓 (π‘₯) =

π‘₯3 + 27

⎩
,
if
π‘₯
>
βˆ’3.
π‘₯2 βˆ’ 9
9
(a)
2
(c) 0
lim 𝑓 (π‘₯) =
π‘₯β†’βˆ’3+
(b) βˆ’
3
2
(d)
 βˆ’
9
2
Solution:
Note that when computing limit as π‘₯ β†’ π‘Ž+ means you approaches π‘Ž from the right side
that is π‘₯ > π‘Ž.
π‘₯3 + 27
π‘₯β†’βˆ’3+ π‘₯2 βˆ’ 9
π‘₯3 + 27
A direct substation will give us I.F. 0/0
= lim
π‘₯β†’βˆ’3+ π‘₯2 βˆ’ 9
(π‘₯ + 3)(π‘₯2 βˆ’ 3π‘₯ + 9)
= lim
Factoring π‘₯ + 3 from denominator and numerator
(π‘₯ + 3)(π‘₯ βˆ’ 3)
π‘₯β†’βˆ’3+
2 βˆ’ 3π‘₯ + 9)
(π‘₯
+3)(π‘₯
= lim
βˆ’ 3)
(π‘₯
+3)(π‘₯
π‘₯β†’βˆ’3+
π‘₯2 βˆ’ 3π‘₯ + 9
= lim
π‘₯βˆ’3
π‘₯β†’βˆ’3+
2
(βˆ’3) βˆ’ 3(βˆ’3) + 9
=
βˆ’3 βˆ’ 3
9
27
=βˆ’ .
=
βˆ’6
2
lim 𝑓 (π‘₯) = lim
π‘₯β†’βˆ’3+
(1pts )
7.
𝑑42
(cos π‘₯) =
𝑑π‘₯42
(a) βˆ’ sin π‘₯
(b) sin π‘₯
(c) cos π‘₯
Solution:
(d)
 βˆ’ cos π‘₯
Since 42 = 4(10) + 2 then
(1pts )
π‘₯2 + 2π‘₯
≀ 𝑓 (π‘₯) ≀ 3π‘₯ + 2,
π‘₯
(a) 0
8. If
𝑑2
𝑑
𝑑42
(βˆ’ sin π‘₯) = βˆ’ cos π‘₯.
(cos
π‘₯)
=
(cos π‘₯) =
42
2
𝑑π‘₯
𝑑π‘₯
𝑑π‘₯
π‘₯ ∈ [βˆ’1, 1], π‘₯ βˆ•= 0,
(c) βˆ’2
Solution:
then lim 𝑓 (π‘₯) =
π‘₯β†’0
(b)
 2
(d) 1
π‘₯2 + 2π‘₯
π‘₯(π‘₯ + 2)
= lim
= lim (π‘₯ + 2) = 2, and lim (3π‘₯ + 2) = 2, then by The
π‘₯β†’0
π‘₯β†’0
π‘₯β†’0
π‘₯β†’0
π‘₯
2π‘₯
Sandwich Theorem we have lim 𝑓 (π‘₯) = 2.
Since lim
π‘₯β†’0
Math 110,
(1pts )
29/5/1431H
Test 2–Version B
tan3 (2π‘₯)
=
π‘₯β†’0
π‘₯3
1
(a)
8
9. lim
(b) 2
(c)
 8
(d)
Solution:
tan3 (2π‘₯)
= lim
lim
π‘₯β†’0
π‘₯β†’0
π‘₯3
= lim
π‘₯β†’0
(
=
(
(
tan (2π‘₯)
π‘₯
)3
2 tan (2π‘₯)
2π‘₯
2π‘₯
2 lim
π‘₯β†’0 tan (2π‘₯)
)3
1
2
( π‘Ž )𝑛
π‘Žπ‘›
=
.
𝑏𝑛
𝑏
make the top similar to the angle
)3
Use that lim
π‘₯β†’0
tan π‘₯
π‘₯
= 1 = lim
π‘₯β†’0 tan π‘₯
π‘₯
= (2.1)3 = 8.
(1pts )
tan (2𝑑) sin 𝑑
=
𝑑→0
𝑑2
1
(a)
2
10. lim
(b)
 2
(c) 1
(d) βˆ’2
Solution:
Direct substation will give us I.F. type 0/0.
lim
𝑑→0
(1pts )
tan (2𝑑) sin 𝑑
tan (2𝑑) sin 𝑑
= lim
𝑑→0
𝑑2
𝑑
𝑑
tan (2𝑑) sin 𝑑
= 2 lim
𝑑→0
2𝑑
𝑑
= 2(1)(1) = 2
cos π‘₯
, then 𝑦 β€² =
1 βˆ’ sin π‘₯
sin π‘₯
(a)
1 βˆ’ sin π‘₯
tan πœƒ
sin πœƒ
= 1 = lim
πœƒβ†’0 πœƒ
πœƒβ†’0 πœƒ
use lim
11. If 𝑦 =
βˆ’ cos π‘₯
(1 βˆ’ cos π‘₯)2
Solution:
(c)
(b)

1
1 βˆ’ sin π‘₯
(d)
cos π‘₯
1 βˆ’ sin π‘₯
4
Math 110,
29/5/1431H
𝑦′ =
=
=
=
=
(1pts )
Test 2–Version B
(1 βˆ’ sin π‘₯)(βˆ’ sin π‘₯) βˆ’ (cos π‘₯)(βˆ’ cos π‘₯)
(1 βˆ’ sin π‘₯)2
βˆ’ sin π‘₯ + sin π‘₯ sin π‘₯ + cos π‘₯ cos π‘₯
(1 βˆ’ sin π‘₯)2
βˆ’ sin π‘₯ + sin2 π‘₯ + cos2 π‘₯
(1 βˆ’ sin π‘₯)2
1 βˆ’ sin π‘₯
(1 βˆ’ sin π‘₯)2
1
.
1 βˆ’ sin π‘₯
5
Use the fact cos2 π‘₯ + sin2 π‘₯ = 1
simplify
12. The graph of the function 𝐹 (π‘₯) = π‘₯3 βˆ’ 27π‘₯, has a horizontal tangent line at
(a)
 π‘₯ = ±3
(b) π‘₯ = 3
(c) π‘₯ = βˆ’3
Solution:
(d) π‘₯ = 0
𝐹 (π‘₯) = π‘₯3 βˆ’ 27π‘₯
𝐹 β€² (π‘₯) = 3π‘₯2 βˆ’ 27 = 3(π‘₯2 βˆ’ 9)
𝐹 β€² (π‘₯) = 0
3(π‘₯2 βˆ’ 9) = 0
π‘₯ = ±3.
(1pts )
13. An equation for the tangent line to the curve 𝑓 (π‘₯) = π‘₯3 + π‘₯
(a) 𝑦 = βˆ’4π‘₯ βˆ’ 2
(b)
 𝑦 = 4π‘₯ βˆ’ 2
at π‘₯ = 1 is
(c) 𝑦 = 4π‘₯ + 2
(d) 𝑦 = βˆ’4π‘₯ + 6
Solution:
The slope of the tangent line to 𝑓 (π‘₯) = π‘₯3 + π‘₯ at π‘₯ = 1 is 𝑓 β€² (1).
𝑓 (π‘₯) = π‘₯3 + π‘₯ β‡’ 𝑓 β€² (π‘₯) = 3π‘₯2 + 1.
Hence
the slope of the tangent = 𝑓 β€² (1) = 4.
Also 𝑓 (1) = (1)3 + (1) = 2. Now, we have π‘š = 4 and (1, 2), hence
𝑦 βˆ’ 𝑦1 = π‘š(π‘₯ βˆ’ π‘₯1 ) β‡’ 𝑦 βˆ’ 2 = 4(π‘₯ βˆ’ 1) β‡’ 𝑦 βˆ’ 2 = 4π‘₯ βˆ’ 4 β‡’ 𝑦 = 4π‘₯ βˆ’ 2.
Math 110,
(1pts )
29/5/1431H
Test 2–Version B
6
14. The accompanying figure shows the
graph of 𝑦 = 𝑓 (π‘₯). Then the period of
𝑦 = 𝑓 (π‘₯) is
𝑦
(a) 1
𝑦 = 𝑓 (π‘₯)
1
(b) 4
-4
-3
-2
-1
1
2
π‘₯
3
-1
(c) 2πœ‹
-2
(d)
 2
Solution:
From the graph we can see that the function repeat itself every 2 units. Hence the
period is 2
(1pts )
15. If 𝑓 (1) = 3, then lim 𝑓 (π‘₯) must exist.
π‘₯β†’1
(a) True
(b)
 False
Solution:
⎧
⎨ 1,
False. Let 𝑓 (π‘₯) =
3,
⎩
βˆ’1,
lim 𝑓 (π‘₯), Hence lim 𝑓 (π‘₯) does
π‘₯β†’1
π‘₯β†’1βˆ’
(1pts )
ifπ‘₯ > 1;
ifπ‘₯ = 1; Then 𝑓 (1) = 3, but lim 𝑓 (π‘₯) = 1 βˆ•= βˆ’1 =
π‘₯β†’1+
ifπ‘₯ < 1.
not exist.
16. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 β€² (βˆ’2) < 𝑓 β€² (0).
𝑦
(a)
 True
𝑦 = 𝑓 (π‘₯)
1
(b) False
-4
-3
-2
-1
1
2
3
π‘₯
-1
-2
Solution:
From the graph we can see that the tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at βˆ’2 is
falling down (left to right) and hence its slope is negative. Thus, since the first derivative
is the slope of the tangent line to the graph at βˆ’2 then 𝑓 β€² (βˆ’2) < 0.
From the graph we can see that the tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at 0 is rising
up (left to right) and hence its slope is positive. Thus, since the first derivative is the slope
of the tangent line to the graph at 0 then 𝑓 β€² (0) > 0. Now, 𝑓 β€² (βˆ’2) < 0 < 𝑓 β€² (0).
(1pts )
17. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then lim 𝑓 (π‘₯) =
π‘₯β†’0
(a) 0
(c) Does Not Exist
𝑦
(b)
 1
1
(d) βˆ’1
-4
-3
-2
-1
𝑦 = 𝑓 (π‘₯)
1
-1
-2
2
3
π‘₯
Math 110,
29/5/1431H
Test 2–Version B
7
Solution:
since lim 𝑓 (π‘₯) = 1 = lim 𝑓 (π‘₯), then lim 𝑓 (π‘₯) = 1
π‘₯β†’0βˆ’
(1pts )
π‘₯β†’0+
π‘₯β†’0
π‘₯βˆ’3
√
=
π‘₯β†’3 2 βˆ’ π‘₯ + 1
18. lim
(a) 4
(b)
βˆ’1
4
(c) 0
(d)
 βˆ’4
Solution:
A direct substation will give us I.F. 0/0. Now,
√
2+ π‘₯+1
π‘₯βˆ’3
π‘₯βˆ’3
√
√
√
= lim
β‹…
lim
π‘₯β†’3 2 βˆ’ π‘₯ + 1
π‘₯β†’3 2 βˆ’ π‘₯ + 1 2 + π‘₯ + 1
√
(π‘₯ βˆ’ 3)(2 + π‘₯ + 1)
√
= lim
π‘₯β†’3
22 βˆ’ ( π‘₯ + 1)2
√
(π‘₯ βˆ’ 3)(2 + π‘₯ + 1)
= lim
π‘₯β†’3
4 βˆ’ (π‘₯ + 1)
√π‘₯ + 6 + 3)
(π‘₯
βˆ’ 3)(
= lim
π‘₯β†’3
βˆ’
(π‘₯
βˆ’3)
√
= lim [βˆ’(2 + π‘₯ + 1)]
π‘₯β†’3
√
= βˆ’[2 + 3 + 1]
Multiply by 1 =
√
2+ π‘₯+1
√
2+ π‘₯+1
Simplify
= βˆ’4.
(1pts )
𝑦
19. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 is differentiable at π‘₯ = βˆ’1.
4
(a) True
3
(b)
 False
𝑦 = 𝑓 (π‘₯)
2
1
-4
-3
-2
-1
1
-1
Solution:
𝑓 is not differentiable at π‘₯ = βˆ’1 since the the function is discontinuous at π‘₯ = βˆ’1.
(1pts )
20. If 𝑦 = π‘₯ sin π‘₯ csc π‘₯,
(a)
 1
then 𝑦 β€² =
(b) βˆ’1
(c) 0
Solution:
(d) βˆ’ cos π‘₯ csc π‘₯ cot π‘₯
𝑦 = π‘₯ sin π‘₯ csc π‘₯
1
𝑦 = π‘₯ sin π‘₯
sin π‘₯
𝑦=π‘₯
𝑦 β€² = 1.
2
π‘₯
Math 110,
(1pts )
29/5/1431H
21. The function 𝑓 (π‘₯) =
(a) (βˆ’βˆž, βˆ’2] βˆͺ [2, ∞)
(c) (βˆ’βˆž, 2) βˆͺ (2, ∞)
√
Test 2–Version B
2 βˆ’ ∣π‘₯∣
8
is continuous on
(b)
 [βˆ’2, 2]
(d) [2, ∞)
√
Solution: Notice that 𝑓 (π‘₯) = 2 βˆ’ ∣π‘₯∣ is an even root function, then it is continuous on its
domain which is the set of real number such that 2 βˆ’ ∣π‘₯∣ β‰₯ 0. Now
2 βˆ’ ∣π‘₯∣ β‰₯ 0 ⇔ βˆ’βˆ£π‘₯∣ β‰₯ βˆ’2
⇔ ∣π‘₯∣ ≀ 2
⇔ βˆ’2 ≀ π‘₯ ≀ 2.
Hence 𝑓 is continuous on [βˆ’2, 2].
(1pts )
22. The accompanying figure shows the graph of 𝑦 =
𝑓 (π‘₯). Then 𝑓 β€² (1) =
𝑦
(a)
 0
𝑦 = 𝑓 (π‘₯)
1
(b) βˆ’1
-4
(c) Undefined
-3
-2
-1
1
2
-1
(d) 1
-2
Solution:
From the graph we can see that the tangent line to the graph of 𝑦 = 𝑓 (π‘₯) at 1 is
horizontal (𝑦 = 1) and hence its slope is zero. Now, since the first derivative is the slope of
the tangent line to the graph at 2 then 𝑓 β€² (1) = 0.
(1pts )
23. If 𝑦 = π‘₯2 +
(a)
√
1
βˆ’
5, then 𝑦 β€²β€²β€² =
π‘₯3
1
60
+ √
6
π‘₯
2 5
60
π‘₯6
Solution:
(c)
(b)

βˆ’60
π‘₯6
(d)
βˆ’60
1
βˆ’ √
6
π‘₯
2 5
√
1
βˆ’ 5
3
π‘₯
√
2
𝑦 = π‘₯ + π‘₯βˆ’3 βˆ’ 5
𝑦 = π‘₯2 +
𝑦 β€² = 2π‘₯ βˆ’ 3π‘₯βˆ’4
𝑦 β€²β€² = 2 + 12π‘₯βˆ’5
𝑦 β€²β€²β€² = βˆ’60π‘₯βˆ’6 =
βˆ’60
.
π‘₯6
3
π‘₯
Math 110,
(1pts )
29/5/1431H
Test 2–Version B
3π‘₯ + 1
, then 𝑦 β€² =
π‘₯βˆ’1
2
(a)
(π‘₯ βˆ’ 1)2
24. If 𝑦 =
6π‘₯ βˆ’ 4
(π‘₯ βˆ’ 1)2
Solution:
(c)
(b)
βˆ’2
(π‘₯ βˆ’ 1)2
(d)

βˆ’4
(π‘₯ βˆ’ 1)2
Bottom Derivative of Top
β€²
Top
(π‘₯ βˆ’ 1)
(3π‘₯ + 1)β€²
βˆ’ (3π‘₯ + 1)
𝑦 =
Derivative of Bottom
(π‘₯ βˆ’ 1)β€²
Bottom2
(π‘₯ βˆ’ 1)2
(π‘₯ βˆ’ 1)(3) βˆ’ (3π‘₯ + 1)(1)
(π‘₯ βˆ’ 1)2
3π‘₯ βˆ’ 3 βˆ’ (3π‘₯ + 1)
=
(π‘₯ βˆ’ 1)2
3π‘₯ βˆ’ 3 βˆ’ 3π‘₯ βˆ’ 1)
=
(π‘₯ βˆ’ 1)2
βˆ’4
=
.
(π‘₯ βˆ’ 1)2
=
(
(1
pts
)
25. lim cos
πœƒβ†’0
πœ‹πœƒ
sin (πœƒ)
)
=
(a)
 βˆ’1
(b) 0
(c) 1
Solution:
(d) ∞
(
lim cos
πœƒβ†’0
πœ‹πœƒ
sin (πœƒ)
)
(
)
πœ‹πœƒ
= cos lim
πœƒβ†’0 sin (πœƒ)
)
(
πœ‹πœƒ
= cos
sin (πœƒ)
= cos (πœ‹)
= βˆ’1.
(1pts )
26. If 𝑦 = π‘₯ sin π‘₯, then 𝑦 β€² =
(a) cos π‘₯
(c) sin π‘₯ βˆ’ π‘₯ cos π‘₯
Solution:
(b) sin π‘₯ + 1
(d)
 sin π‘₯ + π‘₯ cos π‘₯
𝑦 β€² = (π‘₯)β€² sin π‘₯ + π‘₯(sin π‘₯)β€²
= sin π‘₯ + π‘₯(cos π‘₯)
= sin π‘₯ + π‘₯ cos π‘₯.
9
Math 110,
(1pts )
29/5/1431H
Test 2–Version B
π‘₯2 βˆ’ 9
=
π‘₯β†’3 π‘₯2 βˆ’ π‘₯ βˆ’ 6
5
(a)
6
27. lim
(b)

βˆ’6
5
Solution:
(c)
π‘₯2 βˆ’ 9
π‘₯2 βˆ’ 9
=
lim
π‘₯β†’3 π‘₯2 βˆ’ π‘₯ βˆ’ 6
π‘₯β†’3 π‘₯2 βˆ’ π‘₯ βˆ’ 6
(π‘₯ + 3)(π‘₯ βˆ’ 3)
= lim
π‘₯β†’3 (π‘₯ βˆ’ 3)(π‘₯ + 2)
(π‘₯ + 3)
(π‘₯
βˆ’3)
= lim
+ 2)
π‘₯β†’3 (π‘₯
βˆ’3)(π‘₯
π‘₯+3
= lim
π‘₯β†’3 π‘₯ + 2
6
3+3
= .
=
3+2
5
28.
lim
π‘₯β†’βˆ’2βˆ’
6
5
(d) 0
lim
(1pts )
10
A direct substation will give us I.F. 0/0
Factoring π‘₯ βˆ’ 3 from denominator and numerator
π‘₯2 βˆ’ 1
=
4π‘₯ + 8
(a) ∞
(b) 0
(c) Does Not Exist
Solution:
(d)
 βˆ’βˆž
lim
π‘₯β†’βˆ’2βˆ’
π‘₯2 βˆ’ 1
π‘₯2 βˆ’ 1
= lim
4π‘₯ + 8 π‘₯β†’βˆ’2βˆ’ 2π‘₯ + 4
βˆ’π‘₯ βˆ’ 1
= lim
βˆ’
π‘₯+2
π‘₯β†’βˆ’2
A direct substation gives I.F. 3/0.
If π‘₯ < βˆ’2 and near βˆ’2,then π‘₯2 βˆ’ 1 > 0, 4π‘₯ + 8 < 0.
+
= lim
π‘₯2 βˆ’ 1
π‘₯β†’βˆ’2βˆ’
βˆ’
4π‘₯ + 8
= βˆ’βˆž
𝑦
𝑦=
3
π‘₯2 βˆ’ 1
2π‘₯ + 4
2
1
-8
-7
-6
-5
-4
-3
-2
-1
-1
-2
-3
-4
-5
1
2
3
π‘₯
Math 110,
(1pts )
29/5/1431H
29. The curve 𝑓 (π‘₯) =
Test 2–Version B
π‘₯ βˆ’ 2π‘₯3 + 1
π‘₯3 βˆ’ π‘₯ + 5
11
has a horizontal asymptote at
(a)
 𝑦 = βˆ’2
(b) 𝑦 = 0
(c) 𝑦 = 5
(d) π‘₯ = βˆ’2
Solution:
To find the horizontal asymptote we take the limit as π‘₯ β†’ ±βˆž Note that both the
numerator and the denominator β†’ ±βˆž, as π‘₯ β†’ ±βˆž. To find this limit divided both the
numerator and the denominator by the highest power of π‘₯ in the denominator which is π‘₯3 .
So,
π‘₯ βˆ’ 2π‘₯3 + 1
π‘₯βˆ’
+1
π‘₯3
= lim
lim
3
3
π‘₯β†’±βˆž π‘₯ βˆ’ π‘₯ + 5
π‘₯β†’±βˆž π‘₯ βˆ’ π‘₯ + 5
π‘₯3
1
1
βˆ’2+ 3
2
π‘₯
= lim π‘₯
1
5
π‘₯β†’±βˆž
1βˆ’ 2 + 3
π‘₯
π‘₯
0βˆ’2+0
= βˆ’2.
=
1βˆ’0+0
2π‘₯3
Therefore 𝑦 = βˆ’2 is a horizontal asymptote.
(1pts )
∣π‘₯ βˆ’ 3∣ βˆ’ 2
=
π‘₯βˆ’1
(a) 1
30. lim
π‘₯β†’1
(b) Does Not Exist
(c) 0
(d)
 βˆ’1
Solution:
A direct substation gives I.F. 0/0. Note that if π‘₯ > 1 or π‘₯ < 1 near(close) to 1 then
π‘₯ βˆ’ 3 < 0 β‡’ ∣π‘₯ βˆ’ 3∣ = βˆ’(π‘₯ βˆ’ 3).
∣π‘₯ βˆ’ 3∣ βˆ’ 2
βˆ’(π‘₯ βˆ’ 3) βˆ’ 2
= lim
π‘₯β†’1
π‘₯β†’0
π‘₯βˆ’1
π‘₯βˆ’1
βˆ’π‘₯ + 3 βˆ’ 2
= lim
π‘₯β†’1
π‘₯βˆ’1
βˆ’π‘₯ + 1
= lim
π‘₯β†’1 π‘₯ βˆ’ 1
βˆ’(π‘₯ βˆ’ 1)
= lim
π‘₯β†’1 π‘₯ βˆ’ 1
= lim (βˆ’1)
lim
π‘₯β†’1
= βˆ’1