Introduction The Vlasov equation Virial theorem Summary The Vlasov equation for cold dark matter and gravity Alaric Erschfeld Ruprecht-Karls-Universität Heidelberg Master seminar, 25.11.2016 1 / 50 Introduction The Vlasov equation Virial theorem Summary Table of Contents 1 Introduction 2 The Vlasov equation 3 Virial theorem 4 Summary 2 / 50 Introduction The Vlasov equation Virial theorem Summary Table of Contents 1 Introduction 2 The Vlasov equation 3 Virial theorem 4 Summary 3 / 50 Introduction The Vlasov equation Virial theorem Summary Kinetic theory 4 / 50 Introduction The Vlasov equation Virial theorem Summary Kinetic theory Ensembles of particles 5 / 50 Introduction The Vlasov equation Virial theorem Summary Kinetic theory Ensembles of particles Lagrangian system fully characterised by ~q = (q1 , ..., qd ), p~ = (p1 , ..., pd ) 6 / 50 Introduction The Vlasov equation Virial theorem Summary Kinetic theory Ensembles of particles Lagrangian system fully characterised by ~q = (q1 , ..., qd ), p~ = (p1 , ..., pd ) Statistical mechanics: evolution in phase-space cell 7 / 50 Introduction The Vlasov equation Virial theorem Summary Phase-space distribution Probability for system to be at (~q, p~), dP (d) (t, ~q, p~) = f (d) (t, ~q, p~)dd qdd p 8 / 50 Introduction The Vlasov equation Virial theorem Summary Phase-space distribution Probability for system to be at (~q, p~), dP (d) (t, ~q, p~) = f (d) (t, ~q, p~)dd qdd p Interested in reduced phase-space distribution, f (k) (t, q1 , ..., qk , p1 , ..., pk ) = Z Z dqk+1 ...dqd dpk+1 ...dpd f (d) (t, ~q, p~) 9 / 50 Introduction The Vlasov equation Virial theorem Summary Liouville’s theorem Distribution function conserved along its characteristics, df (d) ∂f (d) ∂f (d) ∂f (d) = + q̇i + ṗj dt ∂t ∂qi ∂pj = ∂f (d) ∂H ∂f (d) ∂H ∂f (d) + − ∂t ∂pi ∂qi ∂qj ∂pj =0 10 / 50 Introduction The Vlasov equation Virial theorem Summary BBGKY hierarchy Integrate over d − k degrees of freedom 11 / 50 Introduction The Vlasov equation Virial theorem Summary BBGKY hierarchy Integrate over d − k degrees of freedom f (k) depends on f (k+1) 12 / 50 Introduction The Vlasov equation Virial theorem Summary BBGKY hierarchy Integrate over d − k degrees of freedom f (k) depends on f (k+1) Closure condition needed 13 / 50 Introduction The Vlasov equation Virial theorem Summary Boltzmann equation One-particle distribution function, f (t, ~q, p~)d3 qd3 p = dN 14 / 50 Introduction The Vlasov equation Virial theorem Summary Boltzmann equation One-particle distribution function, f (t, ~q, p~)d3 qd3 p = dN Boltzmann equation for Hamiltonian system, ∂f ~ p~ H · ∇ ~ q~f − ∇ ~ q~H · ∇ ~ p~ f = C[f ] +∇ ∂t ∂f p~ ~ ~ p~ f = C[f ] + · ∇q~f + F~ · ∇ ∂t m 15 / 50 Introduction The Vlasov equation Virial theorem Summary Table of Contents 1 Introduction 2 The Vlasov equation 3 Virial theorem 4 Summary 16 / 50 Introduction The Vlasov equation Virial theorem Summary Vlasov equation for plasma Vlasov’s original idea for a plasma with long-ranged Coulomb interaction, ~ ~ + ~v × B) F~L = q(E c ~ ~x f + q(E ~+ ∂t f + ~v · ∇ ~v ~ ·∇ ~ p~ f = 0 × B) c 17 / 50 Introduction The Vlasov equation Virial theorem Summary Vlasov equation for gravity Using the CBE with gravity for dark matter description, ~ ~x φ f~g = −∇ ~ ~x f − ∇ ~ ~x φ · ∇ ~ ~v f = 0 ∂t f + ~v · ∇ 18 / 50 Introduction The Vlasov equation Virial theorem Summary Vlasov equation for gravity Using the CBE with gravity for dark matter description, ~ ~x φ f~g = −∇ ~ ~x f − ∇ ~ ~x φ · ∇ ~ ~v f = 0 ∂t f + ~v · ∇ On an expanding background ∂t f + vi ∂ x f − a ∂ xi φ ∂ v i f = 0 a i 19 / 50 Introduction The Vlasov equation Virial theorem Summary Vlasov transport equation Weighted integration conservation equations, Z h d3 v ∂t f + N iY vi v kj ∂ xi f − a ∂ xi φ ∂ v i f =0 a a j=1 20 / 50 Introduction The Vlasov equation Virial theorem Summary Vlasov transport equation Weighted integration conservation equations, Z h d3 v ∂t f + N iY vi v kj ∂ xi f − a ∂ xi φ ∂ v i f =0 a a j=1 Solve moments for physical observables, Z d3 v f N Y 1 ...kN v kj = n mk(N ) j=1 21 / 50 Introduction The Vlasov equation Virial theorem Summary Continuity equation Zeroth moment of the transport equation, Z ∂t 1 d vf + ∂xi a 3 Z 3 d v f v − a (∂xi φ) Z Z i Z d3 v ∂vi f = 0 d3 v f = n d3 v f v i = nhv i i Z d3 v ∂vi f = 0 22 / 50 Introduction The Vlasov equation Virial theorem Summary Continuity equation Zeroth moment of the transport equation, Z ∂t 1 d vf + ∂xi a 3 Z 3 d v f v − a (∂xi φ) Z Z i Z d3 v ∂vi f = 0 d3 v f = n d3 v f v i = nhv i i Z d3 v ∂vi f = 0 yields, ∂t n + ∂xi (nui ) = 0 23 / 50 Introduction The Vlasov equation Virial theorem Summary Jeans equation First moment of the transport equation, 1 ∂t a Z 1 d vf v + 2 ∂xi a j 3 Z Z Z 3 i j d v f v v − (∂xi φ) Z d3 v (∂vi f )v j = 0 d3 v f v j = nhv j i d3 v v i v j f = nhv i v j i = n[σ ij + hv i ihv j i] Z d3 v (∂vi f )v j = −nδ ij 24 / 50 Introduction The Vlasov equation Virial theorem Summary Jeans equation First moment of the transport equation, 1 ∂t a Z 1 d vf v + 2 ∂xi a j 3 Z Z Z 3 i j d v f v v − (∂xi φ) Z d3 v (∂vi f )v j = 0 d3 v f v j = nhv j i d3 v v i v j f = nhv i v j i = n[σ ij + hv i ihv j i] Z d3 v (∂vi f )v j = −nδ ij yields, ∂t uj + Huj + ui ∂xi uj = −∂xj φ − 1 ∂ i (nσ̃ ij ) n x 25 / 50 Introduction The Vlasov equation Virial theorem Summary Moments Moments of a distribution function, Z d3 v f N Y v kj j=1 a 1 ...kN = n mk(N ) 26 / 50 Introduction The Vlasov equation Virial theorem Summary Moments Moments of a distribution function, Z d3 v f N Y v kj j=1 a 1 ...kN = n mk(N ) Moment generating function, M (~l) ≡ = Z d3 v f e Z d3 v f li v i a X m∈N0 1 li v i N N! a 27 / 50 Introduction The Vlasov equation Virial theorem Summary Moments Moments of a distribution function, Z d3 v f N Y v kj 1 ...kN = n mk(N ) a j=1 Moment generating function, M (~l) ≡ = Z d3 v f e Z d3 v f li v i a X m∈N0 1 li v i N N! a Moments, ∂lk1 ...∂lkN M ~l=0 k1 ...kN = n m(N ) 28 / 50 Introduction The Vlasov equation Virial theorem Summary Cumulants Cumulant generating function, C(~l) = ln(M (~l)) ∂lk1 ...∂lkN C ~l=0 1 ...kN = ck(N ) 29 / 50 Introduction The Vlasov equation Virial theorem Summary Cumulants Cumulant generating function, C(~l) = ln(M (~l)) ∂lk1 ...∂lkN C ~l=0 1 ...kN = ck(N ) Equations of motion, ~ ~)C + ∇ ~ ~x C · ∇ ~ ~ C + (∇ ~ ~x · ∇ ~ ~)C = −~l · ∇ ~ ~x φ ∂t C + H(~l · ∇ l l l 30 / 50 Introduction The Vlasov equation Virial theorem Summary Energy equation ~l = 0 and first derivatives yield, ∂t n + ∂xi (nui ) = 0 ∂t uj + Huj + ui ∂xi uj = −∂xj φ − 1 ∂ i (nσ̃ ij ) n x 31 / 50 Introduction The Vlasov equation Virial theorem Summary Energy equation ~l = 0 and first derivatives yield, ∂t n + ∂xi (nui ) = 0 ∂t uj + Huj + ui ∂xi uj = −∂xj φ − 1 ∂ i (nσ̃ ij ) n x Applying second derivatives, 1 ∂t σ̃ ij +2H σ̃ ij +(uk ∂xk )σ̃ ij + σ̃ jk ∂xk ui + σ̃ ik ∂xk uj = − ∂xk (nΠ̃ijk ) n 32 / 50 Introduction The Vlasov equation Virial theorem Summary Orbit crossing Perfect pressureless fluid approximation, f (~x, ~v , t) = n(~x, t)δD (v i − aui (~x, t)) 33 / 50 Introduction The Vlasov equation Virial theorem Summary Orbit crossing Perfect pressureless fluid approximation, f (~x, ~v , t) = n(~x, t)δD (v i − aui (~x, t)) yields, C(~x, t, l) = ln[n(~x, t)] + li ui (~x, t) 34 / 50 Introduction The Vlasov equation Virial theorem Summary Orbit crossing Generation of multiple streams due to orbit crossing. Figure taken from [3] 35 / 50 Introduction The Vlasov equation Virial theorem Summary Orbit crossing Resulting cumulant generating function, h C(~x, t, l) = ln X ~ ns el·~us i streams at ~ x 36 / 50 Introduction The Vlasov equation Virial theorem Summary Table of Contents 1 Introduction 2 The Vlasov equation 3 Virial theorem 4 Summary 37 / 50 Introduction The Vlasov equation Virial theorem Summary Virial theorem Jeans equation, 1 1 ∂t (ρhv j i) + 2 ∂xk (ρhv k v j i) + ρ∂xj φ = 0 a a 38 / 50 Introduction The Vlasov equation Virial theorem Summary Virial theorem Jeans equation, 1 1 ∂t (ρhv j i) + 2 ∂xk (ρhv k v j i) + ρ∂xj φ = 0 a a weighted integration, 1 a Z 1 d x x ∂t (ρhv i) = − 2 a 3 i j Z 3 i k j Z d x x ∂xk (ρhv v i)− d3 x xi ρ∂xj φ 39 / 50 Introduction The Vlasov equation Virial theorem Summary Virial theorem Inertial-tensor, Z 1 d3 x xi ∂t (ρhv j i) + xj ∂t (ρhv i i) 2 d2 I ij = dt2 d3 x xi ∂t (ρhv j i) = Z 40 / 50 Introduction The Vlasov equation Virial theorem Summary Virial theorem Kinetic energy, Z 3 i k j d x x ∂xk (ρhv v i) = Z =− =− i 3 k j d x ∂xk (x ρhv v i) − Z Z d3 x ρhv i v j i Z d3 x ρ[hv i ihv j i + σ ij ] d3 x ρhv k v j i∂xk xi = −T ij − Πij 41 / 50 Introduction The Vlasov equation Virial theorem Summary Virial theorem Potential energy, − Z d3 x xi ρ∂xj φ = U ij 42 / 50 Introduction The Vlasov equation Virial theorem Summary Virial theorem Tensorial virial theorem, d2 I˜ij = T̃ ij + Π̃ij + U ij dt2 43 / 50 Introduction The Vlasov equation Virial theorem Summary Table of Contents 1 Introduction 2 The Vlasov equation 3 Virial theorem 4 Summary 44 / 50 Introduction The Vlasov equation Virial theorem Summary Summary Kinetic theory provides Boltzmann equation 45 / 50 Introduction The Vlasov equation Virial theorem Summary Summary Kinetic theory provides Boltzmann equation CBE and gravity yield the Vlasov equation for gravity and dark matter 46 / 50 Introduction The Vlasov equation Virial theorem Summary Summary Kinetic theory provides Boltzmann equation CBE and gravity yield the Vlasov equation for gravity and dark matter VE describes time evolution of the distribution function in phase-space 47 / 50 Introduction The Vlasov equation Virial theorem Summary Summary Kinetic theory provides Boltzmann equation CBE and gravity yield the Vlasov equation for gravity and dark matter VE describes time evolution of the distribution function in phase-space Approximations have to be well motivated since the VE is not trivially solvable 48 / 50 Introduction The Vlasov equation Virial theorem Summary Summary Kinetic theory provides Boltzmann equation CBE and gravity yield the Vlasov equation for gravity and dark matter VE describes time evolution of the distribution function in phase-space Approximations have to be well motivated since the VE is not trivially solvable Still many applications to the VE for gravity and dark matter 49 / 50 Introduction The Vlasov equation Virial theorem Summary References I [1] M. Bartelmann, Theoretical Astrophysics An Introduction (WILEY-VCH, Weinheim, 2013) [2] A. A. Vlasov, J. Exp. Theor. Phys. 8 (3), 291 (1938) [3] S. Pueblas, R. Scoccimarro, Phys. Rev. D 80, 043504 (2009) 50 / 50
© Copyright 2025 Paperzz