Appendix A Thermodynamic Properties of Ammonia-Water Mixture A.1 INTRODUCTION Ammonia-water mixture is a working fluid used in Kalina cycle system (KCS) and vapor absorption refrigeration (VAR) plants. Unlike for pure components, binary mixtures additionally need mixture concentration to assess thermodynamic properties. In ammonia-water mixture, ammonia will boil at low temperature as it has low boiling point. Ammonia-water mixture as zeotropic nature will have the tendency to boil and condense at a range of temperatures possessing a closer match between heat source and working fluid mixture. Thermodynamic properties have been generated from correlations and derivations and formed as MATLAB subroutines. These properties are used in thermodynamic evaluation of KCS plants. The temperature-concentration, specific volume-concentration, enthalpy-concentration, entropy-concentration and exergy-concentration graphs for ammonia-water mixtures are plotted up to 100 bar pressure. A.2 THERMODYNAMIC PROPERTIES The first step in evaluating thermodynamic properties of ammonia-water mixture is to find the bubble point temperature (BPT) and dew point temperature (DPT). With BPT and DPT, specific volume, specific enthalpy, specific entropy and specific exergy values of saturated liquid and vapour properties are predicted. The available correlations are used for the evaluation of properties (Ziegler and Trepp, 1984; Patek, 1995; Xu and Goswami, 1999 and Alamdari, 2007). These correlations will help in avoiding the tedious iterations required in the complicated fugacity method. A.2.1 BUBBLE AND DEW POINT TEMPERATURES Figure A.1 shows the details of bubble point and dew point temperature variations with ammonia concentration at a fixed pressure. The loci of all the bubble points have called as the bubble point curve and the loci of all the dew points have 126 called as the dew point curve. The bubble point curve is the saturated liquid line and the dew point curve is the saturated vapor line and the region between the bubble and dew point lines is the two-phase region where both liquid and vapor coexist in equilibrium. The region below the saturated liquid line is sub cooled liquid region and the region above the saturated vapor line is superheated vapor region. The bubble and dew point temperatures of the ammonia-water mixture have been determined from the equations (1) and (2). The coefficient values for equations A.1 and A.2 are given in table A.1 and A.2 respectively for bubble point temperature and dew point temperature. Tb P, x T0 a i 1 x mi i Td P, y T0 a i 1 x mi i P0 ln P P0 ln P ni (A.1) ni (A.2) Fig.A.1 Property regions on temperature-concentration diagram for ammonia-water mixture at constant pressure 127 Table A.1 Coefficients for equation (A.1) to determine bubble point temperature i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mi 0 0 0 0 0 1 1 1 2 4 5 5 6 13 ni 0 1 2 3 4 0 1 2 3 0 0 1 0 1 ai +0.322302 101 -0.384206 100 +0.460965 10-1 -0.378945 10-2 +0.135610 10-3 +0.487755 100 -0.120108 100 +0.106154 10-1 -0.533589 10-3 +0.785041 101 -0.115941 102 -0.523150 10-1 +0.489596 101 +0.421059 10-1 Table A.2 Exponents and coefficients of equation (A.2) to determine dew point temperature i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mi 0 0 0 0 1 1 1 2 2 3 3 4 4 5 5 6 7 ni 0 1 2 3 0 1 2 0 1 0 1 0 2 0 2 0 2 128 ai +0.324004 101 -0.395920 100 +0.435624 10-1 -0.218943 10-2 -0.143526 101 +0.105256 101 -0.719281 10-1 +0.122362 102 -0.224368 101 -0.201780 102 +0.110834 101 +0.145399 102 +0.644312 100 -0.221246 101 -0.756266 100 -0.135529 101 +0.183541 100 Start Input of P, T and x BPT and DPT Properties of ammonia (liquid and vapor) Properties of water (liquid and vapor) Properties of ammonia and water mixture (liquid and vapor) Yes Assign properties of liquid mixture (saturated) Yes Assign properties of liquid mixture (sub-cooled) Yes Assign properties of vapor mixture (saturated) T = BPT No T < BPT No T = DPT No Yes T > BPT and T < DPT BPT No T > DPT Yes Assign properties of liquid vapor mixture Assign properties of vapor mixture (superheated) Property data and charts End Fig.A.2 Flowchart for thermodynamic properties of ammonia-water mixture at five regions 129 Figure A.2 shows the flowchart to solve the properties in the five regions viz: sub cooled region, saturated liquid region, two-phase region, saturated vapor region and superheated region. The actual state out of five regions has been identified from the given temperature, pressure and concentration. It can be done by comparing the temperature with bubble point and dew point temperatures. If the temperature is less than the bubble point temperature, the region is sub cooled or compressed liquid. If the temperature is equal to the bubble point temperature, it is a saturated liquid region. In case the temperature lies between bubble point temperature and dew point temperature, the region is liquid-vapor mixture. Saturated vapor region is the one obtained when the temperature obtained is equal to the dew point temperature. Finally if temperature exceeds the dew point temperature, it is a superheated region. A.2.2 SPECIFIC ENTHALPY AT LIQUID PHASE The energy and exergy properties have derived from Gibbs free energy function. In liquid phase the Gibbs free energy for both liquid and gas phases have determined from equations (A.3) and (A.4), respectively. h m xh m L NH (1 x) h L H O 2 3 hE (A.3) The following equations (A.4) to (A.14) have specified the liquid enthalpy calculation. TB=100 K, PB=10 bar, Tr=T/ TB, Pr=P/ PB respectively. h RTB Tr2 Tr Gr Tr Pr (A.4) Cp G h o Tso C p dT vdp T dT T To Po To T P 130 T (A.5) Gr L Gr Tr L B3 3 B2 2 L L 2 3 h T s B T T T T Tr Tro ro r ro 1 r ro r ro 2 3 Tr B3 2 2 B 2 Tr Tr Tro B1Tr ln Tr Tro Tr 2 Tro A 2 2 2 A1 A 3 Tr A 4 Tr Pr Pro 2 Pr Pro 2 2 h ro L T B T B L s ro B1 1 ro 2 Tr ro 3 Tr 2 Tr 3 Tr T B 2 2 B1 ln r B 2 Tr Tro 3 Tr Tro T 2 ro A 1 A 3 A 4 Tr Pr Pro A 2 Pr 2 Pro 2 Tr 2Tr (A.6) 2 Tro 3 Tr T r (A.7) h ro L T 2 B T B B 2 B1 ro2 2 B 2 ro 2 1 B 2 3 2Tr L 3 G r Tr Tr 2 2Tr Tr Tr Tr B T 3 A1 A2 2 2 3 ro B T A P P Pr Pro 3 r 4 r ro 2 2 3 T2 Tr 2Tr r 2 Gr Tr Tr Tr B B L 2 2 3 3 h B1 Tro Tr 2 Tro Tr 3 Tro Tr ro 2 3 A T 2 A P P A 2 P 2 P 2 4 r 1 r ro r ro 2 B B L 2 2 3 3 h ro B1 Tro Tr 2 Tro Tr 3 Tro Tr 2 3 h L RT B A A T 2 A P P 2 P 2 P 2 4 r 1 r ro r ro 2 (A.8) (A.9) (A.10) The above equation (A.10) is used for finding liquid enthalpy for water and ammonia. The Gibbs excess energy GrE for liquid mixtures has been expressed in equation A.11 G r F1 F2 2x 1 F3 2x 1 1 x E 2 F1 E1 E 2 Pr E 3 E 4 Pr Tr E5 E6 Tr Tr 2 F2 E 4 E 8 Pr (E 9 E10 Pr )Tr 131 E11 E12 2 Tr Tr (A.11) (A.12) (A.13) F3 E 13 E14 Pr E 15 E 16 2 Tr Tr h RTB Tr Tr E 2 GrE T r (A.14) Pr ,x (A.15) 2E 5 3E 6 2 - E1 E 2 Pr Tr Tr 2E11 3E12 E h RTB (1 x )(2x 1) - E 7 E 8 Pr 2 T Tr r (2x 1) 2 - E E P 2E15 3E16 14 r 2 13 Tr Tr (A.16) A.2.3 SPECIFIC ENTHALPY AT VAPOR PHASE Similarly the equation of state for pure component in the vapor phase has identified in the following equation. h mv xh vNH3 (1 x) h Hv 2O (A.17) For the gas phase, Gibbs free energy equation is given below: Gr v D3 3 D2 2 v v 2 3 h ro Tr s ro D1 (Tr Tro ) 2 Tr Tro 3 Tr Tro Tr Pr D3 2 2 D1Tr ln T D 2 Tr (Tr Tro ) 2 (Tr Tro ) Tr ln P ro ro P (A.18) 4 P 3 P T C1 Pr Pro C 2 r3 ro3 ro 4 r Tr T T ro ro Pr 12Pro 11Pro Tr C 4 Pr 3 12Pro 3 11Pro 3 Tr C 3 11 11 12 11 11 12 Tro Tro 3 Tr Tro Tro Tr 132 2 3 h ro v Tro D 3 2 Tro Tro D 2 v s ro D1 1 Tr Tr T 2 T 3 T Tr r r r 2 Tro T D ln Pr D1 ln r D 2 Tr Tro 3 Tr P v T 2 T ro r ro Gr (A.19) Tr P C1 4Pro 3Pro 12Pro 11Pro r Pr Pr Pro C 2 4 3 4 C 3 12 11 12 Tro Tr Tro Tro Tr Tro Tr Tr Tr 3 3 3 12Pro 11Pro C 4 Pr 12 12 12 Tro Tr Tro 3 Tr 2 3 h ro v T T D T D 1 2 D1 ro2 2 1 ro2 3 2Tr ro2 D1 T T 2 Tr Tr 3 Tr r r 2 v Tro D 4P C 4P Gr D 2 3 1 2 12 Pr Pro C 2 5r 3 ro 2 (A.20) T Tr Tr 2 Tr Tr Tro Tr r 3 3 12 P 12 P 12Pr 12Pro C 4 ro r C 3 13 11 2 13 11 2 Tro Tr 3 Tr Tro Tr Tr Tr 2 G r Tr Tr v pr G r Tr Tr v pr D3 D2 2 v 2 3 3 h ro D1Tro 2 Tr Tro 3 2Tr Tro D T D T 2 D 3 T 2 T 2 C P P 2 r r ro 1 r ro 1 r 2 12P 12P RTB 4Pr 4Pro r C C 11ro 3 2 3 3 11 T T T Tro ro r r 3 3 C 4 12Pr 12Pro 3 T 11 T 11 ro r 2 h v RTB Tr D3 D2 2 v 2 3 h D T T T 2Tr3 Tro ro 1 ro r ro 2 3 D T D T 2 D 3 T 2 T 2 C P P 2 r r ro 1 r ro 1 r 2 12P 12P 4Pr 4Pro ro r C 2 3 3 C 3 11 11 T Tro Tro Tr r 3 3 C 4 12Pr 12Pro 3 11 11 Tro Tr 133 (A.21) (A.22) A.2.4 SPECIFIC ENTROPY AT LIQUID AND VAPOR PHASES The molar entropy of the liquid and vapor phases is specified and simplified from equation (A.23) to (A.33). G s R r T r Pr (A.23) Tr B3 2 B2 L s B ( 2 T ) 3 T B ln 1 1 r 1 G r 2 3 r ro Tro (A.24) Tr B B 2T T 3 3T 2 T 2 (A 2A T ) (P P ) r ro 3 4 r r ro 2 r ro 2 L G L r L s R T r Pr B2 L 2Tr B3 3Tr 2 B1 ln Tr 1 s ro B1 2 3 Tro B3 2 2 R B 2 2Tr Tro 3T T r ro 2 A 2A T P P 4 r r ro 3 (A.25) G E s E R r Tr G r Tr E Pr,x (A.26) E 2E E 2E E 3 E 4 Pr 52 36 (2x 1) E 9 E10 Pr 112 12 3 Tr Tr T T r r 1 x E 2 E 2 15 16 (2x 1) 2 3 Tr Tr (A.27) 134 G r E s E R Tr Pr,x E 2E E 3 E 4 Pr 52 36 Tr Tr E 2E R 1 x (2x 1) E 9 E10 Pr 112 12 3 T T r r E 2 E 2 15 16 (2x 1) 2 3 Tr Tr s mix Rx ln( x ) (1 x ) ln(1 x ) s mL xs aL (1 x )s Lw s E s m ix G V r Tr T s V D1 D 2 Tr D 3 T 2 D1 1 ln r D 2 2Tr Tro r Tro ro 3P P 3P D3 2 2 ro r r C 3T T ln r ro 2 4 4 T P T 2 ro r ro 11P 3 11P 3 11P 11P r ro C 4 C ro r 3 12 12 12 12 3 T T T Tr ro r ro G r V v s Tr Pr Tr V 2 s ro D1 D 2 Tr D 3 Tr D1 1 ln T ro P D3 2 2 r D 2 2Tr Tro 2 3Tr Tro ln P ro 3P 3P 11P 11P R ro ro r r C3 C 2 4 T T 12 T 12 T 4 r r ro ro 3 11P 3 11Pr ro C4 3 12 12 T Tr ro s mv xs aV (1 x )s Vw s m ix 135 (A.28) (A.29) (A.30) (A.31) (A.32) (A.33) A.2.5 SPECIFIC VOLUME AT LIQUID AND VAPOR PHASES The specific volume of the liquid and vapor phases is simplified from equation (A.34) to (A.43). RTB PB v G r RTB v PB G r L Pr 2 Pr (A.35) RTB A A T A T 2 A P 1 3 r 4 r 2 r PB Tr RTB v PB E (A.34) A1 A 3 Tr A 4 Tr A 2 Pr E G r Tr L Pr L G r Pr G r E Pr (A.36) Tr , x (A.37) E 2 E 4 Tr 2x 1E 8 E10 Tr 2x 1 1 x E14 2 E RTB G r v PB Pr E RTB PB Tr E (A.38) E 4 Tr 2x 1E 8 E10 Tr 2x 1 E14 1 x 2 2 (A.39) vLm xvaL (1 x)vLW vE (A.40) G Vr T C C C P2 r C1 32 113 411r Pr Pr Tr Tr Tr (A.41) RTB v PB v G r V Pr RTB PB Tr 2 T C P r C C 2 C3 4 r 1 3 11 11 Pr Tr Tr Tr v mv xv av (1 x ) v vw 136 (A.42) (A.43) Table A.3 Coefficients for the equations for the pure components Coefficient A1 A2 A3 A4 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3 hL hv sL sv Tro Pro Ammonia Water 3.971423 10-2 2.748796 10-2 -1.790557 10-5 -1.016665 10-5 -1.308905 10-2 -4.452025 10-3 3.752836 10-3 8.389246 10-4 1.634519 101 1.214557 101 -6.508119 -1.898065 1.448937 2.911966 10-2 -1.049377 10-2 2.136131 10-2 -8.288224 -3.169291 101 -6.647257 102 -4.634611 104 -3.045352 103 0.0 3.673647 4.019170 9.989629 10-2 -5.175550 10-2 3.617622 10-2 1.951939 10-2 4.878573 21.821141 26.468879 60.965058 1.644773 5.733498 8.339026 13.453430 3.2252 5.0705 2.0000 3.0000 The coefficient values for equations A6, A.12, A.13, A.14, A.18, A.24, and A.31, are given in table A.3 and A.4. Table A.4 Coefficients for the equations used for Gibbs excess energy function Coefficients E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 -41.733398 0.02414 6.702285 -0.011475 63.608967 -62.490768 1.761064 0.008626 0.387983 0.004772 -4.648107 0.836376 -3.553627 0.000904 21.361723 -20.736547 137 Fig.A.3 Bubble and dew point temperature up to 100 bar Fig.A.4 (a) Specific volume of saturated liquid and (b) Specific volume of saturated vapor 138 Fig.A.5 Ammonia-water enthalpy concentration diagram Figure A.3 is the plot for bubble and dew point temperature up to 100 bar pressure. Figure A. 4(a) shows the changes in saturated liquid specific volume with ammonia mass fraction at various pressures. The specific volume has been calculated at bubble point temperature for the given pressure and ammonia mass fractions. The trend increases with the increase in pressure. Similarly Fig A.4(b) is the saturated vapor specific volume diagram. It is generated with the bubble point temperature and vapor ammonia mass fraction. 139 Fig.A.6 Ammonia-water entropy concentration diagram Figure A.5 is an enthalpy-concentration plot as function of ammonia mass fraction, at a fixed pressure. 140 Fig.A.7 Ammonia-water exergy concentration diagram The upper curve is the vapor curve, resulted from liquid concentration and dew point temperature. The lower curve is the liquid enthalpy plot, resulted from the bubble point temperature and liquid ammonia concentration. The auxiliary curve is resulted from bubble point temperature and vapor ammonia concentration. The curves are generated from 0.2 bar to 100 bar pressure. 141 Figure A.6 is an entropy-concentration plot as function of ammonia mass fraction and pressure. The entropy values are decreasing with increase in pressure, in liquid and vapor regions. Exergy analysis is the maximum useful work resulted from iteration of a system with equilibrium state. E = h - Tos (A.44) The exergy - concentration plot for ammonia-water mixture at various pressures is shown in figure A.7. In liquid region, the curves are widened at low concentration side. A.3 ALGORITHM TO FIND THE PROPERTIES OF AMMONIAWATER MIXTURE The algorithm has been prepared to find the property regions for thermodynamic properties generation using MATLAB codes. %DIFFEENT PHASES OF AMMONIA-WATER MIXTURE if(((T-Tbp)>=-0.05)&&((T-Tbp)<=0.05))||(T==Tbp) %1. saturated liquid mixture df=0; RGN=1; elseif(T<Tbp&&T<Tdp) %2. sub cooled liquid mixture df=0; RGN=2; elseif(((T-Tdp)>=-0.05)&&((T-Tdp)<=0.05))||(T==Tdp) %3. saturated vapor mixture df=1; RGN=3; elseif(T>Tbp&&T<Tdp) %4. liquid-vapor mixture RGN=4; elseif(T>Tdp) %5. superheated mixture df=1; RGN=5; end switch(RGN) case 1 hm=(1-df)*hf+df*hg2; sm=(1-df)*sf+df*sg2; vm=(1-df)*vf+df*vg2; Tdp=Tdp-273.15; Tbp=Tbp-273.15; case 2 142 if(((Tbp-Tdp)>=-1)&&((Tbp-Tdp)<=1)) df=1; end hm=(1-df)*hf+df*hg2; sm=(1-df)*sf+df*sg2; vm=(1-df)*vf+df*vg2; Tdp=Tdp-273.15; Tbp=Tbp-273.15; hg1=0; hg2=0; case 3 hm=(1-df)*hf+df*hg2; sm=(1-df)*sf+df*sg2; vm=(1-df)*vf+df*vg2; Tdp=Tdp-273.15; Tbp=Tbp-273.15; case 4 %AMMONIA-WATER LIQUID MIXTURE hm=(1-df)*hf+df*hg2; sm=(1-df)*sf+df*sg2; vm=(1-df)*vf+df*vg2; Tdp=Tdp-273.15; Tbp=Tbp-273.15; case 5 hm=(1-df)*hf+df*hg2; sm=(1-df)*sf+df*sg2; vm=(1-df)*vf+df*vg2; Tdp=Tdp-273.15; Tbp=Tbp-273.15; end A.4 AQUA-AMMONIA TABLES A.4.1 BUBBLE AND DEW POINT TEMPERATURES From Patek and Klomfar (1994) equations, the bubble and dew point temperatures have been calculated and tabulated in Table A5 and Table A6 respectively. The specific enthalpy, specific entropy, specific volume and specific exergy values are tabulated using Xu and Goswami (1999) mathematical relations (Table A7 to A12). 143 Table A.5 Bubble point temperature, ºC Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10 15 20 30 40 50 60 70 80 90 100 0 60.50 76.10 86.02 93.48 99.53 120.00 143.47 158.85 170.59 180.06 198.96 213.14 234.96 251.68 265.39 277.10 287.38 296.57 304.90 312.53 0.1 29.59 45.25 55.22 62.71 68.78 89.31 112.81 128.18 139.90 149.32 168.17 182.26 203.95 220.55 234.15 245.77 255.96 265.06 273.31 280.87 0.2 10.25 24.94 34.34 41.42 47.17 66.70 89.15 103.87 115.13 124.16 142.32 155.87 176.80 192.83 205.98 217.21 227.07 235.89 243.87 251.20 0.3 -6.71 7.00 15.83 22.50 27.94 46.44 67.82 81.89 92.66 101.30 118.74 131.76 151.90 167.35 180.04 190.89 200.42 208.93 216.66 223.74 0.4 -22.51 -9.54 -1.17 5.17 10.34 28.01 48.49 62.00 72.36 80.67 97.49 110.04 129.51 144.45 156.73 167.24 176.47 184.72 192.22 199.09 0.5 -36.09 -23.70 -15.68 -9.59 -4.63 12.35 32.08 45.13 55.14 63.17 79.45 91.61 110.48 124.98 136.90 147.11 156.07 164.10 171.38 178.06 0.6 -46.43 -34.49 -26.75 -20.88 -16.08 0.32 19.41 32.04 41.74 49.53 65.31 77.12 95.45 109.54 121.14 131.07 139.80 147.61 154.70 161.21 0.7 -53.26 -41.67 -34.17 -28.48 -23.84 -7.93 10.56 22.80 32.21 39.78 55.10 66.58 84.40 98.11 109.40 119.06 127.56 135.17 142.08 148.42 0.8 -57.14 -45.86 -38.57 -33.04 -28.53 -13.10 4.83 16.71 25.84 33.19 48.07 59.23 76.55 89.89 100.88 110.29 118.57 125.99 132.72 138.90 0.9 -59.25 -48.22 -41.12 -35.74 -31.35 -16.37 1.03 12.55 21.41 28.54 42.99 53.82 70.67 83.64 94.33 103.50 111.56 118.78 125.34 131.37 1 -60.78 -49.96 -43.03 -37.79 -33.52 -18.96 -2.08 9.09 17.68 24.60 38.62 49.14 65.50 78.11 88.51 97.43 105.28 112.32 118.71 124.58 144 Table A.6 Dew point temperature, ºC Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10 15 20 30 40 50 60 70 80 90 100 0 60.50 76.10 86.02 93.48 99.53 120.00 143.47 158.85 170.59 180.06 198.96 213.14 234.96 251.68 265.39 277.10 287.38 296.57 304.90 312.53 0.1 60.99 75.79 85.26 92.41 98.22 117.93 140.48 155.17 166.31 175.40 192.95 206.24 226.25 241.38 253.68 265.10 273.19 281.26 288.53 295.17 0.2 57.77 72.39 81.75 88.81 94.54 114.00 136.25 150.75 161.76 170.73 188.06 201.19 220.96 235.91 248.07 258.37 267.35 275.33 282.53 289.09 0.3 54.69 69.01 78.16 85.07 90.69 109.74 131.55 145.77 156.57 165.38 182.40 195.30 214.74 229.45 241.41 251.55 260.39 268.24 275.33 281.80 0.4 51.53 65.47 74.38 81.10 86.56 105.09 126.32 140.18 150.70 159.29 175.90 188.50 207.48 221.86 233.56 243.48 252.13 259.82 266.76 273.09 0.5 48.01 61.57 70.21 76.72 82.01 99.94 120.47 133.86 144.04 152.35 168.42 180.63 199.02 212.96 224.30 233.92 242.32 249.78 256.52 262.67 0.6 43.76 57.03 65.43 71.74 76.84 94.11 113.82 126.65 136.41 144.36 159.75 171.43 189.05 202.40 213.27 222.50 230.54 237.70 244.16 250.06 0.7 38.27 51.44 59.65 65.77 70.71 87.27 106.02 118.17 127.39 134.90 149.41 160.41 177.00 189.57 199.80 208.48 216.06 222.80 228.88 234.44 0.8 30.74 44.03 52.14 58.10 62.87 78.65 96.22 107.51 116.03 122.96 136.29 146.39 161.58 173.08 182.43 190.37 197.29 203.45 209.01 214.09 0.9 19.26 32.75 40.72 46.46 50.99 65.66 81.57 91.62 99.14 105.23 116.90 125.69 131.87 148.84 156.93 163.80 169.78 175.11 179.91 184.30 1 -60.78 -49.96 -43.03 -37.79 -33.52 -18.96 -2.08 9.09 17.68 24.60 38.62 49.14 65.50 78.11 88.51 97.43 105.28 112.32 118.71 124.58 145 A.4.2 SPECIFIC ENTHALPY VALUES Table A.7 Saturated liquid enthalpy of ammonia-water mixture, kJ/kg Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10 15 20 30 40 50 60 70 80 90 100 0 252.4 317.87 359.54 390.93 416.44 503.1 603.6 670.1 721.4 763.78 847.17 911.92 1012.1 1090.4 1155.6 1212.1 1262.3 1307.6 1349.1 1387.5 0.1 55.87 121.49 163.19 194.56 220.03 306.6 406.9 473.6 525.2 567.94 652.36 718.27 820.96 901.73 969.48 1028.5 1081.1 1128.8 1172.6 1213.3 0.2 -91.72 -28.97 10.89 40.88 65.25 148.1 244.4 308.6 358.4 399.83 481.88 546.23 647.03 726.78 793.99 850.72 905.28 953.10 997.14 1038.1 0.3 -221.5 -160.7 -122.2 -93.23 -69.72 10.13 102.8 164.6 212.6 252.52 331.76 394.06 491.92 569.61 635.27 692.80 744.39 791.42 834.81 875.22 0.4 -332.5 -272.1 -234.0 -205.4 -182.3 -104.1 -13.80 46.24 92.76 131.40 208.19 268.56 363.48 438.95 502.82 558.87 609.19 655.12 697.54 737.08 0.5 -414.7 -353.7 -315.5 -286.9 -263.9 -186.4 -97.53 -38.71 6.75 44.46 119.28 178.05 270.42 343.88 406.09 460.70 509.78 554.59 596.01 634.65 0.6 -458.5 -397.1 -358.7 -330.2 -307.3 -230.3 -142.5 -84.67 -40.04 -3.07 70.19 127.68 217.99 289.80 350.63 404.05 452.08 495.95 536.51 574.36 0.7 -459.6 -398.9 -361.1 -332.9 -310.3 -234.5 -148.2 -91.39 -47.57 -11.27 60.64 117.07 205.75 276.29 336.07 388.59 435.83 478.99 518.92 556.18 0.8 -421.6 -363.2 -326.8 -299.7 -277.8 -204.3 -120.3 -64.77 -21.86 13.71 84.31 139.82 227.16 296.73 355.75 407.64 454.32 497.01 536.50 573.36 0.9 -355.1 -300.9 -266.8 -241.3 -220.6 -150.7 -69.87 -16.00 25.79 60.56 129.81 184.42 270.61 339.43 397.89 449.33 495.65 538.01 577.21 613.81 1 -274.0 -226.0 -195.2 -171.9 -152.9 -87.7 -10.99 40.80 81.30 115.15 182.93 236.66 321.80 390.00 448.03 499.15 545.20 587.34 626.35 662.78 146 Table A.8 Saturated vapor enthalpy of ammonia-water mixture, kJ/kg Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10 15 20 30 40 50 60 70 80 90 100 0 2612.2 2639.0 2655.6 2667.7 2677.2 2708.1 2739.8 2758.3 2771.1 2780.6 2796.9 2807.1 2818.9 2824.8 2827.7 2828.6 2828.4 2827.3 2825.6 2823.5 0.1 1548.1 1634.1 1690.4 1732.5 1766.3 1876.0 1989.6 2056.1 2102.8 2138.3 2200.9 2243.2 2298.7 2334.4 2359.6 2378.2 2392.4 2403.5 2412.3 2419.4 0.2 1359.8 1406.5 1439.9 1466.4 1488.7 1567.3 1658.9 1717.4 1760.4 1794.5 1856.9 1900.9 1961.1 2001.5 2031.0 2053.5 2071.1 2085.3 2096.8 2106.3 0.3 1296.3 1327.5 1349.3 1366.6 1381.2 1433.8 1498.3 1541.6 1574.5 1601.1 1651.2 1687.6 1738.8 1774.0 1799.9 1819.8 1835.5 1848.1 1858.3 1866.7 0.4 1256.9 1282.5 1299.7 1312.9 1323.9 1362.7 1409.6 1441.2 1465.5 1485.2 1522.9 1550.5 1589.5 1616.3 1635.9 1650.6 1662.0 1670.7 1677.5 1682.7 0.5 1227.0 1250.0 1265.1 1276.5 1285.8 1317.6 1354.5 1378.6 1396.9 1411.7 1439.5 1459.6 1487.3 1505.6 1518.1 1526.9 1532.9 1536.8 1539.1 1540.1 0.6 1204.9 1226.5 1240.3 1250.7 1259.1 1287.1 1318.2 1337.7 1352.1 1363.5 1384.2 1398.5 1416.8 1427.4 1433.2 1436.0 1436.4 1435.0 1432.3 1428.5 0.7 1190.4 1210.9 1224.0 1233.7 1241.5 1267.1 1294.5 1311.1 1323.0 1332.0 1347.7 1357.7 1368.5 1372.5 1372.3 1369.4 1364.4 1357.8 1350.1 1341.2 0.8 1182.2 1201.8 1214.3 1223.5 1230.8 1254.7 1279.6 1294.2 1304.3 1311.7 1323.8 1330.4 1335.3 1333.7 1328.3 1320.3 1310.3 1298.9 1286.2 1272.5 0.9 1177.7 1196.7 1208.6 1217.4 1224.4 1246.9 1269.8 1282.9 1291.6 1297.7 1306.9 1310.9 1310.7 1304.3 1294.2 1281.4 1266.8 1250.6 1233.1 1214.7 1 1174.6 1192.9 1204.4 1212.8 1219.5 1240.7 1261.9 1273.5 1281.0 1286.0 1292.5 1294.0 1289.1 1278.0 1263.1 1245.5 1225.9 1204.7 1182.2 1158.6 147 A.4.3 SPECIFIC ENTROPY VALUES Table A.9 Saturated liquid entropy of ammonia-water mixture, kJ/kg-K Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10 15 20 30 40 50 60 70 80 90 0 0.83 1.03 1.14 1.23 1.30 1.52 1.77 1.93 2.05 2.14 2.32 2.45 2.65 2.80 2.92 3.02 3.11 3.19 3.26 3.32 0.1 0.46 0.68 0.80 0.90 0.97 1.22 1.49 1.66 1.78 1.89 2.08 2.23 2.45 2.61 2.74 2.86 2.96 3.04 3.12 3.19 0.2 0.14 0.35 0.48 0.58 0.66 0.91 1.18 1.36 1.49 1.59 1.79 1.95 2.17 2.35 2.49 2.61 2.71 2.81 2.89 2.97 0.3 -0.19 0.02 0.15 0.25 0.33 0.59 0.87 1.05 1.18 1.29 1.50 1.65 1.89 2.06 2.21 2.33 2.44 2.54 2.63 2.71 0.4 -0.54 -0.30 -0.16 -0.06 0.01 0.28 0.57 0.76 0.89 1.00 1.21 1.37 1.61 1.79 1.94 2.07 2.18 2.28 2.37 2.45 0.5 -0.85 -0.60 -0.45 -0.34 -0.25 0.02 0.32 0.50 0.64 0.76 0.97 1.14 1.38 1.57 1.72 1.85 1.96 2.06 2.15 2.23 0.6 -1.09 -0.82 -0.66 -0.55 -0.46 -0.17 0.13 0.32 0.47 0.58 0.80 0.97 1.21 1.40 1.56 1.69 1.80 1.90 1.99 2.08 0.7 -1.21 -0.94 -0.78 -0.67 -0.57 -0.28 0.02 0.22 0.36 0.48 0.70 0.87 1.12 1.31 1.46 1.6 1.71 1.81 0.91 1.99 0.8 -1.23 -0.96 -0.81 -0.69 -0.60 -0.29 -0.005 0.18 0.33 0.45 0.67 0.84 1.09 1.28 1.43 1.56 1.68 1.78 1.88 1.96 0.9 -1.17 -0.92 -0.77 -0.66 -0.58 -0.30 0.0003 0.19 0.33 0.44 0.67 0.83 1.08 1.28 1.43 1.56 1.68 1.78 1.88 1.96 1 -1.11 0.89 -0.75 -0.65 -0.57 -0.31 -0.02 0.16 0.30 0.41 0.63 0.79 1.05 1.24 1.40 1.53 1.65 1.75 1.85 1.93 148 100 Table A.10 Saturated vapor entropy of ammonia-water mixture, kJ/kg-K Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10 15 20 30 40 50 60 70 80 90 0 8.18 7.94 7.79 7.69 7.62 7.39 7.17 7.04 6.95 6.89 6.77 6.69 6.57 6.48 6.41 6.35 6.29 6.24 6.19 6.15 0.1 7.98 7.75 7.61 7.51 7.44 7.22 7.01 6.89 6.80 6.74 6.62 6.54 6.41 6.32 6.24 6.16 6.09 6.03 5.97 5.90 0.2 7.78 7.54 7.40 7.31 7.23 7.01 6.80 6.68 6.59 6.53 6.41 6.32 6.17 6.06 5.95 5.86 5.76 5.67 5.58 5.49 0.3 7.55 7.31 7.17 7.08 7.00 6.78 6.57 6.44 6.36 6.29 6.15 6.05 5.88 5.73 5.58 5.45 5.31 5.18 5.04 4.90 0.4 7.30 7.06 6.92 6.83 6.76 6.53 6.32 6.19 6.09 6.02 5.87 5.74 5.52 5.32 5.12 4.93 4.73 4.53 4.34 4.14 0.5 7.05 6.81 6.67 6.58 6.50 6.28 6.06 5.92 5.82 5.74 5.56 5.41 5.13 4.87 4.60 4.34 4.07 3.80 3.52 3.25 0.6 6.80 6.56 6.42 6.33 6.25 6.03 5.80 5.66 5.55 5.45 5.26 5.08 4.75 4.42 4.10 3.77 3.44 3.10 2.76 2.42 0.7 6.56 6.32 6.18 6.09 6.01 5.78 5.55 5.40 5.29 5.19 4.98 4.79 4.43 4.07 3.71 3.35 2.98 2.61 2.24 1.86 0.8 6.33 6.09 5.95 5.85 5.77 5.54 5.30 5.15 5.03 4.94 4.72 4.54 4.18 3.83 3.49 3.14 2.78 2.43 2.07 1.71 0.9 6.08 5.83 5.69 5.59 5.52 5.28 5.04 4.89 4.77 4.68 4.48 4.31 4.00 3.71 3.41 3.12 2.83 2.54 2.25 1.95 1 5.77 5.53 5.38 5.28 5.20 4.96 4.71 4.57 4.46 4.37 4.20 4.06 3.83 3.62 3.43 3.25 3.06 2.89 2.71 2.54 149 100 A.4.4 SPECIFIC EXERGY VALUES Table A.11 Specific exergy for saturated liquid ammonia-water mixture, kJ/kg Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10 15 20 30 5.06 10.93 19.82 24.39 29.04 50.14 76.14 94.96 110.5 126.06 155.81 181.8 222.4 0.1 -81.21 -81.15 -75.21 -73.64 -69.03 -56.96 -37.12 -21.08 -5.24 4.72 32.52 53.73 0.2 -133.4 -133.2 -132.1 -131.9 -131.0 -123.0 -107.2 -96.68 -85.62 -73.99 -51.54 0.3 -164.8 -166.6 -166.9 -167.7 -168.0 -165.6 -156.4 -148.3 -139.0 -131.9 0.4 -171.5 -182.7 -186.3 -187.5 -185.2 -187.5 -183.6 -180.2 -172.4 0.5 -161.4 -174.9 -181.4 -185.5 -189.4 -192.3 -192.8 -187.7 0.6 -133.6 -152.7 -162.0 -166.3 -170.2 -179.6 -181.2 0.7 -99.02 -118.7 -128.6 -133.2 -140.4 -151.0 0.8 -55.06 -77.12 -85.42 -94.08 -99 0.9 -6.44 -26.74 -37.34 -44.62 1 56.78 -491.2 28.3 21.8 0 50 60 70 80 90 100 256 285.44 312.14 335.52 356.95 377.62 398.14 90.86 123.95 152.96 176.22 199.02 222.88 242.84 262.68 -34.87 0.37 26.48 51.97 72.94 97.7 115.72 135.92 153.04 -115.2 -97.64 -71.3 -44.27 -23.31 -1.54 17.27 34.5 51.07 67.64 -166.6 -152.3 -139.7 -116.3 -94.47 -75.3 -57.99 -40.45 -24.32 -8.72 6.98 -183.9 -182.0 -169.7 -161.6 -140.8 -123.9 -106.4 -90.6 -74.3 -59.29 -44.69 -29.89 -180.0 -180.1 -175.9 -168.2 -161.3 -142.5 -127.4 -114.2 -99.57 -84.32 -70.25 -56.51 -45.48 -154.1 -156.9 -154.8 -154.3 -147.9 -142.1 -128.0 -114.0 -99.01 -88.21 -73.75 -60.39 247.74 -36.84 -117.8 -118.8 -118.4 -120.2 -120.3 -115.3 -110.5 -97.66 -84.71 -70.39 -57.24 -46.32 -33.43 -23.74 -10.72 -47.76 -61.3 -69.95 -72.62 -72.55 -70.56 -69.85 -62.92 -51.23 -42.01 -28.25 -15.55 -4.99 7.57 16.97 29.73 16.96 4.68 -5.03 -6.88 -8.1 -7.03 -4.81 1.24 8.9 20.48 30.83 43.21 53.5 65.84 75.05 87.64 150 40 Table A.12 Specific exergy for saturated vapor ammonia-water mixture, kJ/kg Pressure, bar x 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 0 174.56 272.88 334.18 376.0 406.44 505.88 603.14 660.38 0.1 -829.9 -675.4 -577.3 -505.4 -450.8 -275.5 -99.38 0.2 -958.6 -840.4 -765.3 -711.9 -665.8 -521.6 0.3 -953.6 -850.8 -787.3 -743.2 -704.8 0.4 -918.5 -821.3 -762.4 -722.4 0.5 -873.9 -779.3 -722.5 0.6 -821.5 -728.3 0.7 -764.4 0.8 8.0 10 15 20 30 40 50 60 70 80 90 700 727.38 779.44 813.8 861.04 893.76 917.52 963.3 953.98 967.78 980.98 990.8 2.88 76.4 129.78 228.14 294.28 388.52 451.04 500.08 542.52 577.58 606.56 633.24 661.2 -367.5 -273.2 -203.4 -151.4 -53.28 17.54 122.44 195.62 257.9 307.22 354.62 395.64 433.96 470.28 -586.6 -459.5 -377.5 -320.3 -273.3 -181.5 -115.3 -13.44 66.46 137.06 195.7 253.12 304.46 356.38 406.5 -690.5 -583.2 -473.5 -403.4 -349.3 -308.7 -226.3 -160.0 -55.46 30.94 110.14 181.46 252.46 320.76 384.18 448.98 -684.3 -651.2 -553.8 -451.3 -385.5 -337.4 -298.8 -217.3 -152.5 -41.44 54.34 147.3 233.58 320.04 404.4 490.14 571.6 -672.8 -635.6 -603.4 -509.8 -410.2 -348.9 -301.8 -260.6 -183.2 -115.3 1.3 110.24 211.4 312.54 411.28 511.2 609.82 707.34 -672.4 -617.6 -581.1 -549.4 -455.3 -359.4 -298.1 -253.4 -214.6 -136.3 -69.71 48.36 159.36 266.72 371.1 476.36 580.02 682.58 786.92 -704.1 -613.0 -558.8 -519.8 -488.6 -396.2 -299.8 -240.5 -194.6 -160.4 -82.76 -22.52 89.66 192.36 288.28 384.58 481.86 574.76 669.34 762.92 0.9 -634.1 -540.6 -487.0 -448.4 -420.5 -326.5 -232.1 -174.3 -129.8 -96.94 -28.14 26.52 118.7 198.72 278.02 351.64 423.46 493.68 562.6 633.6 1 -544.8 -455.0 -398.8 -360.6 -330.1 -237.3 -141.6 -88.36 -48.08 -16.26 40.9 84.12 147.76 199.24 246.96 277 314.02 343.48 374.62 401.68 151 100 Appendix B Flow Charts for Kalina plants B.1 FLOW CHARTS FOR PLANTS The process flow charts for three Kalina cycle systems (KCSs) are developed and depicted in Fig.B.1, B.2 and B.3 respectively for low, medium and high temperature heat recoveries. Start Input of Tsep, VF and xtur High pressure from separator vapor condition Separator concentrations (inlet and liquid outlet) from temperature and pressure Low pressure from condenser exit condition Mass, energy and exergy balancing Performance evaluation (specific work and efficiencies) Economic evaluation LTKCS performance results and graphs Stop Fig.B.1 Flow chart of low temperature Kalina cycle system (LTKCS) 152 Start Input of Tsep, xss, xtur and Ptur Low pressure from condenser exit condition Separator concentrations (liquid and vapor) from temperature and pressure Vapor fraction in separator from concentrations Mass, energy and exergy balancing Performance evaluation (specific work and efficiencies) Economic evaluation MTKCS performance results and graphs Stop Fig.B.2 Flow chart of medium temperature Kalina cycle system (MTKCS) 153 Start Input of Tsep, xtur, xtur – xsep, Tsuply and Ptur Intermediate pressure from condenser exit condition Separator liquid concentration from temperature and pressure Vapor fraction from concentrations Low pressure from absorber exit condition Mass, energy and exergy balancing Performance evaluation (specific work and efficiencies) Economic evaluation HTKCS performance results and graphs Stop Fig.B.3 Flow chart of high temperature Kalina cycle system (HTKCS) 154
© Copyright 2026 Paperzz