cos v v = ∙ sin v v = ∙ 0 25 sin50 1.95 s. 9.8 v v g t t g t

Horizontal speed:
vh  v  cos . Vertical speed: vv  v  sin  .
So, we will have:
vv  g  t1  0  t1 
 t1 
vv

g
25  sin 50
 1.95 s.
9.8
s  30 m
g  t22
s  vv  t2 
2
9.8  t22
 4.9  t22  19.15  t2  30  0 
2
19.15  954.765
 t2 
 t2  5.1 s.
9.8
30  25  sin 50  t2 
t  2  t1  t2  2 1.95  5.1  9 s.
So, we have the distance:
d  vh  t  9  25  cos50  145 m.
Answer: 145 meters.