A 2m Example #1: ■ Find the reactions at supports. 2m B ■ Find the force in all members. 75 kg 2m C Solution: Ay Ax ∑MA=0 −75 × 9.8 × 2 sin 60 + 𝐶𝑥 × 2 = 0 −1273.06 + 𝐶𝑥 × 2 = 0 𝐶𝑥 = 636.5 𝑁 ∑Fy=0 −𝐴𝑦 − 75 × 9.8 = 0 𝐴𝑦 = −735 𝑁 = 735 𝑁 ↑ ∑Fx=0 75 x 9.8 Cx 𝐴𝑥 + 636.5 = 0 𝐴𝑥 = −636.5 𝑁 = 636.5 𝑁 ← FCA For joint C: FCB ∑Fx=0 636.5 N 636.5 + 𝐹𝐶𝐵 sin 60 = 0 C 𝐹𝐶𝐵 = −735 𝑁 = 735 𝑁 (𝑐𝑜𝑚𝑝) ∑Fy=0 𝐹𝐶𝐴 + −735 cos 60 = 0 𝐹𝐶𝐴 = 367.5 𝑁 (𝑡𝑒𝑛𝑠𝑖𝑜𝑛) Eng. Ibrahim Al Mohanna, Civil Engineering, 2 A 92 Tutorial # 1 FBA For joint B: B ∑Fx=0 −𝐹𝐵𝐴 cos 30 + 735 cos 30 = 0 735 N 75 x 9.8 𝐹𝐵𝐴 = 735 𝑁 (𝑡𝑒𝑛𝑠𝑖𝑜𝑛) Eng. Ibrahim Al Mohanna, Civil Engineering, 2 A 92 Tutorial # 1 H 3m G 3m F 3m E Example # 2: Calculate the force in the member CG 3m A B C D 20 KN 20 KN 20 KN Solution: ∑MG=0 −20 × 3 − 20 × 6 − 𝐹𝐶𝐵 × 3 = 0 G F 𝐹𝐶𝐵 = −60 𝐾𝑁 = 60 𝐾𝑁 (𝑐𝑜𝑚𝑝) B ∑MF=0 C 20 KN D 20 KN −20 × 3 + 60 × 3 − 𝐹𝐶𝐵 × cos 45 × 3 = 0 𝐹𝐶𝐺 = 56.6 𝐾𝑁 (𝑡𝑒𝑛𝑠𝑖𝑜𝑛) Eng. Ibrahim Al Mohanna, Civil Engineering, 2 A 92 Tutorial # 1 4 KN Example #3: Draw the shear and moment diagram for the loaded beam. 2m 2 KN 2m 2m A B Solution: ∑MA=0 −4 × 2 + 𝐵𝑦 × 4 − 2 × 6 = 0 𝐵𝑦 = 5 𝐾𝑁 ∑Fy=0 −4 + 5 − 2 + 𝐴𝑦 = 0 𝐴𝑦 = 1 𝐾𝑁 First Segment: ∑M=0 −1 × 𝑥 + 𝑀 = 0 𝑀 = 𝑥 𝐾𝑁. 𝑚 ∑Fy=0 1 − 𝑉 = 0 𝑉 = 1 𝐾𝑁 V M V M x 1 KN Second Segment: 4 KN ∑M=0 −𝑥 + 4 × 𝑥 − 2 + 𝑀 = 0 2m 𝑀 = 8 − 3𝑥 x 1 KN ∑Fy=0 1 − 4 − 𝑉 = 0 𝑉 = −3 𝐾𝑁 Third Segment: ∑M=0 −𝑥 + 4 × 𝑥 − 2 − 5 × (𝑥 − 4) + 𝑀 = 0 𝑀 = 2𝑥 − 12 ∑Fy=0 1 − 4 + 5 − 𝑉 = 0 𝑉 = 2 𝐾𝑁 4 KN 2m 2m V 1 KN Eng. Ibrahim Al Mohanna, Civil Engineering, 2 A 92 x M 5 KN Tutorial # 1 2 KN 4 KN Load Diagram 1 KN 5 KN 2 KN 1 KN Shear Force Diagram -3 KN 2 KN.m Bending Moment Diagram -4 KN.m Eng. Ibrahim Al Mohanna, Civil Engineering, 2 A 92 Tutorial # 1
© Copyright 2026 Paperzz