f u n g a l e c o l o g y x x x ( 2 0 1 4 ) 1 e1 0 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa a University of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA Humboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA b article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with an estimated 5.1 million species (Blackwell, 2011). They are the principle saprotrophs in most terrestrial biomes and play important ecological and economic roles as plant pathogens and mutualists. Fungi are found in all terrestrial ecosystems and they use a variety of strategies to colonize appropriate substrata and survive unfavorable conditions (Blackwell, 2011). They have significant impacts on the biology of plants because they are the most economically significant plant pathogens, serve as mycorrhizal and endophytic symbionts, and act as key players in nutrient cycles (Schumann, 1991; Rodriguez et al., 2009; Hobbie and Hogberg, 2012). Two fungal phyla, Basidiomycota and Ascomycota, comprise the subkingdom Dikarya, a diverse group with ca. 100,000 described species (James et al., 2006). Most Dikarya share key features such as a hyphal thallus, non-flagellated cells, and the production of spores (Stajich et al., 2009). However, because of their cryptic lifestyles within environments such as plants and soil, the ecology and evolutionary history of many fungi remains poorly understood. Almost all fungi produce some type of durable, quiescent microscopic structure such as a spore that is important for dispersal and/or survival under adverse conditions (Stajich et al., 2009). However, some fungi also produce dense aggregations of fungal tissue called sclerotia (Willetts, 1971). These persistent structures help fungi to survive challenging conditions such as freezing temperatures, desiccation, microbial attack, or the long-term absence of a host (Townsend and Willetts, 1954; Coley-Smith and Cooke, 1971). Sclerotia are highly variable in their morphology (Fig 1). Some have a hard, * Corresponding author. Tel.: þ1 352 273 2837; fax: þ1 352 392 6532. E-mail address: [email protected] (M.E. Smith). http://dx.doi.org/10.1016/j.funeco.2014.08.010 1754-5048/ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 2 M.E. Smith et al. Fig 1 e Morphologically variable sclerotia found in soil, leaf litter, and decayed wood in natural forest habitats of North and South America: (A) Ceriporia sp. (MES 332; Polyporales) from decayed wood on the forest floor in Pigsah National Forest, North Carolina, USA; (B) Entoloma sp. (MES 347; Agaricales) from soil in a tropical rainforest dominated by leguminous ectomycorrhizal trees, Guyana; (C) Cheilymenia sp. (MES 313; Pezizales) from soil in mixed woods near Cherryfield, Maine, USA; (D) unknown species of Amylocorticiales (MCA 3949) from soil and leaf litter in a tropical rainforest in Guyana; (E) Boletus sp. (MES 260; Boletales) from soil and leaf litter in angiosperm-dominated forest in Lexington, Massachusetts, USA. Identities of illustrated sclerotia were determined based on ribosomal DNA sequence comparisons with GenBank. Scale bars [ approximately 10 mm. melanized rind enclosing compact, undifferentiated hyphae while others lack a rind (Willetts, 1971). Some species make round, determinate sclerotia but others have indeterminate forms where the shape and size are influenced by resources and environmental conditions (Chet and Henis, 1975). Some sclerotia are produced inside of host tissues; Claviceps purpurea produces sclerotia in grass florets after it has destroyed the plant cells (Douhan et al., 2008) and Ophiocordyceps sinensis colonizes caterpillars and transforms their tissues into a sclerotium (Xing and Guo, 2008). In contrast, some fungi make sclerotia that are spatially separated from hosts (e.g. Phymatotrichopsis omnivora forms sclerotia deep in soil e Lyda, 1984). Sclerotia also range in size from “microsclerotia” <1 mm across, as in the plant pathogen Macrophominia phaseolina (Short and Wyllie, 1978), to the massive sclerotia of Polyporus mylittae that reach over 40 cm in diameter (Macfarlane et al., 1978). Sclerotia putatively serve a resource-storage and survival role in all sclerotium-forming fungi. However, some fungi such as Sclerotinia sclerotiorum produce sexual fruiting structures directly on sclerotia (Bolton et al., 2006) whereas others such as Pteromyces flavus (¼Aspergillus flavus) produce fruiting bodies within sclerotia (Horn et al., 2009). Still others, such as Boletus rubropunctus, produce fruit bodies and sclerotia at different times or in different places (Smith and Pfister, 2009). Although sclerotia have been documented in several fungal lineages, sclerotium formation is primarily recognized as a key life history trait in several necrotrophic plant pathogens (e.g. Sclerotium rolfsii, Rhizoctonia solani, M. phaseolina, P. omnivora, S. sclerotiorum). Collectively, these devastating host generalist pathogens are responsible for hundreds of millions of dollars in global crop losses annually (Aycock, 1966; Parmeter, 1971; Purdy, 1979; Mulrean et al., 1984). For example, S. sclerotiorum and S. rolfsii each attack >400 plant species, including major crops such as peanuts, potatoes, and soybeans, and can cause up to 100 % yield losses (Jenkins and Averre, 1986; Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 How many fungi make sclerotia? Bowen et al., 1992; Cintas and Webster, 2001). For these and other sclerotium-forming pathogens, survival is tightly linked with sclerotium formation so sclerotia eradication is critical for disease control (Coley-Smith and Cooke, 1971). Furthermore, the ecology of these fungi cannot be fully understood without understanding the biology of sclerotium formation. Although management of serious plant pathogens is an important rationale for studying sclerotium formation, there are nevertheless several other compelling reasons. First, many sclerotia lie dormant in soil, leaf litter, or wood for months, so they must survive attacks from a wide variety of natural enemies, including bacteria, other fungi, and invertebrates (Willetts, 1971; Papavizas, 1977; Matsumoto and Tajimi, 1985). The mechanisms that allow sclerotia to survive in soil despite ongoing biotic assault are not well known, but evidence from well-studied species (e.g. S. sclerotiorum, C. purpurea) suggests that most sclerotia contain biologically active secondary metabolites (Morrall et al., 1978; Demain, 1999; Schardl et al., 2006; Ikewuchi and Ikewuchi, 2008; Frisvad et al., 2014). Since different fungi use unique suites of compounds for chemical defense and nutrient storage (Antibus, 1989; Calvo et al., 2002; Li and Rollins, 2010; Zheng et al., 2010), sclerotium-forming fungi are excellent targets for the discovery of antibacterial, antifungal, and antiherbivore compounds. Secondly, many non-parasitic fungi are known to form sclerotia, so it is likely that this life history trait is ecologically important for many fungal species and not just for plant pathogens (Chet and Henis, 1975). During investigations of hypogeous fungi, we encountered morphologically variable sclerotia that were not clearly linked with any known fungus (Fig 1). The wide variation in the geography, microhabitats, and morphologies of these sclerotia suggested that the sclerotium-forming fungi were not closely related and differed in their trophic modes. The diversity of sclerotia encountered during random sampling also suggested the possibility that many fungi form sclerotia in nature but that these structures usually escape detection. The discovery of these varied sclerotia generated several questions. First, what are the identities of the unknown sclerotium-forming fungi found in nature? Second, how many unrelated lineages of fungi produce sclerotia? Third, besides plant pathogens, what are the known ecological roles of the sclerotium-forming fungi? To answer these questions, we consulted the published literature and studied sclerotia collected in nature. To identify new sclerotium collections, we sequenced ribosomal DNA (ITS, LSU, and/or SSU) using published protocols and compared these sequences with GenBank using BLAST searches (Table 1) and preliminary phylogenetic analyses (data not shown) (Altschul et al., 1990; Smith and Pfister, 2009; Tedersoo and Smith, 2013). We also surveyed the literature to identify sclerotium-forming fungi by querying Web of Science (www. webofknowledge.com) and Google Scholar (http://scholar. google.com/) with key words “sclerotia” and “sclerotium”. To obtain a phylogenetic overview of sclerotium-forming fungi (Fig 2), we created a database of sclerotium-producing genera by recording one representative species and published reference for each genus reported to form sclerotia (Table 2). These sclerotium-producing genera were then mapped onto a 3 schematic phylogeny based on Hibbett et al. (2007) with phylogenetic positions of new or revised orders inferred from LoBuglio and Pfister (2010), Schoch et al. (2009a, 2009b), Binder et al. (2010), Zhang et al. (2011), Toome et al. (2013), Boehm et al. (2009), Campbell et al. (2009), and Padamsee et al. (2012). All but two fungal species, Magnaporthe salvinii and Verticilium dahliae, were easily resolved at the ordinal level based on data from published references (Table 2) and Index Fungorum (www.indexfungorum.org/). We documented reports of sclerotium formation in species from 85 fungal genera in at least 20 orders of Basidiomycota and Ascomycota (Table 2, Fig 2). Since only one representative sclerotium-forming species from each genus was recorded, we cannot accurately estimate the number of sclerotiumforming species. However, we observed that many genera with one sclerotium-forming species also contain others. Also, despite our limited sampling of sclerotia, we found a wide diversity of sclerotium-forming fungi in nature and documented at least three genera for which sclerotium formation had not previously been reported, Ceriporia (Polyporales), Entoloma (Agaricales), and Cheilymenia (Pezizales), as well as a sclerotium-forming fungus that could not be identified to genus (collection MCA3930, Table 1). These structures were also found in a wide range of habitats from cool temperate forests in Maine (USA) to lowland tropical forests in Guyana. Although several review articles have discussed morphology, function, and diversity of sclerotia, the phylogenetic relationships among the fungi involved were largely unresolved when these papers were published (Townsend and Willetts, 1954; Coley-Smith and Cooke, 1971; Chet and Henis, 1975). When the affinities of the sclerotium-forming fungi are viewed within the context of a molecular phylogeny, it is obvious that sclerotium-forming fungi are widely dispersed across the Dikarya. Although more detailed phylogenetic analyses are needed to obtain a clear picture of the evolution of sclerotium formation, we infer that the ability to make sclerotia has probably evolved 14 different times within the fungi (Fig 2). Our literature review and analysis of new collections also suggests that sclerotium formation is infrequent or difficult to observe in some fungal orders (e.g. Dothidiales, Helicobasidiales) but common and easy to observe in others (e.g. Helotiales, Pezizales, Agaricales, Boletales). The sclerotium-forming fungi also represent an extremely wide trophic diversity. As expected, many sclerotium-forming fungi are plant pathogens (25 genera) but many other sclerotium-forming fungi are ectomycorrhizal (11 genera) or saprotrophic (30 genera). The saprotrophs include specialists on distinct substrata such as wood (Pleurotus), humus (Agrocybe), and dung (Cheilymenia). A few genera are also insect pathogens (Ophiocordyceps), ericoid mycorrhizal (Phialocephala), animal pathogens (some Aspergillus), mycoparasites (Laetisaria), or lichenicolous (Leucogyrophana) (Table 2). Two genera (Trechispora, Fibulorhizoctonia) contain putative saprotrophs whose sclerotia are tended by termites in an unusual symbiotic relationship that is analogous to brood parasitism (Matsuura and Yashiro, 2010). Several sclerotium-forming fungi, such as Helicobasidium purpureum (plant parasite/ mycoparasite) and Athelia arachnoidea (plant pathogen/ lichenicolous), have complex lifecycles that appear to involve Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 4 Genus of sclerotiumforming fungus Cheilymenia Unknown Genus Inferred ecology Saprobe ? Substrate Order Soil Pezizales Soil Phylum Ascoe Collection Collector and number collection and herbarium date MES-313 (FLAS-F-58920) ME Smith, 3-Aug-09 Amylocorticiales (?) Basidioe MCA3930 (FLAS-F-58921) ME Smith, 15-May-10 Morphology Collection location Brown, rounded Mixed forest near to irregular Tunk Lake, outside Cherryfield, Maine, USA Tan, rounded Dicymbe forest in the Pakaraima Mnts., Guyana Entoloma Ectomycorrhizal Soil and leaf litter Agaricales Basidioe MES-347 (FLAS-F-58922) ME Smith, 18-Dec-09 Orange, round Ceriporia Saprobe Decayed wood Polyporales Basidioe MES-332 (FLAS-F-58923) ME Smith, 24-Oct-09 Tan to cream, irregular Boletus Ectomycorrhizal Soil and leaf litter Boletales Basidioe MES-260 (FH) ME Smith, 19-Aug-08 Orange, lobed Most informative BLAST match DQ220321 Cheilymenia crucipila (717/734 e 98 %), LSU region DQ144610 Amyloathelia crassiuscula (865/1023 e 85 %), ITS and LSU regions Mixed forest with JF908003 Entoloma Dicymbe, Pakaraima platyphylloides Mnts., Guyana (603/644 e 94 %), ITS region Mixed forest, JX644048 Ceriporia Pisgah National Forest, purpurea near Marion, (677/704 e 96 %), North Carolina, USA LSU region Angiosperm-dominated EU569236 Boletus sp. woods, Arlington Great (779/808 e 96 %), ITS region Meadows, Arlington, Massachusetts, USA GenBank KJ720887 (SSU), KJ720888 (LSU) KJ720886 (ITS, LSU) KJ720892 (LSU), KJ720893 (ITS) KJ720890 (SSU), KJ720891 (LSU), KJ720889 (ITS) FJ480429 (ITS) M.E. Smith et al. Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 Table 1 e Collecting data, molecular data, and phylogenetic affiliations of new sclerotia specimens collected in soil, leaf litter, and wood How many fungi make sclerotia? 5 Fig 2 e Simplified schematic phylogeny highlighting fungal lineages with sclerotium-forming fungi. Only members of the Dikarya (Ascomycota and Basidiomycota) are shown because no sclerotium-forming fungi have been documented among the early-diverging fungal lineages. Numbers adjacent to fungal orders indicate the number of genera containing at least one sclerotium-forming species. Black circles indicate fungal orders for which all reports of sclerotium formation were obtained from published sources whereas white circles indicate fungal orders for which a new record for sclerotium formation is reported for at least one genus. The schematic phylogeny is based on Hibbett et al. (2007) with phylogenetic positions of new or revised orders inferred from LoBuglio and Pfister (2010), Schoch et al. (2009a, 2009b), Binder et al. (2010), Zhang et al. (2011), Toome et al. (2013), Boehm et al. (2009), Campbell et al. (2009), and Padamsee et al. (2012). The unresolved phylogenetic positions of two sclerotium-forming Sordariomycetes, Magnaporthe salvinii and Verticilium dahliae, are depicted with broken lines. To reduce the complexity of the figure, some known orders are not shown; asterisks highlight areas of the tree where fungal orders not currently know to form sclerotia have been omitted. multiple, distantly related host organisms. Still other genera, such as the putative root endophyte Mattirolomyces and the putative aphid symbiont Boletinellus, have uncertain trophic modes (Brundrett and Kendrick, 1987; Kovacs et al., 2007). Taken together, our observations suggest that sclerotium formation is a more common life history trait among fungi than previously recognized. The widespread occurrence of this trait across the fungal phylogeny along with the diverse trophic modes of sclerotium-forming fungi suggests that the biology and evolution of sclerotium formation warrants additional study. We expect that future research on sclerotium formation will find this feature to be even more widely dispersed across the fungal phylogeny than detected here. We suggest that sclerotium formation is analogous to highly Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 6 M.E. Smith et al. Table 2 e Phylogenetic affiliations, trophic modes, and reference information for 85 genera of sclerotium-forming fungi, including three genera that are reported to form sclerotia for the first time: dung-specialized saprobe Cheilymenia (Pezizales), wood decaying Ceriporia (Polyporales), and putatively ectomycorrhizal Entoloma (Agaricales) (this genus contains both saprotrophic and ectomycorrhizal species e Tedersoo and Smith, 2013). One sclerotium collection (MCA3930) found in a tropical rainforest in Guyana putatively belongs to the order Amylocorticiales, but could not be identified to genus based on DNA sequences and has an uncertain trophic mode Genus Species Phylum Lineage Trophic role Plant pathogen Plant pathogen Plant pathogen Plant pathogen Saprobe, animal pathogen Saprobe Plant pathogen References Macrophomina Mycosphaerella Capnobotryella Scleroconidioma Aspergillus phaseolina ligulicola renispora sphagnicola flavus A A A A A Botryosphaeriales Capnodiales Capnodiales Dothideales Eurotiales Papavizas, 1977 Blakeman and Hornby, 1966 Hambleton et al., 2003 Hambleton et al., 2003 Hedayati et al., 2007 Penecillium Scleromitrula sclerotigenum shiraianum A A Eurotiales Helotiales Botryotinia Ciborinia Ciboria Dumontinia Grovesinia Kohninia Martininia Myriosclerotinia Ovulinia Redheadia Sclerocrana Sclerotinia Septotinia Streptotinia Stromatinia Acephala Phialocephala Claviceps Ophiocordyceps Cylindrocladium Cenococcum Verticillium fuckelinia erythronii carunculoides tuberosa pyramidalis1 linnaeicola panamaensis denisii azaleae quercus atra sclerotiorum podophyllina arisaemae gladioli macrosclerotiorum fortinii purpurea sinensis crotalariae geophilum dahliae A A A A A A A A A A A A A A A A A A A A A A Plant pathogen Plant pathogen Plant pathogen Plant pathogen Plant pathogen Plant pathogen Saprobe Plant pathogen Plant pathogen Plant pathogen Saprobe Plant pathogen Plant pathogen Plant pathogen Plant pathogen Ectomycorrhizal Ericoid mycorrhizal Plant pathogen Insect parasite Plant pathogen Ectomycorrhizal Plant pathogen Magnaporthe salvinii2 A Plant pathogen Cintas and Webster, 2001 Morchella Mattirolomyces Cheilymenia Pseudombrophila Pyronema Phymatotrichopsis Wynnea Coniothyrium Alternaria Paraleptosphaeria Leptosphaeria Colletotrichum Sordaria Rosellinia crassipes terfezioides sp. dentata3 domesticum omnivora americana glycines4 brassicae orobanches sclerotioides5 coccodes sclerogenia necatrix A A A A A A A A A A A A A A Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Helotiales Hypocreales Hypocreales Hypocreales Hysteriales Hypocreomycetidae incertae sedis Sordariomycetidae incertae sedis Pezizales Pezizales Pezizales Pezizales Pezizales Pezizales Pezizales Pleosporales Pleosporales Pleosporales Pleosporales Sordariales Sordariales Xylariales Joshi et al., 1999 Schumacher and Holst-Jensen, 1997 Hsiang and Chastagner, 1992 Batra and Korf, 1959 Whetzel and Wolf, 1945 Uzuhashi et al., 2010 Grand and Menge, 1974 Holst-Jensen et al., 2004 Whetzel, 1942 Schumacher and Kohn, 1985 Weiss, 1940 Suto and Suyama, 2005 Samuels and Kohn, 1986 Kohn, 1979 Whetzel, 1945 Whetzel, 1945 Whetzel, 1945 € nzenberger et al., 2009 Mu Currah et al., 1993 Douhan et al., 2008 Xing and Guo, 2008 Roth et al., 1979 Douhan and Rizzo, 2005 Tjamos and Fravel, 1995 Saprobe Root endophyte? Saprobe Saprobe Saprobe Plant pathogen Saprobe Plant pathogen Plant pathogen Plant pathogen Plant pathogen Plant pathogen Saprobe Plant pathogen Volk and Leonard, 1989 cs et al., 2007 Kova Gloeocercospora Leucocoprinus Pleurotus Coprinus Cortinarius Entoloma Coprinopsis Agrocybe Hebeloma Hypholoma sorghi6 luteus tuber-regium lagopus calochrous sp. sclerotiorum arvalis sacchariolens tuberosum A B B B B B B B B B Xylariales Agaricales Agariacles Agaricales Agaricales Agaricales Agaricales Agaricales Agaricales Agaricales Plant pathogen Saprobe Saprobe Saprobe Ectomycorrhizal Ectomycorrhizal? Saprobe Saprobe Ectomycorrhizal Saprobe This Study Pfister, 1984 Moore, 1962 Marek et al., 2009 Pfister, 1979 Hartman and Sinclair, 1992 Tsuneda and Skoropad, 1977 de Gruyter et al., 2013 Gray et al., 2008 Blakeman and Hornby, 1966 Fields and Grear, 1966 rrez-Barranquero et al., Gutie 2012 Dean, 1968 Warcup and Talbot, 1962 Fasidi and Ekuere, 1993 Waters et al., 1975 Kernaghan, 2001 This Study Keirle et al., 2004 Redhead and Kroeger, 1987 Ingleby et al., 1990 Redhead and Kroeger, 1987 Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 How many fungi make sclerotia? 7 Table 2 e (continued ) Genus Species Phylum Lineage Psilocybe Stropharia Collybia Omphalia Rimbachia Typhula Unknown Genus Sclerotium caerulescens tuberosa tuberosa lapidescens sp.7 incarnata sp. rolfsii8 B B B B B B B B Agaricales Agaricales Agaricales Agaricales Agaricales Agaricales Amylocorticiales Amylocorticiales Athelia arachnoidea B Atheliales Fibularhizoctonia sp. B Atheliales Boletus Leccinum Hygrophoropsis Leucogyrophana Boletinellus Gyrodon Paxillus Phlebopus Pisolithus Scleroderma Austropaxillus Ceratorhiza Rhizoctonia Corticium Laetisaria Marchandiomyces Helicobasidium rubropunctus holopus aurantiaca lichenicola meruloides lividus involutus sudanicus tinctorious verrucosum sp. hydrophila9 solani10 botryohypochnoideum arvalis lignicola purpureum B B B B B B B B B B B B B B B B B Boletales Boletales Boletales Boletales Boletales Boletales Boletales Boletales Boletales Boletales Boletales Cantharelalles Cantharelalles Corticiales Corticiales Corticiales Helicobasidiales Ceriporia Lignosus Polyporus Wolfiporia Trechispora sp. rhinocerus mylittae cocos11 sp. B B B B B Polyporales Polyporales Polyporales Polyporales Trechisporales Trophic role Saprobe Saprobe Saprobe Saprobe Saprobe (?) Pathogen ? Saprobe, plant pathogen Lichenicolous, plant pathogen Saprobe, insect parasite Ectomycorrhizal Ectomycorrhizal Saprobe Lichenicolous Insect symbiont? Ectomycorrhizal Ectomycorrhizal Saprobe Ectomycorrhizal Ectomycorrhizal Ectomycorrhizal Plant pathogen Plant pathogen Saprobe Mycoparasite Lichenicolous Plant pathogen, mycoparasite Saprobe Saprobe Saprobe Saprobe Saprobe, insect parasite References Redhead and Kroeger, 1987 Redhead and Kroeger, 1987 Murrill, 1915 Saito et al., 1992 Warcup and Talbot, 1962 Matsumoto and Tajimi, 1985 This Study Binder et al., 2010 Diederich and Lawrey, 2007 Matsuura, 2006 Smith and Pfister, 2009 Muller and Agerer, 1990 Antibus, 1989 Diederich and Lawrey, 2007 Cotter and Miller, 1985 Agerer et al, 1993 Fox, 1986 Thoen and Ducousso, 1990 Piche and Fortin, 1982 Ba and Thoen, 1990 Palfner, 2001 Xu et al., 2010 Cubeta and Vilgalys, 1997 Warcup and Talbot, 1962 Burdsall et al., 1980 Larsson, 2007 Lutz et al., 2004 This Study Cui et al., 2011 Macfarlane et al., 1978 Weber, 1929 Matsuura and Yashiro, 2010 Synonyms ¼ 1Cristulariella pyramidalis, 2Sclerotium oryzae, 3Firmaria dentata, 4Dactuliochaeta glycines, 5Phoma scierotioides, 8Athelia rolfsii, cocos. Sexual stage ¼ 6Monographella, 9Ceratobasidium, 10Thanatephorus. 7 Reported as Leptoglossum sp. 8 Binder et al. (2010) showed A. rolfsii is not closely related to Athelia sensu stricto. adaptive yet massively convergent traits in animals (e.g. warning coloration, production of shells, flight/gliding) and plants (e.g. thorns, succulents, C4 photosynthesis) but that the hidden nature of the fungi has concealed the importance of this trait. Lastly, we suspect that the sclerotium-forming fungi contain a veritable treasure trove of interesting secondary metabolites and we suggest that the sclerotium-forming fungi should be prioritized for genome sequencing and closer metabolomic and ecological study. Acknowledgments Funding for ME Smith was provided in part by University of Florida’s Institute of Food and Agricultural Sciences (IFAS). Collecting of sclerotia in New England was made possible via a fellowship provided by the Harvard University Herbaria to ME Smith. Collecting in Guyana was funded by National Science 11 Poria Foundation grants DEB-0918591 (TW Henkel) and DEB-3331108 (R Vilgalys) with permits granted by the Guyana Environmental Protection Agency. MC Aime is acknowledged for her help in photographing and processing sclerotia collection MCA3930. references Agerer, R., Waller, K., Treu, R., 1993. Die ektomykorrhizen und €r sklerotien von Gyrodon lividus. Beiheft zur Zeitschrift fu Mykologie 59, 131e140. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. Journal of Molecular Biology 215 (3), 403e410. Antibus, R.K., 1989. Formation and structure of the sclerotia and sclerotium-specific proteins in Hygrophoropsis aurantiaca. Mycologia 81 (6), 905e913. Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 8 Aycock, R., 1966. Stem rot and other diseases caused by Sclerotium rolfsii or the status of Rolfs’ fungus after 70 years. North Carolina Agricultural Experiment Station Technical Bulletin. Ba, A.M., Thoen, D., 1990. First synthesis of ectomycorrhizas between Afzelia africana Sm. Caesalpinioideae and native fungi from West Africa. New Phytologist 114 (1), 99e104. Batra, L.R., Korf, R.P., 1959. The species of Ciborinia pathogenic to herbaceous angiosperms. American Journal of Botany 46 (6), 441e450. Binder, M., Larsson, K.H., Matheny, P.B., Hibbett, D.S., 2010. Amylocorticiales ord. nov and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102 (4), 865e880. Blackwell, M., 2011. The Fungi: 1, 2, 3... 5.1 million species? American Journal of Botany 98 (3), 426e438. Blakeman, J.P., Hornby, D., 1966. The persistence of Colletotrichum coccodes and Mycosphaerella ligulicola in soil, with special reference to sclerotia and conidia. Transactions of the British Mycological Society 49 (2), 227e240. Boehm, E.W.A., Mugambi, G.K., Miller, A.N., Huhndorf, S.M., Marincowitz, S., Spatafora, J.W., Schoch, C.L., 2009. A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Studies in Mycology 64, 49e83. Bolton, M.D., Thomma, B., Nelson, B.D., 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7 (1), 1e16. Bowen, K.L., Hagan, A.K., Weeks, R., 1992. 7 years of Sclerotium rolfsii in peanut fields e yield losses and means of minimiziation. Plant Disease 76 (10), 982e985. Brundrett, M.C., Kendrick, B., 1987. The relationship between the Ash Bolete (Boletinellus merulioides) and an aphid parasitic on Ash tree roots. Symbiosis 3 (3), 315e320. Burdsall Jr., H.H., Hoch, H.C., Boosalis, M.G., Setliff, E.C., 1980. Laetisaria arvalis (Aphyllophorales, Corticiaceae): a possible biological control agent for Rhizoctonia solani and Pythium species. Mycologia 72 (4), 728e736. Calvo, A.M., Wilson, R.A., Bok, J.W., Keller, N.P., 2002. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews 66 (3), 447e459. Campbell, J., Inderbitzin, P., Kohlmeyer, J., VolkmannKohlmeyer, B., 2009. Koralionastetales, a new order of marine Ascomycota in the Sordariomycetes. Mycological Research 113, 373e380. Chet, I., Henis, Y., 1975. Sclerotial Morphogenesis in fungi. Annual Review of Phytopathology 13 (1), 169e192. Cintas, N.A., Webster, R.K., 2001. Effects of rice straw management on Sclerotium oryzae inoculum, stem rot severity, and yield of rice in California. Plant Disease 85 (11), 1140e1144. Coley-Smith, J.R., Cooke, R.C., 1971. Survival and germination of fungal sclerotia. Annual Review of Phytopathology 9, 65e92. Cotter, H.V.T., Miller, O.K., 1985. Sclerotia of Boletinellus merulioides in nature. Mycologia 77 (6), 927e931. Cubeta, M.A., Vilgalys, R., 1997. Population biology of the Rhizoctonia solani complex. Phytopathology 87 (4), 480e484. Cui, B.K., Tang, L.P., Dai, Y.C., 2011. Morphological and molecular evidences for a new species of Lignosus (Polyporales, Basidiomycota) from tropical China. Mycological Progress 10 (3), 267e271. Currah, R.S., Tsuneda, A., Murakami, S., 1993. Morphology and ecology of Phialocephala fortinii in roots of Rhododendron brachycarpum. Canadian Journal of Botany 71 (12), 1639e1644. de Gruyter, J., Woudenberg, J.H.C., Aveskamp, M.M., Verkley, G.J.M., Groenewald, J.Z., Crous, P.W., 2013. Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology 75 (1), 1e36. M.E. Smith et al. Dean, J.L., 1968. Germination and overwintering of sclerotia of Gloeocercospora sorghi. Phytopathology 58 (1), 113e114. Demain, A.L., 1999. Pharmaceutically active secondary metabolites of microorganisms. Applied Microbiology and Biotechnology 52 (4), 455e463. Diederich, P., Lawrey, J.D., 2007. New lichenicolous, muscicolous, corticolous and lignicolous taxa of Burgoa s. l. and Marchandiomyces s. l. (anamorphic Basidiomycota), a new genus for Omphalina foliacea, and a catalogue and a key to the non-lichenized, bulbilliferous basidiomycetes. Mycological Progress 6 (2), 61e80. Douhan, G.W., Rizzo, D.M., 2005. Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytologist 166 (1), 263e271. Douhan, G.W., Smith, M.E., Huyrn, K.L., Westbrook, A., Beerli, P., Fisher, A.J., 2008. Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea. Molecular Ecology 17 (9), 2276e2286. Fasidi, I.O., Ekuere, U.U., 1993. Studies on Pleurotus tuber-regium (Fries) Singer e cultivation, proximate composition and mineral contents of sclerotia. Food Chemistry 48 (3), 255e258. Fields, W.G., Grear, J.W., 1966. A new heterothallic species of Sordaria from Ceylon. Mycologia 58 (4), 524e528. Fox, F.M., 1986. Ultrastructure and infectivity of sclerotia of the ectomycorrhizal fungus Paxillus involutus on Birch (Betula spp.). Transactions of the British Mycological Society 87, 627e631. Frisvad, J.C., Petersen, L.M., Lyhne, E.K., Larsen, T.O., 2014. Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri. PLoS One 9, e94857. Grand, L.F., Menge, J.A., 1974. Sclerotia of Cristulariella pyramidalis in nature. Mycologia 66, 712e715. Gray, F.A., Hollingsworth, C.R., Reedy, C.J., Legg, D.E., Larsen, R.C., Groose, R.W., Koch, D.W., 2008. Pathogenicity of 14 isolates of Phoma scierotioides, causing brown root rot of alfalfa. Canadian Journal of Plant Pathology 30 (2), 285e293. Gutierrez-Barranquero, J.A., Pliego, C., Bonilla, N., Calderon, C.E., Perez-Garcia, A., de Vicente, A., Cazorla, F.M., 2012. Sclerotization as a long-term preservation method for Rosellinia necatrix strains. Mycoscience 53 (6), 460e465. Hambleton, S., Tsuneda, A., Currah, R.S., 2003. Comparative morphology and phylogenetic placement of two microsclerotial black fungi from Sphagnum. Mycologia 95 (5), 959e975. Hartman, G.L., Sinclair, J.B., 1992. Cultural studies on Dactuliochaeta glycines, the causal agent of red leaf blotch of soybeans. Plant Disease 76 (8), 847e852. Hedayati, M.T., Pasqualotto, A.C., Warn, P.A., Bowyer, P., Denning, D.W., 2007. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153, 1677e1692. Hibbett, D.S., Binder, M., Bischoff, J.F., Blackwell, M., Cannon, P.F., Eriksson, O.E., Huhndorf, S., James, T., Kirk, P.M., Lucking, R., et al., 2007. A higher-level phylogenetic classification of the Fungi. Mycological Research 111, 509e547. Hobbie, E.A., Hogberg, P., 2012. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytologist 196 (2), 367e382. Holst-Jensen, A., Vralstad, T., Schumacher, T., 2004. Kohninia linnaeicola, a new genus and species of the Sclerotiniaceae pathogenic to Linnaea borealis. Mycologia 96 (1), 135e142. Horn, B.W., Moore, G.G., Carbone, I., 2009. Sexual reproduction in Aspergillus flavus. Mycologia 101 (3), 423e429. Hsiang, T., Chastagner, G.A., 1992. Production and viability of sclerotia from fungicide-resistant and fungicide-sensitive isolates of Botrytis cinerea, B. elliptica and B. tulipae. Plant Pathology 41 (5), 600e605. Ikewuchi, C.C., Ikewuchi, J.C., 2008. Chemical profile of Pleurotus tuberregium (Fr) Sing’s sclerotia. The Pacific Journal of Science and Technology. 10, 295e299. Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 How many fungi make sclerotia? Ingleby, K., Mason, P., Last, F., Fleming, L., 1990. Identification of Ectomycorrhizas. HMSO, London, UK. James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., Cox, C.J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., et al., 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443 (7113), 818e822. Jenkins, S.F., Averre, C.W., 1986. Problems and progress in integrated control of southern blight of vegetables. Plant Disease 70 (7), 614e619. Joshi, B.K., Gloer, J.B., Wicklow, D.T., Dowd, P.F., 1999. Sclerotigenin: a new antiinsectan benzodiazepine from the sclerotia of Penicillium sclerotigenum. Journal of Natural Products 62 (4), 650e652. Keirle, M.R., Hemmes, D.E., Desjardin, D.E., 2004. Agaricales of the Hawaiian Islands. 8. Agaricaceae: Coprinus and Podaxis; Psathyrellaceae: Coprinopsis, Coprinellus and Parasola. Fungal Diversity 15, 33e124. Kernaghan, G., 2001. Ectomycorrhizal fungi at tree line in the Canadian Rockies II. Identification of ectomycorrhizae by anatomy and PCR. Mycorrhiza 10 (5), 217e229. Kohn, L.M., 1979. Monographic revision of the genus Sclerotinia. Mycotaxon 9 (2), 365e444. Kovacs, G.M., Jakucs, E., Bagi, I., 2007. Identification of host plants and description of sclerotia of the truffle Mattirolomyces terfezioides. Mycological Progress 6 (1), 19e26. Larsson, K.H., 2007. Re-thinking the classification of corticioid fungi. Mycological Research 111, 1040e1063. Li, M.Y., Rollins, J.A., 2010. The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genetics and Biology 47 (6), 531e538. LoBuglio, K.F., Pfister, D.H., 2010. Placement of Medeolaria farlowii in the Leotiomycetes, and comments on sampling within the class. Mycological Progress 9 (3), 361e368. Lutz, M., Bauer, R., Begerow, D., Oberwinkler, F., 2004. TuberculinaThanatophytum/rhizoctonia crocorum-Helicobasidium: a unique mycoparasitic-phytoparasitic life strategy. Mycological Research 108, 227e238. Lyda, S.D., 1984. Vertical and horizontal distribution of Phymatotrichum sclerotia in Texas soils. Phytopathology 74 (7), 814. Macfarlane, T.D., Kuo, J., Hilton, R.N., 1978. Structure of the giant sclerotium of Polyporus mylittae. Transactions of the British Mycological Society 71, 359e365. Marek, S.M., Hansen, K., Romanish, M., Thorn, R.G., 2009. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora. Persoonia 22, 63e74. Matsumoto, N., Tajimi, A., 1985. Field survival of sclerotia of Typhula incarnata and of Typhula ishikariensis biotype A. Canadian Journal of Botany 63 (6), 1126e1128. Matsuura, K., 2006. Termite-egg mimicry by a sclerotium-forming fungus. Proceedings of the Royal Society B-Biological Sciences 273 (1591), 1203e1209. Matsuura, K., Yashiro, T., 2010. Parallel evolution of termite-egg mimicry by sclerotium-forming fungi in distant termite groups. Biological Journal of the Linnean Society 100 (3), 531e537. Moore, E.J., 1962. The ontogeny of the sclerotia of Pyronema domesticum. Mycologia 54 (3), 312e316. Morrall, R.A.A., Loew, F.M., Hayes, M.A., 1978. Sub-acute toxicological evaluation of sclerotia of Sclerotinia sclerotiorum in rats. Canadian Journal of Comparative Medicine 42 (4), 473e477. € ller, W., Agerer, R., 1990. Studien an Ektomykorrhizen XXIX. Mu Drei Mykorrhizen aus der Leccinum scabrum Gruppe. Nova Hedwigia 51, 381e410. Mulrean, E.N., Hine, R.B., Mueller, J.P., 1984. Effect of phymatotrichum root rot on yield and seed and lint quality in Gossypium hirsutum and G. barbadense. Plant Disease 68 (5), 381e383. 9 € nzenberger, B., Bubner, B., Woellecke, J., Sieber, T.N., Bauer, R., Mu Fladung, M., Huettl, R.F., 2009. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii. Mycorrhiza 19 (7), 481e492. Murrill, W.A., 1915. Luminescence in the Fungi. Mycologia 7 (3), 131e133. Padamsee, M., Kumar, T.K.A., Riley, R., Binder, M., Boyd, A., Calvo, A.M., Furukawa, K., Hesse, C., Hohmann, S., James, T.Y., et al., 2012. The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genetics and Biology 49 (3), 217e226. Palfner, G., 2001. Taxonomische studien an ektomykorrhizen aus € ldern Mittelsu € dchiles. Bibliotheca Mycologica den Nothofagus-Wa 190, 1e243. Papavizas, G.C., 1977. Some factors affecting survival of sclerotia of Macrophomina phaseolina in soil. Soil Biology & Biochemistry 9 (5), 337e341. Parmeter, J.R., 1971. Rhizoctonia Solani, Biology and Pathology. University of California Press, Berkeley, California. Pfister, D.H., 1979. A monograph of the genus Wynnea (Pezizales, Sarcoscyphaceae). Mycologia 71 (1), 144e159. Pfister, D.H., 1984. On Fimaria dentata, a new combination, with a review of synonyms and comments on Fimaria (Pezizales). Mycologia 76 (5), 843e852. Piche, Y., Fortin, J.A., 1982. Development of mycorrihzae, extramatrical mycelium and sclerotia on Pinus strobus seedlings. New Phytologist 91 (2), 211e220. Purdy, L.H., 1979. Sclerotinia sclerotiorum e history, diseases and symptomology, host range, geographic distribution, and impact. Phytopathology 69 (8), 875e880. Redhead, S.A., Kroeger, P., 1987. A sclerotium-producing Hypholoma from British Columbia. Mycotaxon 29, 457e465. Rodriguez, R.J., White, J.F., Arnold, A.E., Redman, R.S., 2009. Fungal endophytes: diversity and functional roles. New Phytologist 182 (2), 314e330. Roth, D.A., Griffin, G.J., Graham, P.J., 1979. Low temperature induces decreased germinability of Cylindrocladium microsclerotia. Canadian Journal of Microbiology 25 (2), 157e162. Saito, K., Nishijima, M., Miyazaki, T., 1992. Studies on fungal polysaccharides 37: structure of a heteroglycan isolated from the fungus Omphalia lapidescens. Carbohydrate Research 224, 209e217. Samuels, G.J., Kohn, L.M., 1986. Ascomycetes of New Zealand 7. Some bizarre inoperculate discomycetes. Sydowia 39, 202e216. Schardl, C.L., Panaccione, D.G., Tudzynski, P., 2006. Ergot alkaloidsebiology and molecular biology. The Alkaloids. Chemistry and biology 63, 45e86. Schoch, C.L., Crous, P.W., Groenewald, J.Z., Boehm, E.W.A., Burgess, T.I., de Gruyter, J., de Hoog, G.S., Dixon, L.J., Grube, M., Gueidan, C., et al., 2009a. A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64, 1e15. Schoch, C.L., Wang, Z., Townsend, J.P., Spatafora, J.W., 2009b. Geoglossomycetes cl. nov., Geoglossales ord. nov and taxa above class rank in the Ascomycota Tree of Life. Persoonia 22, 129e138. Schumacher, T., Holst-Jensen, A., 1997. A synopsis of the genus Scleromitrula (equals Verpatinia) (Ascomycotina: Helotiales: Sclerotiniaceae). Mycoscience 38 (1), 55e69. Schumacher, T., Kohn, L.M., 1985. A monographic revision of the genus Myriosclerotinia. Canadian Journal of Botany-Revue Canadienne De Botanique 63 (9), 1610e1640. Schumann, G.L., 1991. Plant Diseases: Their Biology and Social Impact. American Phytopathological Society, St Paul, Minnesota. Short, G.E., Wyllie, T.D., 1978. Inoculum potential of Macrophominia phaseola. Phytopathology 68 (5), 742e746. Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010 10 Smith, M.E., Pfister, D.H., 2009. Tuberculate ectomycorrhizae of angiosperms: the interaction between Boletus rubropunctus (Boletaceae) and Quercus species (Fagaceae) in the United States and Mexico. American Journal of Botany 96 (9), 1665e1675. Stajich, J.E., Berbee, M.L., Blackwell, M., Hibbett, D.S., James, T.Y., Spatafora, J.W., Taylor, J.W., 2009. The fungi. Current Biology 19 (18), R840eR845. Suto, Y., Suyama, H., 2005. Redheadia quercus gen. et sp nov., the teleomorph of Mycopappus quercus, the frosty mildew fungus in Quercus acutissima. Mycoscience 46 (4), 227e234. Tedersoo, L., Smith, M.E., 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27 (3e4), 83e99. Thoen, D., Ducousso, M., 1990. Mycorrhizal habit and sclerogenesis of Phlebopus sudanicus (Gyrodontaceae) in Senegal. Agriculture Ecosystems & Environment 28 (1e4), 519e523. Tjamos, E.C., Fravel, D.R., 1995. Detrimental effects of sublethal heating and Talaromyces flavus on microsclerotia of Verticillium dahliae. Phytopathology 85 (4), 388e392. Toome, M., Roberson, R.W., Aime, M.C., 2013. Meredithblackwellia eburnea gen. et sp nov., Kriegeriaceae fam. nov and Kriegeriales ord. nov.- toward resolving higher-level classification in Microbotryomycetes. Mycologia 105 (2), 486e495. Townsend, B.B., Willetts, H.J., 1954. The development of sclerotia of certain fungi. Transactions of the British Mycological Society 37 (3), 213e221. Tsuneda, A., Skoropad, W.P., 1977. The Alternaria brassicae e Nectria inventa host e parasite interface. Canadian Journal of Botany 55 (4), 448e454. Uzuhashi, S., Ohtaka, N., Hirooka, Y., Tomioka, K., Sato, T., 2010. Dumontinia root rot of liver leaf caused by Dumontinia tuberosa. Journal of General Plant Pathology 76 (3), 183e187. Volk, T.J., Leonard, T.J., 1989. Physiological and environmental studies of sclerotium formation and maturation in isolates of M.E. Smith et al. Morchella crassipes. Applied and Environmental Microbiology 55 (12), 3095e3100. Warcup, J.H., Talbot, P.H.B., 1962. Ecology and identity of mycelia isolated from soil. Transactions of the British Mycological Society 45 (4), 495e518. Waters, H., Moore, D., Butler, R.D., 1975. Morphogenisis of aerial sclerotia of Coprinus lagopus. New Phytologist 74 (2), 207. Weber, G.F., 1929. The occurrence of tuckahoes and Poria cocos in Florida. Mycologia 21 (3), 113e130. Weiss, F., 1940. Ovulinia, a new generic segregate from Sclerotinia. Phytopathology 30 (3), 236e244. Whetzel, H.H., 1942. A new genus and new species of brownspored inoperculate discomycetes from Panama. Mycologia 34 (5), 584e591. Whetzel, H.H., 1945. A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycetes. Mycologia 37 (6), 648e714. Whetzel, H.H., Wolf, F.A., 1945. The cup fungus, Ciboria carunculoides, pathogenic on mulberry fruits. Mycologia 37 (4), 476e491. Willetts, H.J., 1971. Survival of fungal sclerotia under adverse environmental conditions. Biological Reviews of the Cambridge Philosophical Society 46 (3), 387e407. Xing, X.K., Guo, S.X., 2008. The structure and histochemistry of sclerotia of Ophiocordyceps sinensis. Mycologia 100 (4), 616e625. Xu, Z.H., Harrington, T.C., Gleason, M.L., Batzer, J.C., 2010. Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera. Mycologia 102 (2), 337e346. Zhang, Y., Crous, P.W., Schoch, C.L., Bahkali, A.H., Guo, L.D., Hyde, K.D., 2011. A molecular, morphological and ecological re-appraisal of Venturiales e a new order of Dothideomycetes. Fungal Diversity 51 (1), 249e277. Zheng, W.F., Miao, K.J., Liu, Y.B., Zhao, Y.X., Zhang, M.M., Pan, S.Y., Dai, Y.C., 2010. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Applied Microbiology and Biotechnology 87 (4), 1237e1254. Please cite this article in press as: Smith, et al., How many fungi make sclerotia?, Fungal Ecology (2014), http://dx.doi.org/ 10.1016/j.funeco.2014.08.010
© Copyright 2026 Paperzz