2.5 Proofs for Segment and Angle Relationships Name _________________________ Fill in the missing statement or reasons for the following proofs. #1 Supplementary Angles Given: <1 and <2 are supplementary o m<1 = 68 1 2 o Prove: m<2 = 112 Statement 1. 2. 3. 4. 5. Reason 1. Given 2. 3. 4. Substitution Property 5. m∠1 + m∠2 =180 m∠1 =68 m∠2 = 112 #2 Segment Midpoint Draw your own diagram and label Given: M is the midpoint of LN ; LM = 8 Prove: LN = 16 Statement 1. M is the midpoint of LN ; LM = 8 2. 3. 4. MN = 8 5. LN = LM + MN 6. #3 Vertical Angles Given: ∠1 ≅ ∠2, m∠4 =30 Reason 1. 2. Defn. of a midpoint 3. Defn. of congruent segments 4. 5. 6. Substitution 2 1 3 6 4 5 Prove: m∠2 = 30 Statement 1. 2. ∠1 ≅ ∠4 3. 4. m∠2 = m∠4 5. m∠4 =30 6. Reason 1. Given 2. 3. Transitive Property 4. Defn. of congruent angles 5. 6. A #4 Complementary Angles Given: <1 is complementary to <2; BE bisects ∠DBC D E Prove: <1 is complementary to <3 B Statement 1. BE bisects ∠DBC 2. ∠2 ≅ ∠3 3. 4. <1 is complementary to <2 5. m∠1 + m∠2 =______ 6. m∠1 + m∠3 =90 7. C Reason 1. 2. 3. Defn. of congruent angles 4. 5. 6. 7. Defn. of complementary angles #5 Segment Addition Given: AB =+ 3 x 5; BC = 2( AB ); AC = 60 Statement 1. AB =+ 3 x 5; BC = 2( AB ); AC = 60 2. = BC 2(3 x + 5) 3. 4. 3 x + 5 + 6 x + 10 = 60 5. 6. 9 x = 45 7. 8.= BC 2 [ 3(5) + 5] 9. C B A Prove: BC = 40 Reason 1. 2. 3. 4. 5. 6. 7. 8. 9. Segment addition postulate Simplify Division property Simplify #6 Segment Addition X Given:= XY 6,= XZ 14 Y Z Prove: YZ = 8 Statement 1. 2. 3. 4. = XY 6,= XZ 14 XY + YZ = XZ 6 + YZ = 14 YZ = 8 Reason 1. 2. 3. 4. Q P #7 Midpoint of a Segment R Given: Q is the midpoint of PR ; QR ≅ RS Prove: PQ ≅ RS S Statement 1. Q is the midpoint of PR ; QR ≅ RS 2. PQ ≅ QR 3. PQ ≅ RS Reason 1. 2. 3. #8 Supplementary Angles Given: <1 and <2 are supplementary; m∠2= 4 x + 30 ; m∠1 =x 2 Prove: m∠2 = 150 Statement Reason 1. <1 and <2 are supplementary; 1. 2. 3. 4. 5. 6. 7. 2. 3. 4. 5. 6. 7. m∠2= 4 x + 30 ; m∠1 =x m∠1 + m∠2 =180 x + 4 x + 30 = 180 5 x + 30 = 180 5 x = 150 x = 30 m∠ = 2 4(30) + = 30 150 = A #9 Angle Bisector Given: BF bisects ∠ABC 5 B Prove: ∠1 ≅ ∠6 1 Statement 1. 2. 3. 4. BF bisects ∠ABC ∠5 ≅ ∠6 ∠1 ≅ ∠5 ∠1 ≅ ∠6 F 6 C Reason 1. 2. 3. 4. 1 #10 Angle Addition Postulate E G o Given: ∠GFI = 89 (10x - 7) 2xo Prove: x = 8 F Statement #11 Vertical Angles I Reason 2 1 Given: ∠1 ≅ ∠2 3 6 4 5 Prove: ∠4 ≅ ∠5 Statement Reason #12 Supplementary Angles 2 Given: <1 and <2 are supplementary; m∠1= 120 − x ; m∠2 = 2x Prove: x = 60 Statement Reason 1 #13 Segment Addition Given: AC = 8 x , AB = 2 x + 1 , BC = 4x + 3 C B A Prove: x = 2 Statement #14 Bisecting Angles Given: BE bisects ∠AEC Prove: x = 2 Reason A B 6x - 1 10x - 9 E Statement Reason #15 Midpoints on segments Given: Point I is the midpoint of BG , GI = 25 , BI = 7x + 4 Prove: x = 3 Statement Reason C
© Copyright 2026 Paperzz