Class Notes - albahri.info

Petroleum Refining – Chapter 13: Product Blending
Chapter 13 : PRODUCT BLENDING
Introduction

The major refinery products produced by blending are:
- Gasoline
- Jet fuels
- Diesel fuel
- Furnace oils.
More restrictions on product specs
- Residual fuels.
- Heating oils
- Lubricating oils

Refinery sources of gasoline (blending components)
- Straight-run gasoline (CDU naphtha).
- Coker gasoline
- FCC/TCC gasoline
- Hydrocracker gasoline (hydrocrackate)
- Reforming (reformate)
- Alkylation (alkylate)
- Polymerization (polymerate)
- Isomerization (isomerate)
- ARDS/isomax gasoline
- H-oil gasoline
- Thermal cracker gasoline.
- Aromatic concentrate
- C4+ Gases
Figure 13-1: Refinery gasoline blending
13-1
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016







These gasoline blending-stocks have different molecular contents and performance
qualities (RON, MON, RVP, API, BP range, etc.) as shown in Table 13-1.
They must be blended into various grades that meet market demands.
Blending components must meet all desired specifications like boiling point, specific
gravity, RVP, research octane number (RON) and motor octane number (MON).
The products is designated ‘off spec’ if it does not meet one or more of the required
specifications which could make it unsalable or salable for a lower price. Exceeding
one or more of the required product specifications is termed ‘giveaway’, which is also
a loss for the refinery because you are selling higher quality product for lower price.
Basic intermediate streams are usually blended to produce a variety of on-spec
finished products. For example, naphtha can be blended into either gasoline or jet
fuel, depending upon the product demand.
The objective of product blending is to allocate the available blending components in
such a way as to meet product demands and specifications at the least cost and to
produce incremental products which maximize overall profit.
For example, if a refiner sells about one billion gallons of gasoline per year (about
65,000 BPCD), a saving of one-hundredth (1/100) of a cent per gallon results in an
additional profit of $100,000 per year.
Figure 13-2: Refinery tank farm blending & shipping farcicalities
Figure 13-3: Refinery blending facilities
13-2
Petroleum Refining – Chapter 13: Product Blending
Table 13-1: Blending Component Values for Gasoline Blending Streams.
No Component
RVP (psi) BMON BRON °API
1. i-C4
71.0
92.0
93.0
2. n-C4
52.0
92.0
93.0
3. i-C5
19.4
90.8
93.2
4. n-C5
14.7
72.4
71.5
5. i-C6
6.4
78.4
79.2
6. LSR gasoline (C5-180°F)
11.1
61.6
66.4
78.6
7. LSR gasoline Isomerized, once-through
13.5
81.1
83.0
80.4
8. HSR gasoline
1.0
58.7
62.3
48.2
9. Lt hydrocrackate
12.9
82.4
82.8
79.0
10. Hydrocrackate, C5-C6
15.5
85.5
89.2
86.4
11. Hydrocrackate, C6-l90 °F
3.9
73.7
75.5
85.0
12. Hydrocrackate, 190-250 °F
1.7
75.6
79.0
55.5
13. Hvy hydrocrackate
1.1
67.3
67.6
49.0
14. Coker gasoline
3.6
60.2
67.2
57.2
15. Lt thermal gasoline.
9.9
73.2
80.3
74.0
16. C6+ lt thermal gasoline.
1.1
68.1
76.8
55.1
17. FCC gasoline, 200-300 °F
1.4
77.1
92.1
49.5
18. FCC C5+ gasoline
4.4
76.8
92.3
57.2
19. Hydrog lt FCC gasoline, C5+
13.9
80.9
83.2
51.5
20. Hydrog C5-200 °F FCC gasoline
14.1
81.7
91.2
58.1
21. Hydrog lt FCC gasoline, C6+
5.0
74.0
86.3
49.3
22. Hydrog C5+ FCC gasoline
13.1
80.7
91.0
54.8
23. Hydrog 300-400 °F FCC gasoline
0.5
81.3
90.2
48.5
24. Reformate, 94 RON
2.8
84.4
94.0
45.8
25. Reformate, 98 RON
2.2
86.5
98.0
43.1
26. Reformate, 100 RON
3.2
88.2
100.0 41.2
27. Aromatic concentrate
1.1
94.0
107.0
28. Alkylate, C3=
5.7
87.3
90.8
29. Alkylate, C4=
4.6
95.9
97.3
70.3
30. Alkylate, C3=, C4=
5.0
93.0
94.5
31. Alkylate, C5=
1.0
88.8
89.7
32. Polymer
8.7
84.0
96.9
59.5
+
33. C5 TCC gasoline
4.0
76.6
85.5
34. C6+ TCC gasoline
2.6
75.8
84.3
BMON = Blending motor octane number, BRON = Blending research octane number.
These values are provided for illustration and cannot be generalized.
Table 13-2: Blending values of octane improvers (boosters/additives)
Compound Formula MW API Tb (ºF) RVP (psi) Flash (ºF) RON MON
Methanol
CH4O
32
46.2 148.5
40
53.6
135
105
Ethanol
C2H6O
46.1 46.1
173
11
53.6
132
106
TBA
C4H10O 74.1 47.4 180.4
6
39.2
106
89
MTBE
C5H12O 88.1 58.0 131.4
9
-18.4
118
101
ETBE
C6H14O 102.2 56.7 159.8
4
-2.2
118
102
TAME
C6H14O 102.2 53.7
185
1.5
12.2
111
98
TEL
C8H20Pb 323.4 3.143
239
0
199.4
10,000 13,000
13-3
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
Blending for API gravity
 API Gravities are not linear and therefore cannot be averaged.
 Specific gravity can be volume Averaged.
Example 13-1: Blending for API
Calculate the API of a blend from
1,000 bbls oil 70 ºAPI
2,000 bbls oil 5 ºAPI
Solution:
141.5
141.5
=
= 0.7026
𝐴𝑃𝐼 + 131.5 70 + 131.5
141.5
141.5
𝑆𝐺 =
=
= 1.0374
𝐴𝑃𝐼 + 131.5 5 + 131.5
𝑆𝐺 =
Ave. sp. gr. = 0.3333(0.7026) + 0.6666(1.0374) = 0.9258
API = (141.5/ 0.9258)-131.5 = 21.34 √
If you average the API then the answer is = 0.3333 x 70 + 0.6666 x 5 = 26.67 X
Blending for Initial & Final BP
 The initial boiling point of the blend equals the lowest of the blending stocks and the
final boiling point equals the highest.
Example 13-2: Blending for Boiling Point
Calculate the initial and final boiling points of the blend from the following blending stocks,
LSR gasoline (C5 – 180 ºF)
HSR gasoline (200 – 380 ºF)
FCC gasoline (200 – 300 ºF)
Blend
(C5 – 380 ºF)
Blending for Reid Vapor Pressure (RVP)
 The theoretical method for blending to the desired RVP requires knowledge of the
average molecular weight of each of the streams.
 A more convenient way developed by Chevron Research Company is to use ‘Vapor
Pressure Blending Indices’ (VPBI) compiled as a function of the RVP of the blending
streams as shown in Table 13-3.
 The RVP of the blend is closely approximated by the sum of all the products of the
volume fraction (Xv) times the VPBI for each blending component i.
(VPBI)blend = ∑ Xvi (VPBI)i
13.1
 RVP of a gasoline is controlled by adding n-butane to (C5 – 380°F) naphtha.
 If the volume of the n-butane to be blended for a given RVP is given by,
V0 (VPBI)0 + V1 (VPBI)1 + …...… = (V0 +V1 + …) (VPBI)m
13.2
where
V0 = Volume (bbl) of n-butane.
V1 = Volume (bbl) of blending stock 1,
1, 2, 3 = blending stocks 1, 2, 3, etc.
(VPBI)m = VPBI of the mixture
RVPm1.25 = [V0(RVP0)1.25 + V1(RVP1)1.25 + ….] 0.8/ total volume
13-4
13.3
Petroleum Refining – Chapter 13: Product Blending
Table 13-3: Reid Vapor Pressure Blending Index Numbers for Gasoline and Turbine Fuels.
Vapor
Pressure,
psi
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0 0.00 0.05
0.13
0.22
0.31
0.42
0.52 0.64 0.75
0.87
1 1.00 1.12
1.25
1.38
1.52
1.66
1.79 1.94 2.08
2.23
2 2.37 2.52
2.67
2.83
2.98
3.14
3.30 3.46 3.62
3.78
3 3.94 4.11
4.28
44.4
4.61
4.78
4.95 5.13 5.30
5.48
4 5.65 5.83
6.01
6.19
6.37
6.55
6.73 6.92 7.10
7.29
5 7.47 7.66
7.85
8.04
8.23
8.42
8.61 8.80 9.00
9.19
6 9.39 9.58
9.78
9.98
10.2
10.4
10.6 10.8 11.0
11.2
7 11.4 11.6
11.8
12.0
12.2
12.4
12.6 12.8 13.0
13.2
8 13.4 13.7
13.9
14.1
14.3
14.5
14.7 14.9 15.2
15.4
9 15.6 15.8
16.0
16.2
16.4
16.7
16.9 17.1 17.3
17.6
10 17.8 18.0
18.2
18.4
18.7
18.9
19.1 19.4 19.6
19.8
11 20.0 20.3
20.5
20.7
20.9
21.2
21.4 21.6 21.9
22.1
12 22.3 22.6
22.8
23.0
23.3
23.5
23.7 24.0 24.2
24.4
13 24.7 24.9
25.2
25.4
25.6
25.9
26.1 26.4 26.6
26.8
14 27.1 27.3
27.6
27.8
28.0
28.3
28.5 28.8 29.0
29.3
15 29.5 29.8
30.0
30.2
30.5
30.8
31.0 31.2 31.5
31.8
16 32.0 32.2
32.5
32.8
33.0
33.2
33.5 33.8 34.0
34.3
17 34.5 34.8
35.0
35.3
35.5
35.8
36.0 36.3 36.6
36.8
18 37.1 37.3
37.6
37.8
38.1
38.4
38.6 38.9 39.1
39.4
19 39.7 39.9
40.2
40.4
40.7
41.0
41.2 41.5 41.8
42.0
20 42.3 42.6
42.8
43.1
43.4
43.6
43.9 44.2 44.4
44.7
21 45.0 45.2
45.5
45.8
46.0
46.3
46.6 46.8 47.1
47.4
22 47.6 47.9
48.2
48.4
48.7
49.0
49.3 49.5 49.8
50.1
23 50.4 50.6
50.9
51.2
51.5
51.7
52.0 52.3 52.6
52.8
24 53.1 53.4
53.7
54.0
54.2
54.5
54.8 55.1 55.3
55.6
25 55.9 56.2
56.5
56.7
57.0
57.3
57.5 57.9 58.1
58.4
26 58.7 59.0
59.3
59.6
59.8
60.1
60.4 60.7 61.0
61.3
27 61.5 61.8 62.1I 62.4
62.7
63.0
63.3 63.5 63.8
64.1
28 64.4 64.7
65.0
65.3
65.6
65.8
66.1 66.4 66.7
67.0
29 67.3 67.6
67.9
68.2
68.4
68.8
69.0 69.3 69.6
69.9
30 70.2 Example:
40 101 Calculate the vapor-pressure of a gasoline blend as follows
(nC4) 51.6 138
Vapor
Vapor
Volume
(iC4) 72.2 210
Component
Volume
Pressure
Pressure
Fraction
(C3) 190.0 705
Fraction
psi
Blending
x
Index No.
VPBI
Equation:
VPBI = VP1.25
n-Butane
Light Straight Run
Heavy Refined
Total
0.050
0.450
0.500
1.000
51.6
6.75
1.00
7.45
138
10.9
1.00
12.3
6.90
4.90
0.50
12.3
From the brochure, “31.0°API Iranian Heavy Crude Oil,” by arrangement with Chevron
Research Company. Copyright © 1971 by Chevron Oil Trading Company.
13-5
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
Blending for Octane Number
 Octane numbers are blended on a volumetric basis.
 True octane numbers do not blend linearly therefore blending octane numbers are used.
 Those are numbers which, when added on a volumetric average basis, will give the true
octane of the blend.
 Blending octane numbers are based on experience.
 The formula used for calculations is:
Vblend (ON)blend = ∑ Vi (BON)i
13.4
where,

Vblend = Total volume of gasoline blended (bbl).
Vi = Volume of blending component i (bbl).
(ON)blend = Desired true octane of blend.
(BON)i = Blending octane number of component i.
If n-butane alone is not sufficient to increase the Pool octane number of the gasoline,
different ways are used to improve the octane number. These are:
1. Increase severity of reforming to produce a 98.8 or 100 RONC reformate.
(This is not attractive because the aromatics content of the gasoline would
increase and the volume would decrease).
2. Use octane improvers, such as MTBE or ETBE (Table 13-2) to improve the
pool octane.
Example 13-3: Blending for RVP and Octane Number:
From the following stocks; 1,250 bbls HSR gasoline,
750 bbls LSR gasoline,
620 bbls C5+ FCC gasoline,
a. Calculate the amount of n-butane required to produce a gasoline with an RVP of 9 psi.
b. Calculate the RON and MON for the blend.
c. Calculate the posted octane number (PON) if 10 V% MTBE is added (keeping RVP at 9
psi).
Solution
RVP values are obtained from Table 13.1
VPBI values are obtained from Table 13.2
COMPONENT
#
(BPDi)
n-butane
2
W
HSR gasoline
8
1250
LSR gasoline
6
750
C5+ FCC gasoline 18
620
Total for blend
2620 + W
∑(BPDi)
(RVPi)
(VPBIi)
Table 13-1 Table 13-3
51.6
138
1.0
1.0
11.1
20.3
4.4
6.37
At 9.0 RVP, from Table 13-3, (VPBI)m = 15.6
Into Equation 13.1
(VPBI)m ∑(BPDi) = ∑(BPDi)(VPBIi)
15.6 (2620 + W) = 20424.4 + 138 W
W = 165 BPD of n-butane
13-6
(BPDi)(VPBIi)
138W
1250.00
15225.00
3949.40
138W + 20424.4
∑ (BPDi)(VPBIi)
Petroleum Refining – Chapter 13: Product Blending
b.
Component
#
BPD
n-butane
HSR gasoline
LSR gasoline
C5+ FCC gasoline
Total for blend
2
8
6
18
165
1250
750
620
2785
Vol.
Frac.
0.0592
0.4488
0.2693
0.2226
MON
Table 13-1
92.0
58.7
61.6
76.8
RON
Table 13-1
93.0
62.3
66.4
92.3
MON x
Vol. frac.
4.85
26.34
16.59
17.10
64.9
RON x
Vol. frac.
5.51
27.96
17.88
20.55
71.9
MON of the blend = ∑MON x vol. frac. = 64.9
RON of the blend = ∑RON x vol. frac. = 71.9
10 % MTBE is equal to 0.1(2785 BPD) = 278.5 BPD
MTBE octane number is from Table 13-2.
Component
BPD
Vol.
Frac.
0.054
0.408
0.245
0.202
.091
MON
RON
MON x Vol.
RON x
frac.
Vol. frac.
n-butane
165
92.0
93.0
4.97
5.022
HSR gasoline
1250
58.7
62.3
23.95
25.42
LSR gasoline
750
61.6
66.4
15.1
16.27
C5 FCC gasoline
620
76.8
92.3
15.51
18.64
MTBE
101
118
9.19
10.74
278.5
Total
3063.5
68.72
76.1
76.1

68.72
(vol.
frac.
x
RON)

(vol.frac.
x
MON)


PON of the blend =
=
= 72.4
2
2
BLENDING FOR OTHER PROPERTIES
 Several methods exist for estimating the physical properties of a blend from those of
the blending stocks.
 One of the most convenient methods of estimating properties, that do not blend
linearly, is to substitute for the true value of the inspection to be blended another
value (called blending factor or index) which has the property of blending
approximately linear.
 The Chevron Research Company has compiled factors or index numbers for,
Viscosities, Table 13-6
Flash points, Table 13-7
Aniline points, Table 13-8
Pour point, Table 13-9
Smoke point, Table 13-10
Freezing point, Table 13-11a & b
Blending for Viscosity
 Viscosity blending is more complicated than blending for the other properties.
 It is not an additive property and it is necessary to use special techniques to estimate
the viscosity of a blend from the viscosities of its blending stocks.
 The method most commonly accepted is the use of special charts developed by and
obtainable from ASTM.
 The viscosity factor of the blend can be calculated using the equation:
(VF) blend = ∑ Xvi (VF)i
14.5
where, Xvi = Volume fraction.
(VF)i = Viscosity factor for component i (Table 13.4).
13-7
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016









(VF)blend = Viscosity factor for the blend.
Blending of kinematic viscosities (centistokes, cSt = mm2/s) may be done at any
temperature, but the viscosities of all components of the blend must be at the same
temperature.
Blending of viscosities in Saybolt universal seconds also may be done at any
temperature and interchangeably with kinematic viscosities at the same temperature.
Table 13-6 may be used to convert viscosities expressed in centistokes (cSt) to
Saybolt Universal Seconds (SUS) and vice versa.
Viscosity factors also are given in Table 13-6 for viscosities expressed in Saybolt
Furol Seconds (SFS).
Saybolt Furol viscosities are blended only at 122°F. If SFS viscosities are at any other
temperature, they must be converted to centistokes or SUS before blending.
Viscosity factors for SFS at 122 °F may be used interchangeably with viscosity
factors for SUS at 130 °F and with centistokes at 130 °F.
Table 13-6 may be used also to convert viscosities in SFS at 122 °F to either
kinematic or Saybolt Universal viscosities at 130 °F.
Other viscosity units include
- Redwood sec
- Redwood Admiralty Seconds
- Redwood No.1 Seconds
The viscosity of a blend can also be estimated by API Procedure 11A4.3 in the API
Technical Data Book - Petroleum Refining.
Blending for Flash Point
 The flash point index of a blend is given by
(FPBI) blend = ∑ Xvi (FPBI)i
13.6
where
Xvi = Volume fraction.
(FPBI) blend = Flash point blending index of the blend.
(FPBI)i = Flash point blending index of component i from Table 13-5
Blending for Aniline Point

The aniline point index of a blend is given by
(APBI) blend = ∑ Xvi (APBI)i
13.7
where
Xvi = Volume fraction.
(APBI) blend = Aniline point blending index of the blend.
(APBI)i = Aniline point blending index of component i from Table 13-6.
Blending for Pour Point

The pour point index of a blend is given by
(PP) blend = ∑ Xvi (PPBI)i
where
Xvi = Volume fraction.
(PP) blend = Pour point blending index of the blend.
13-8
13.8
Petroleum Refining – Chapter 13: Product Blending
(PPBI)i = Pour point blending index of component i, from Table 13-7.
Example 13-4
Calculate the viscosity, flash point, aniline point, and pour point of the blend from the following
blending stocks.
Stock
bbls
A
B
C
Blend
5,000
3,000
2,000
10,000
ASTM 50%
temp (ºF)
575
425
500
Viscosity
430 SFS at 120 ºF
82.5 SUS at 130 ºF
2.15 cSt at 130 ºF
?
Flash point
(ºF)
100
90
130
?
Aniline
point (ºF)
70
160
40 (mixed)
?
Pour point
(ºF)
10
50
65
?
Solution:
a. Viscosity
Stock
A
B
C
Total
vol. frac.
of blend
0.5
0.3
0.2
1
Viscosity
Factor (Table
13-6)
0.700
0.500
0.300
430 SFS at 120 ºF
82.5 SUS at 130 ºF
2.15 cSt at 130 ºF
vol. frac. x
Factor
0.350
0.150
0.060
0.560
Table 13-6 gives the following viscosities for a blend with a factor of 0.56
39.5 cSt at 130 ºF
183 SUS at 130 ºF
25.7 SFS at 122 ºF
b. Flash point
Stock vol. frac. of blend
A
B
C
Total
0.5
0.3
0.2
1
Flash point (ºF)
100
90
130
Blending Index (
Table 13-7)
753
1,170
224
vol. frac. x index
376.5
351
44.8
772
Table 13-7 gives a flash point for the blend of 99.5 ºF for a blending index of 772.
c. Aniline Point
Stock
vol. frac.
of blend
A
0.5
B
0.3
C
0.2
Total
1
Aniline point (ºF)
Blending Index (Table
13-6)
347
855
-425
70
160
40 (mixed)
vol. frac. x index
173.5
256.5
-85
345
Table 13-6 gives for a blending index of 345 an aniline point for the blend of 69.5 ºF or a mixed
aniline point of 115 ºF.
d. Pour Point
Stock
vol. frac.
of blend
A
0.5
B
0.3
C
0.2
Total
1
ASTM 50%
temp (ºF)
575
425
500
Pour Point (ºF)
10
50
65
13-9
Blending Index
(Table 13-7)
8
61
98
vol. frac. x
index
4
18.3
19.6
41.9
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
The pour point of the blend is 41.9 ºF or 42 ºF.
Notice that for the Octane number and the pour point the property (not the index) is
calculated, therefore, there is no need to go back to the Table to get the desired property.
Blending for Freezing point

The freezing point index of a blend is given by
(FPBI) blend = ∑ Xvi (FPBI)i
13.9
where
Xvi = Volume fraction.
(FPBI) blend = Freezing point blending index of the blend.
(FPBI)i = Freezing point blending index of component i from Table.
Table 13-4. Freezing point blending index in Fahrenheit
Freeze Point (°F)
-250
-245
-240
-235
-230
-225
-220
-215
-210
-205
-200
-195
-190
-185
-180
-175
-170
-165
-160
-155
-150
-145
-140
-135
-130
-125
-120
-115
-110
Index Freeze Point (°F)
0.0064
-105
0.0077
-100
0.0092
-95
0.0111
-90
0.0133
-85
0.0159
-80
0.0190
-75
0.0228
-70
0.0274
-65
0.0328
-60
0.0393
-55
0.0471
-50
0.0565
-45
0.0677
-40
0.0811
-35
0.0973
-30
0.1166
-25
0.1397
-20
0.1675
-15
0.2007
-10
0.2406
-5
0.2884
0
0.3457
5
0.4143
10
0.4966
15
0.5953
20
0.7135
25
0.8552
30
1.0250
35
Index Freeze Point (°F) Freeze Point (°F)
1.2286
40
235.03
1.4727
45
281.71
1.7651
50
337.66
2.1157
55
404.72
2.5359
60
485.11
3.0396
65
581.46
3.6433
70
696.94
4.3669
75
835.37
5.2343
80
1001.3
6.2739
85
1200.2
7.5199
90
1438.5
9.0135
95
1724.2
10.804
100
2066.7
12.949
105
2477.2
15.521
110
2969.2
18.604
115
3558.9
22.299
120
4265.7
26.728
125
5112.9
32.037
130
6128.4
38.400
135
7345.6
46.026
140
8804.6
55.168
145
10553.3
66.125
150
12649.3
79.258
155
15161.6
95.000
160
18173.0
113.87
165
21782.4
136.48
170
26108.7
163.59
175
31294.2
196.08
13-10
Petroleum Refining – Chapter 13: Product Blending
Courtesy Albahri 2016
Table 13-5 Freezing point blending index in Kelvin
Freeze Point (K)
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
Index Freeze Point (K)
0.0061
196
0.0070
198
0.0080
200
0.0091
202
0.0104
204
0.0119
206
0.0135
208
0.0154
210
0.0175
212
0.0200
214
0.0227
216
0.0259
218
0.0295
220
0.0336
222
0.0383
224
0.0437
226
0.0497
228
0.0565
230
0.0646
232
0.0736
234
0.0837
236
0.0953
238
0.1088
240
0.1240
242
0.1408
244
0.1608
246
0.1834
248
0.2087
250
0.2374
252
0.2712
254
0.3090
256
0.3512
258
0.4006
260
0.4571
262
0.5203
264
0.5913
266
0.6756
268
0.7702
270
0.8756
272
0.9979
274
Index Freeze Point (K)
1.139
276
1.297
278
1.473
280
1.683
282
1.919
284
2.183
286
2.486
288
2.838
290
3.233
292
3.672
294
4.193
296
4.783
298
5.442
300
6.191
302
7.071
304
8.058
306
9.157
308
10.45
310
11.92
312
13.57
314
15.42
316
17.62
318
20.08
320
22.83
322
26.02
324
29.70
326
33.82
328
38.40
330
43.89
332
50.05
334
56.92
336
64.81
338
74.01
340
84.30
342
95.75
344
109.3
346
124.7
348
141.9
350
161.4
352
184.4
354
Blending for Smoke point
13-11
Index
210.1
238.8
272.4
310.8
353.8
402.0
459.4
523.6
595.3
678.5
774.5
881.8
1001.3
1144.5
1305.0
1484.2
1689.9
1929.7
2198.0
2496.8
2851.1
3252.2
3700.2
4209.2
4807.9
5478.5
6225.8
7102.2
8104.3
9224.3
10483
11979
13654
15523
17691
20194
22994
26109
29842
33576
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016

The smoke point of a blend is given by
(SP) blend = ∑ Xvi (SP)i
13.10
where
Xvi = Volume fraction.
(SP) blend = Smoke point blending index of the blend.
(SP)i = Smoke point blending index of component i
Example 13-5
Calculate the freezing point and smoke point of the blend from the following kerosene blending
stocks.
Stock
A
B
C
Blend
bbls
5,000
3,000
2,000
10,000
Freezing point (ºF)
-55
-50
-51
?
Smoke Point (mm)
25
22
21
?
Solution:
Freezing Point (ºF) using table
Stock vol. frac. Freezing point (ºF) Freezing Point vol. frac. x index
of blend
blending index
A
0.5
-55
7.5199
3.7600
B
0.3
-50
9.0135
2.7041
C
0.2
-51
8.6928
1.7386
Total
1
8.2027
Table gives a freezing point of -52.7 ºF for a blend with a factor of 8.2027
In terms of equations
British units
FPBIFi = 55.16793 (1.0368976)FPFi
FPBIm = ∑ Xvi (FPBI)i
FPFm = -111.1628+27.68212 ln (FPBIm)
13.12
13.13
FPFi = freezing point of component i in °F
FPFm = freezing point of the blend in °F
FPBIi = freezing point blending index for component i
FPBIm = freezing point blending index for the blend
Xvi = volume fraction of component i
Freezing Point (ºF) using equations
Stock vol. frac. Freezing point (ºF) Freezing Point vol. frac. x index
of blend
blending index
A
0.5
-55
7.5199
3.7600
B
0.3
-50
9.0135
2.7040
C
0.2
-51
8.6928
1.7386
Total
1
8.2026
Equation gives a freezing point of -52.9 ºF for a blend with a factor of 8.2026
13-12
Petroleum Refining – Chapter 13: Product Blending
In SI units
FPBIFi = 55.16793 (1.0368976)FPFi
FPBIm = ∑ Xvi (FPBI)i
FPFm = -111.1628+27.68212 ln (FPBIm)
13.13
13.14
FPFi = freezing point of component i in °F
FPFm = freezing point of the blend in °F
FPBIi = freezing point blending index for component i
FPBIm = freezing point blending index for the blend
Xvi = volume fraction of component i
Freezing Point (K) using table
Stock vol. frac. Freezing point (K) Freezing Point vol. frac. x index
of blend
blending index
A
0.5
225
7.5199
3.7600
B
0.3
227.8
9.0278
2.7083
C
0.2
227.2
8.7028
1.7406
Total
1
8.2089
Table gives a freezing point of 226.3 K (-52.7 ºF) for a blend with a factor of 8.2026
Freezing Point (K) using equation
Stock vol. frac. Freezing point (K) Freezing Point vol. frac. x index
of blend
blending index
A
0.5
-225
7.5580
3.7790
B
0.3
227.8
9.0712
2.7214
C
0.2
227.2
8.7233
1.7447
Total
1
8.2450
Equation gives a freezing point of 226.2 K (-52.8 ºF) for a blend with a factor of 8.2026
Smoke point
Stock
A
B
C
Blend
vol. frac.
of blend
0.5
0.3
0.2
1
Smoke Point
(mm)
25
22
21
Smoke Point x
vol. frac.
12.5
6.6
4.2
23.3
The smoke point of the blend is 23.3 mm
13-13
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
Numerical Method for blending viscosity

Table 13-6 maybe digitized and the following equations are obtained,
For blend no. 1
X1 = log10 (visc.1)
(1)
for viscosity in centistokes use the following Rational function
𝑉𝐹1 =
0.17 + 0.5238 𝑋1
1 + 0.5124 𝑋1 − 0.01233 𝑋12
(2)
or
α = (X1 + 0.3103)/10
𝛽 = 0.291694 (α)−0.164017
𝑉𝐹1 = 1.05593 (𝛼)𝛽
(3)
for the viscosity in SUS use one of the following two equations
𝑉𝐹1 = 0.6068 + 0.04797𝑋1 −
0.80755
𝑋12
(4)
or
𝑉𝐹1 =
−97993438 + 103852082 𝑋1
1 + 118310078 𝑋1 − 3052999 𝑋12
(3)
or
VF1 = 0.5909 (X1 -1.4414)0.25372
for viscosity in SFS use
VF1 = 0.5008 X10.345
(5)
For blend no. 2, use the above equations 1 through 4. For example, Equations 1 and 2 would
become,
X2 = log10 (visc.2)
𝑉𝐹2 =
0.17 + 0.5238 𝑋2
1 + 0.5124 𝑋2 − 0.01233 𝑋22
The viscosity factor for the blend
13-14
Petroleum Refining – Chapter 13: Product Blending
VFblend 
V1 VF1  V2 VF2  ...
V1  V2  ...
(6)
To calculate the viscosity of the blend in cSt
log(𝑣𝑖𝑠𝑐.𝑏𝑙𝑒𝑛𝑑 ) =
(7)
−0.3148 + 1.796 (𝑉𝐹𝑏𝑙𝑒𝑛𝑑 )
1 − 1.26376 (𝑉𝐹𝑏𝑙𝑒𝑛𝑑 ) + 0.4498 (𝑉𝐹𝑏𝑙𝑒𝑛𝑑 )2
To calculate the viscosity of the blend in SUS use either of the following equations
log(𝑣𝑖𝑠𝑐.𝑏𝑙𝑒𝑛𝑑 ) =
5.2602 + 34.83 (𝑉𝐹𝑏𝑙𝑒𝑛𝑑 )3.9746
3.7246 + (𝑉𝐹𝑏𝑙𝑒𝑛𝑑 )3.9746
(8)
log(visc.blend) = 21.0553 -19.6471 exp[-0.446654(VFblend)3.9315]
(9)
33.4177 (𝑉𝐹𝑏𝑙𝑒𝑛𝑑 )3.9746
log(𝑣𝑖𝑠𝑐.𝑏𝑙𝑒𝑛𝑑 ) = 1.4123 +
3.7246 + (𝑉𝐹𝑏𝑙𝑒𝑛𝑑 )3.9746
(10)
To calculate the viscosity of the blend in SFS
Log(visc.blend) = 13.07836 -12.6188 exp [-0.7749(VFblend)3.9578]
(11)
Example 13-6: Blending for viscosity using above (Albahri Viscosity Blending equations)
visc.i
500
300
200
Total
VFi
0.691
0.669
0.651
Vi
vol frac x factor
0.3333
0.230
0.3333
0.223
0.3334
0.217
0.670
Log (viscblend) = 2.503 → Visc = 318 cSt
Using tabular method
Stock
vol. frac.
of blend
A
0.3333
B
0.3333
C
0.3334
Total
1
Viscosity
500 cSt at 130 ºF
300 cSt at 130 ºF
200 cSt at 130 ºF
Factor (Table
13-6)
0.689
0.663
0.648
Table 13-6 gives 300 cSt at 130 ºF for a blend with a factor of 0.667
13-15
vol. frac. x
Factor
0.230
0.221
0.216
0.667
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
Example 13-7: Blending for viscosity using above (Albahri Viscosity Blending equations)
visc.i
500
300
200
Total
VFi
0.691
0.669
0.651
Vi
vol frac x factor
0.3333
0.230
0.3333
0.223
0.3334
0.217
0.670
Log (viscblend) = 2.503 → Visc = 318 cSt
Using tabular method
Stock
vol. frac.
of blend
A
0.3333
B
0.3333
C
0.3334
Total
1
Viscosity
500 cSt at 130 ºF
300 cSt at 130 ºF
200 cSt at 130 ºF
Factor (Table
13-6)
0.689
0.663
0.648
vol. frac. x
Factor
0.230
0.221
0.216
0.667
Table 13-6 gives 300 cSt at 130 ºF for a blend with a factor of 0.667
Example 13-8: Convert the viscosity of an oil sample having 100 cSt to SUS and SFS
Solution: From the Table 13-6 the viscosity factor for 100 cSt is 0.613. This factor
corresponds to 460 SUS and 62 SFS at 122 °F.
Numerical Method
From equation (3) get the viscosity factor
X1 = log (vcSt) = log (100) = 2
α = (X1 + 0.3103)/10 = 0.23103
𝛽 = 0.291694 (α)−0.164017 = 0.3709
𝑉𝐹1 = 1.05593 (𝛼)𝛽 = 0.61319
Then use equation (9) to get the viscosity in SUS
log(visc.blend) = 21.0553 -19.6471 exp[-0.446654(VFblend)3.9315]
(9)
log(visc.blend) = 21.0553 -19.6471 exp[-0.446654(0.61319)3.9315] = 2.65
visc = 446.8 SUS √
Use equation (11) to get the viscosity in SFS
log(visc.blend) = 13.07836 -12.6188 exp [-0.7749(VFblend)3.9578]
log(visc.blend) = 13.07836 -12.6188 exp [-0.7749(0.61319)3.9578] = 1.79477
visc = 62.34 SFS √
13-16
(11)
Petroleum Refining – Chapter 13: Product Blending
An alternate numerical method for calculating the pour point of distillate blending stocks.
The pour point blending index is given by the following equations instead of Table
In kelvin
PPBI(K)i = 255.565 + 4.90211𝗑10-6 exp [-0.016418 (PPK) - 0.0522346 (TbK)
+ 1.5751 𝗑10-4 (PPK)(TbK)] (PPK)1.67057 (TbK)2.37162
13.26
PPBI(K)i = pour point blending index for component i in Kelvin
PPK = pour point in kelvin
TbK = ASTM distillation curve 50% temperature in kelvin (≈average boiling point)
In Fahrenheit
PPBIFi = 0.1786 + 0.425117 exp [0.0147 (PPF+70) - 0.00887 (TbF) + 4.925 𝗑10-5 (PPF+70)(TbF)]
(PPF+70)0.1894 (TbF)0.5855
13.27
PPBIFi = pour point blending index for component i in °F
PPF is pour point in °F
TbF = ASTM distillation curve 50% temperature in °F (≈average boiling point)
The procedure is to calculate the PPBI for each component using the equation then add to obtain the
pour point of the blend
PP = ∑ Xvi PPBIKi
Example 13-9
Applied to the previous example to calculate the pour point, the above equations will yield,
d. Pour Point (F eqn)
Stock
A
B
C
Total
vol. frac.
of blend
0.5
0.3
0.2
1
Pour Point
(ºF)
ASTM 50% temp
(ºF)
Blending Index (Table
13-7)
vol. frac. x
index
10
50
65
575
425
500
7.8
60.6
98.3
3.92
18.17
19.66
41.8
d. Pour Point (K eqn)
Pour
Xv
Point
(ºF)
Stock
of
blend
A
0.5
10
B
0.3
50
C
0.2
65
Total
1
ASTM 50%
temp (ºF)
Pour
Point
ASTM 50%
temp (K)
Blending Index
(Table 13-7)
vol. frac. x
index
575.0
491.7
533.3
259.90
289.16
310.27
129.95
86.75
62.05
278.8 K
41.8 ºC
(K)
575
425
500
261.1
283.3
291.7
13-17
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
An alternate method for calculating the flash point of blending stocks.
The flash point blending index is given by the following equations instead of the Table
In British units: (FPBI)i = (0.3792866 + 2.0855𝗑10-3 FPFi)-12.4108
13.28
In SI Units: (FPBI)i = (-0.5800437+ 3.7539𝗑10-3 FPKi)-12.4108
13.29
FPFi = Flash point of component i in °F
FPKi = Flash point of component i in Kelvin
Xvi = volume fraction of component i
(FPBI)m = Flash point index for the blend
(FPBI)m = ∑ Xvi (FPBI)i
The flash point is then calculated for the blend using the following equations
In British units: FPFm = [327.0522 -27.1872 ln(FPBIm)]/[1+ 0.071016 ln(FPBIm)
-2.766222𝗑-5 ln(FPBIm)2]
13.30
In SI units: FPKm = [437.250592356 + 4.0809276 ln(FPBIm)]/[1+ 0.0733857193 ln(FPBIm)
+ 1.40131821823232𝗑-4 ln(FPBIm)2]
13.31
FPF = flash point of the blend in degrees °F
FPK = flash point of the blend in K
Example 13-10
Applied to the previous example to calculate the flash point, the above equations will yield,
b. Flash point (F)
Stock vol. frac. of blend Flash point (ºF) Blending Index (Table 13-5) vol. frac. x index
A
0.5
100
730.7
365.3
B
0.3
90
1143.9
343.2
C
0.2
130
208.2
41.6
Total
1
750.2
→ from eqn Flash =
100.1
⁰F
Flash point (K)
Stock
A
B
C
Total
→ from eqn Flash =
vol. frac. of
blend
0.5
0.3
0.2
1
311.2
K or
Flash point
(K)
311.1
305.6
327.8
100.1
⁰F
13-18
Blending Index
(Table 13-5)
730.7
1144.0
208.2
vol. frac. x index
365.3
343.2
41.6
750.2
Petroleum Refining – Chapter 13: Product Blending
An alternate numerical method for calculating the aniline point of distillate blending stocks.
The aniline point blending index is given by the following equations instead of the Table
In British units:
APBIi = 49.11 (1 + 0.05 APFi)1.3004
13.32
In SI Units:
APBIi = − 4852.435 + 14.7655 APKi +
73778706
𝐴𝑃𝐾𝑖2
(more accurate)
APBIi = 1437.69 + 1618.79 COS (0.007435 APKi + 1.7832)
13.33
13.34
where
APFi = Aniline point of component i in °F
APKi = Aniline point of component i in Kelvin
Xvi = volume fraction of component i
APBIm = Aniline point index for the blend
APBIm = ∑ Xvi APBIi
The aniline point is then calculated for the blend using the following equations
In British units:
APFm =
(213932+16375.8 (APBI𝑚 )0.7788 )
(17287.78+(APBI𝑚 )0.7788 )
− 32
13.35
In SI units:
APKm =
(4093333+9025 (APBI𝑚 )0.77911 )
(16731+(APBI𝑚 )0.77911 )
(more accurate)
APKm = 2427.82 − 2182.923 exp (− 0.0002259 (APBIm) 0.7898)
13.36
13.37
APF = Aniline point of the blend in °F
APK = Aniline point of the blend in K
An alternate numerical method for calculating the mixed aniline point of distillate blending
stocks.
The mixed aniline point blending index is given by the following equations instead of the
Table
In British units:
MAPBIi =1090 + 2221 cos (0.005425 MAPFi + 3.7453)
13-19
(more accurate)
13.38
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
(−740.124+8.8357 𝑀𝐴𝑃𝐹𝑖 )
MAPBIi = (1−2.456×10−3
13.39
𝑀𝐴𝑃𝐹𝑖 +6.629×10−6 𝑀𝐴𝑃𝐹𝑖2 )
In SI Units use one for the following equations:
140904757
MAPBIi = - 10323.5 + 29.064 MAPKi +
(more accurate)
𝑀𝐴𝑃𝐾𝑖2
(−650.1+2.796 𝑀𝐴𝑃𝐾 )
13.40
𝑖
MAPBIi = (1−4.448×10−3 𝑀𝐴𝑃𝐾 +5.8987×10
−6 𝑀𝐴𝑃𝐾 2 ) − 1000
13.41
MAPBIi = 1090.1 + 2221.5 cos (0.009764 MAPKi +1.2502)
13.42
𝑖
𝑖
where
MAPFi = Mixed aniline point of component i in °F
MAPKi = Mixed aniline point of component i in Kelvin
Xvi = volume fraction of component i
MAPBIm = Mixed aniline point index for the blend
MAPBIm = ∑ Xvi MAPBIi
The mixed aniline point for the blend is calculated using the following equations
In British units:
(83.783+0.113208 𝑀𝐴𝑃𝐵𝐼𝑚 )
MAPFm = (1+2.184×10−4 𝑀𝐴𝑃𝐵𝐼
13.43
2
−8
𝑚 −7.166×10 𝑀𝐴𝑃𝐵𝐼𝑚 )
In SI units:
1
MAPKm = [3.9884×10−3 +1.432×10−4 ln(𝑀𝐴𝑃𝐵𝐼
−6 (ln(𝑀𝐴𝑃𝐵𝐼 +1000))3 ]
𝑚 +1000)−5.058×10
𝑚
(more
accurate)
13.44
1
MAPKm = (4.8173×10−3 −1.0622×10−4 𝑀𝐴𝑃𝐵𝐼0.3839)
13.45
𝑚
[231.53+0.3032 (𝑀𝐴𝑃𝐵𝐼𝑚 +1000)]
MAPKm = [1+8.46×10−4 (𝑀𝐴𝑃𝐵𝐼
2
−8
𝑚 +1000)−7.56×10 (𝑀𝐴𝑃𝐵𝐼𝑚 +1000)
MAPKm =
(1085344+2437 (MAPBI𝑚 +1000)0.7407 )
(4770+(MAPBI𝑚 +1000)0.7407 )
13-20
]
(least accurate)
13.46
13.47
Petroleum Refining – Chapter 13: Product Blending
Example 13-11
Applied to the previous example to calculate the aniline point, the above equations will yield,
Aniline point (F)
Stock vol. frac. of blend Aniline point (ᵒF) Blending Index (Eq.) vol. frac. x index
A
0.5
70
347.2
173.6
B
0.3
160
855.2
256.6
C
0.2
40 (mixed)
-424.1
-84.8
Total
1
345.4
→ from eqn. aniline point =
69.6
→ from eqn. mixed aniline point =
⁰F
115.2
⁰F
Aniline point (K)
Stock
vol. frac. of blend
Aniline point (K)
0.5
0.3
0.2
1
294.4
344.4
277.8
A
B
C
Total
→ from eqn. aniline point =
294.2
→ from eqn. mixed aniline point =
K or
319.6
Blending Index
(Eq.)
346.2
855.3
-242.0
69.5
K or
⁰F
115.3
vol. frac. x index
173.1
256.6
-84.8
344.9
⁰F
Real blending industrial example
Example 13-12:
Calculate the amount of each blending stock that would produce a 300,000 bbls gasoline
product with the flowing specifications, API = 70 min, ON = 95 min, RVP = 9 psig max
Available blends are as follows
Component
bbls
API ON RVP
SG
RVPI = RVP1.25
Tank 1 Reformate
500,000 70 94
10 0.7022
17.7828
Tank 2 Isomerate
400,000 69 92
9
0.7057
15.5885
Tank 3 Alkylate
600,000 72 96
8
0.6953
13.4543
Desired Blend 300,000 70 95
9
0.7022
15.5885
Solution:
Let
N1 = bbls of Tank 1 reformate
N2 = bbls of Tank 2 isomerate
N3 = bbls of Tank 3 alkylate
Objective function
N1 + N2 + N3 = 300,000
Constraints:
N1 ≤ 500,000
N2 ≤ 400,000
N3 ≤ 600,000
13-21
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
N1, N2, N3 ≥ 0 (non-negativity)
for API gravity
for ON
for RVP
0.7022 X1 + 0.7057 X2 + 0.6953 X3 ≤ 0.7022
94 X1 + 92 X2 + 96 X3 ≥ 95
17.7828 X1 + 15.5885 X2 + 13.4543 X3 ≥ 15.5885
where
X1 = n1/(n1+n2+n3)
X2 = n2/(n1+n2+n3)
X3 = n3/(n1+n2+n3)
Solver solution indicates that
N1 = 0
N2 = 59,970
N3 = 240,030
Blend properties
API = 71.4 (giveaway)
ON = 95.2
RVP = 8.2 psig
Figure 13-4: Product blending using linear programming and the solver function of Microsoft Excel.
13-22
Petroleum Refining – Chapter 13: Product Blending
Table 13-6: Viscosity Blending Index Numbers
Factors for Volume Blending of Viscosities at Constant Temperatures Corresponding to
values of Kinematic Viscosity, Centistokes (cSt).
cSt
0.5
0.6
0.7
0.8
0.9
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.000
0.056
0.097
0.128
0.154
0.006
0.061
0.100
0.131
0.156
0.013
0.065
0.104
0.134
0.159
0.019
0.069
0.107
0.137
0.161
0.025
0.074
0.110
0.139
0.163
0.030
0.078
0.114
0.142
0.165
0.036
0.082
0.117
0.144
0.167
0.041
0.086
0.120
0.147
0.169
0.046
0.089
0.123
0.149
0.172
0.051
0.093
0.126
0.152
0.174
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.176
0.290
0.342
0.375
0.398
0.416
0.431
0.443
0.453
0.194
0.297
0.346
0.378
0.400
0.418
0.432
0.444
0.454
0.210
0.303
0.350
0.380
0.402
0.419
0.433
0.445
0.455
0.224
0.309
0.353
0.383
0.404
0.421
0.434
0.446
0.456
0.236
0.314
0.357
0.385
0.406
0.422
0.436
0.447
0.456
0.247
0.320
0.360
0.387
0.408
0.423
0.437
0.448
0.457
0.257
0.325
0.363
0.390
0.410
0.425
0.438
0.449
0.458
0.266
0.329
0.366
0.392
0.411
0.426
0.439
0.450
0.459
0.275
0.334
0.369
0.394
0.413
0.428
0.440
0.451
0.460
0.283
0.338
0.372
0.396
0.414
0.429
0.442
0.452
0.461
0
1
2
3
4
5
6
7
8
9
0.462
0.515
0.543
0.561
0.575
0.585
0.594
0.601
0.608
0.470
0.519
0.545
0.563
0.576
0.586
0.595
0.602
0.608
0.477
0.522
0.547
0.564
0.577
0.587
0.596
0.603
0.609
0.483
0.525
0.549
0.566
0.578
0.588
0.596
0.603
0.610
0.489
0.528
0.551
0.567
0.579
0.589
0.597
0.604
0.610
0.494
0.531
0.553
0.568
0.580
0.590
0.598
0.605
0.611
0.499
0.533
0.555
0.570
0.581
0.591
0.599
0.605
0.611
0.503
0.536
0.557
0.571
0.582
0.592
0.599
0.606
0.612
0.508
0.538
0.558
0.572
0.583
0.592
0.600
0.607
0.612
0.511
0.541
0.559
0.573
0.584
0.593
0.601
0.607
0.613
0
10
20
30
40
50
60
70
80
90
0.613
0.648
0.667
0.680
0.689
0.697
0.703
0.708
0.713
0.618
0.651
0.669
0.681
0.690
0.698
0.704
0.709
0.714
0.623
0.653
0.670
0.682
0.691
0.698
0.704
0.709
0.714
0.627
0.655
0.671
0.683
0.692
0.699
0.705
0.710
0.715
0.631
0.657
0.673
0.684
0.692
0.700
0.705
0.710
0.715
0.634
0.659
0.674
0.685
0.693
0.700
0.706
0.711
0.715
0.637
0.661
0.675
0.686
0.694
0.701
0.706
0.711
0.716
0.640
0.662
0.676
0.687
0.695
0.701
0.707
0.712
0.716
0.643
0.664
0.678
0.688
0.696
0.702
0.707
0.712
0.716
0.646
0.666
0.679
0.688
0.696
0.702
0.708
0.713
0.717
cSt
1
2
3
4
5
6
7
8
9
cSt
10
20
30
40
50
60
70
80
90
cSt
100
200
300
400
500
600
700
800
900
13-23
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
cSt
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
0
100
200
300
400
500
600
700
800
900
0.717
0.743
0.757
0.767
0.775
0.780
0.785
0.790
0.793
0.721
0.745
0.758
0.768
0.775
0.781
0.786
0.790
0.794
0.724
0.747
0.759
0.769
0.776
0.781
0.786
0.790
0.794
0.727
0.748
0.761
0.770
0.777
0.782
0.787
0.791
0.794
0.730
0.750
0.762
0.770
0.778
0.782
0.787
0.791
0.795
0.733
0.751
0.763
0.771
0.778
0.783
0.787
0.791
0.795
0.735
0.752
0.764
0.772
0.778
0.783
0.788
0.792
0.795
0.737
0.754
0.765
0.772
0.779
0.784
0.788
0.792
0.796
0.739
0.755
0.765
0.773
0.779
0.784
0.789
0.792
0.796
0.741
0.756
0.766
0.774
0.780
0.785
0.790
0.793
0.796
cSt
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
0.796
0.817
0.828
0.836
0.842
0.847
0.851
0.854
0.858
0.799
0.818
0.829
0.837
0.843
0.848
0.802
0.820
0.830
0.838
0.843
0.848
0.804
0.821
0.831
0.838
0.844
0.848
0.806
0.822
0.832
0.839
0.844
0.849
0.808
0.823
0.8330
.839
0.845
0.849
0.810
0.824
0.833
0.840
0.845
0.850
0.812
0.825
0.834
0.841
0.846
0.850
0.814
0.826
0.835
0.841
0.846
0.850
0.815
0.827
0.836
0.842
0.847
0.851
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
70,000,000
80,000,000
90,000,000
0.960
0.973
0.980
0.985
0.989
0.992
0.995
0.997
0.999
cSt
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000
cSt
0.860
0.877
0.887
0.894
0.899
0.903
0.906
0.909
0.912
cSt
1,000,000
2,000,000
3,000,000
4,000,000
5,000,000
6,000,000
7,000,000
8,000,000
9,000,000
0.914
0.928
0.937
0.942
0.947
0.950
0.953
0.956
0.958
13-24
Petroleum Refining – Chapter 13: Product Blending
Factors for Volume Blending of Viscosities at Constant Temperatures Corresponding to
values of Saybolt Universal Seconds (SUS).
SUS
32
33
34
35
36
37
38
39
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.275
0.296
0.314
0.328
0.342
0.353
0.363
0.373
0.278
0.298
0.315
0.330
0.343
0.354
0.364
0.373
0.280
0.300
0.317
0.331
0.344
0.355
0.365
0.374
0.282
0.302
0.318
0.333
0.345
0.356
0.366
0.375
0.284
0.303
0.320
0.334
0.346
0.357
0.367
0.376
0.286
0.305
0.321
0.335
0.347
0.358
0.368
0.377
0.288
0.307
0.323
0.337
0.349
0.359
0.369
0.378
0.290
0.309
0.324
0.338
0.350
0.360
0.370
0.378
0.292
0.310
0.326
0.339
0.351
0.362
0.371
0.379
0.294
0.312
0.327
0.340
0.352
0.363
0.372
0.380
0
1
2
3
4
5
6
7
8
9
0.381
0.435
0.464
0.483
0.497
0.508
0.388
0.439
0.466
0.485
0.498
0.509
0.395
0.442
0.469
0.486
0.499
0.510
0.402
0.445
0.471
0.488
0.501
0.511
0.408
0.449
0.473
0.489
0.502
0.512
0.413
0.451
0.475
0.491
0.503
0.513
0.418
0.454
0.476
0.492
0.504
0.513
0.423
0.457
0.478
0.493
0.505
0.514
0.428
0.459
0.480
0.495
0.506
0.515
0.431
0.462
0.482
0.496
0.507
0.516
0
10
20
30
40
50
60
70
80
90
0.517
0.565
0.589
0.605
0.617
0.627
0.635
0.641
0.647
0.524
0.568
0.591
0.607
0.618
0.628
0.635
0.642
0.647
0.531
0.571
0.593
0.608
0.619
0.628
0.636
0.642
0.648
0.537
0.574
0.595
0.609
0.620
0.629
0.637
0.643
0.648
0.542
0.576
0.596
0.611
0.621
0.630
0.637
0.643
0.649
0.547
0.579
0.598
0.612
0.622
0.631
0.638
0.644
0.649
0.551
0.581
0.600
0.613
0.623
0.632
0.639
0.645
0.650
0.555
0.583
0.601
0.614
0.624
0.632
0.639
0.645
0.650
0.559
0.585
0.603
0.615
0.625
0.633
0.640
0.646
0.651
0.562
0.587
0.604
0.616
0.626
0.634
0.640
0.646
0.651
SUS
40
50
60
70
80
90
SUS
100
200
300
400
500
600
700
800
900
13-25
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
SUS
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000
0
100
200
300
400
500
600
700
800
900
0.652
0.683
0.700
0.711
0.720
0.727
0.733
0.738
0.742
0.656
0.685
0.701
0.712
0.721
0.728
0.733
0.738
0.742
0.660
0.687
0.703
0.713
0.722
0.728
0.734
0.739
0.743
0.664
0.689
0.704
0.714
0.722
0.729
0.734
0.739
0.743
0.667
0.691
0.705
0.715
0.723
0.729
0.735
0.740
0.744
0.670
0.692
0.706
0.716
0.724
0.730
0.735
0.740
0.744
0.673
0.694
0.707
0.717
0.725
0.731
0.736
0.740
0.744
0.676
0.696
0.708
0.718
0.725
0.731
0.736
0.741
0.745
0.678
0.697
0.709
0.719
0.726
0.732
0.737
0.741
0.745
0.681
0.699
0.710
0.719
0.726
0.732
0.737
0.742
0.745
SUS
10,000
20,000
30,000
40,000
50,000
60,000
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
0.746
0.770
0.783
0.792
0.799
0.804
0.749
0.771
0.784
0.793
0.799
0.805
0.752
0.773
0.785
0.793
0.800
0.805
0.755
0.774
0.786
0.794
0.800
0.806
0.758
0.776
0.787
0.795
0.801
0.806
0.760
0.777
0.788
0.795
0.802
0.807
0.762
0.778
0.789
0.796
0.802
0.807
0.764
0.779
0.790
0.797
0.803
0.807
0.766
0.781
0.790
0.797
0.803
0.808
0.768
0.782
0.791
0.798
0.804
0.808
SUS
SUS
70,000 0.809
80,000 0.813
90,000 0.816
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000
SUS
0.819
0.838
0.849
0.856
0.862
0.867
0.870
0.874
0.877
SUS
1,000,000
2,000,000
3,000,000
4,000,000
5,000,000
6,000,000
7,000,000
8,000,000
9,000,000
13-26
0.879
0.895
0.904
0.911
0.915
0.919
0.923
0.925
0.928
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
70,000,000
80,000,000
90,000,000
0.930
0.944
0.952
0.957
0.961
0.965
0.968
0.970
0.972
Petroleum Refining – Chapter 13: Product Blending
Factors for Volume Blending of Viscosities at 130 °F corresponding to values of Saybolt
Furol Seconds (SFS) at 122 °F.
SFS at
122 °F
0
1
2
3
4
5
6
7
8
9
0.570
0.588
0.601
0.611
0.619
0.626
0.632
0.572
0.590
0.602
0.612
0.620
0.627
0.633
0.574
0.591
0.604
0.613
0.621
0.627
0.633
0.576
0.593
0.605
0.614
0.622
0.628
0.634
0.578
0.594
0.606
0.615
0.622
0.629
0.634
0.558
0.580
0.595
0.607
0.616
0.623
0.629
0.635
0.561
0.582
0.597
0.608
0.616
0.624
0.630
0.635
0.563
0.584
0.598
0.609
0.617
0.624
0.630
0.636
0.566
0.585
0.599
0.610
0.618
0.625
0.631
0.636
0.568
0.587
0.600
0.610
0.619
0.626
0.632
0.637
0
10
20
30
40
50
60
70
80
90
0.637
0.669
0.686
0.697
0.706
0.713
0.719
0.724
0.728
0.642
0.671
0.687
0.698
0.707
0.713
0.719
0.724
0.728
0.646
0.673
0.688
0.699
0.707
0.714
0.720
0.724
0.729
0.649
0.675
0.689
0.700
0.708
0.715
0.720
0.725
0.729
0.653
0.676
0.691
0.701
0.709
0.715
0.721
0.725
0.729
0.656
0.678
0.692
0.702
0.710
0.716
0.721
0.726
0.730
0.659
0.680
0.693
0.703
0.710
0.716
0.722
0.726
0.730
0.661
0.681
0.694
0.703
0.711
0.717
0.722
0.727
0.730
0.664
0.683
0.695
0.704
0.712
0.718
0.723
0.727
0.731
0.666
0.684
0.696
0.705
0.712
0.718
0.723
0.727
0.731
100
200
300
400
1000 0.732
2000 0.755
3000 0.769
0.735
0.757
0.770
0.738
0.759
0.771
0.741
0.760
0.772
0.743
0.761
0.773
4000
5000
6000
7000
8000
9000
Notes:
Values from this table are for 130 ºF, although the Saybolt Furol seconds are at
122 ºF. This table alone must not be used for any other temperatures. Values
from this table may be used interchangeably with values for kinematic and
Saybolt Universal viscosities if the latter are for 130 ºF.
20
30
40
50
60
70
80
90
SFS at
122 °F
100
200
300
400
500
600
700
800
900
SFS at
122 °F
0
0.778
0.784
0.790
0.795
0.798
0.802
500
0.746
0.763
0.773
600
700
800
900
0.748
0.764
0.775
0.750
0.764
0.775
0.752
0.766
0.776
0.754
0.767
0.777
For SFS at 210 ºF, assume SUS – 10 x SFS and use the Saybolt Universal table.
13-27
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
Table 13-7: Flash Point Blending Index Numbers.
Flash Point,
°F
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
0
168,000
86,600
46,000
25,200
14,200
8,240
4,890
2,970
1,840
1,170
753
495
331
224
154
108
76.3
54.7
39.7
29.1
21.6
16.1
12.2
9.31
7.16
5.56
4.35
3.43
2.72
2.17
1
157,000
81,200
43,300
23,800
13,500
7,810
4,650
2,830
1,760
1,120
722
475
318
216
149
104
73.8
52.9
38.4
28.2
20.9
15.7
11.9
9.07
6.98
5.42
4.24
3.35
2.66
2.12
2
147,000
76,100
40,700
22,400
12,700
7,410
4,420
2,700
1,680
1,070
692
456
305
305
144
101
71.4
51.3
37.3
27.4
20.3
15.2
11.6
8.83
6.80
5.29
4.14
3.27
2.60
2.08
3
137,000
71,400
38,300
21,200
12,000
7,030
4,200
2,570
1,600
1,020
662
438
294
200
138
97.1
69.0
49.6
36.1
26.6
19.7
14.8
11.2
8.60
6.63
5.16
4.04
3.19
2.54
2.03
4
128,000
67,000
36,100
20,000
11,400
6,670
4,000
2,450
1,530
978
635
420
283
193
134
93.8
66.7
48.0
35.0
25.8
19.2
14.4
10.9
8.37
6.47
5.03
3.95
3.12
2.48
1.99
5
120,000
62,900
34,000
18,900
10,800
6,330
3,800
2,330
1,460
935
609
404
272
186
129
90.6
64.5
46.5
33.9
25.0
18.6
14.0
10.6
8.16
6.30
4.91
3.86
3.05
2.43
1.95
6
112,000
59,000
32,000
17,800
10,200
6,010
3,620
2,230
1,400
896
584
388
261
179
124
87.5
62.4
45.1
32.9
24.3
18.1
13.6
10.4
7.95
6.15
4.79
3.76
2.98
2.37
1.90
7
105,000
55,400
30,100
16,800
9,680
5,700
3,441
2,120
1,340
857
560
372
252
172
120
84.6
60.4
43.6
31.9
23.6
17.6
13.3
10.1
7.74
5.99
4.68
3.68
2.91
2.32
1.86
8
98,600
52,100
28,400
15,900
9,170
5,420
3,280
2,020
1,280
821
537
358
242
166
116
81.7
58.4
42.3
30.9
22.9
17.1
12.9
9.82
7.55
5.84
4.56
3.59
2.85
2.27
1.82
9
92,400
49,000
26,800
15,000
8,690
5,150
3,120
1,930
1,220
786
515
344
233
160
112
79.0
56.5
40.9
30.0
22.2
16.6
12.5
9.56
7.85
5.70
4.45
3.51
2.78
2.22
1.79
Flash Point,
°F
0
10
20
30
40
50
60
70
80
90
300
400
500
1.75
0.269
0.063
1.41
0.229
0.056
1.15
0.196
0.049
0.943
0.168
0.044
0.777
0.145
0.039
0.643
0.125
0.035
0.535
0.108
0.031
0.448
0.094
0.028
0.376
0.082
0.025
0.317
0.072
0.022
May be used to blend flash temperature, determined in any apparatus but, preferably, not to blend closed cup with
open cup determinations.
13-28
Petroleum Refining – Chapter 13: Product Blending
Table 0-1: Aniline Point Blending Index Numbers.
Aniline Point,
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
°F
-10
0
Aniline Point,
°F
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
Mixed Aniline
Point, °F
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
20.0
49.1
17.4
46.0
14.9
42.8
12.6
39.8
10.3
36.8
8.10
33.8
6.06
30.9
4.17
28.1
2.46
25.3
1.00
22.6
0
1
2
3
4
5
6
7
8
9
49.1
83.2
121
162
205
250
298
347
398
451
505
560
617
674
733
794
855
917
980
1,044
1,110
1,176
1,242
1,310
1,379
52.4
86.8
125
166
209
255
303
352
403
456
510
566
622
680
739
800
861
923
986
1,050
1,116
1,182
1,249
1,317
1,386
55.6
90.5
129
170
214
260
308
357
408
461
516
571
628
686
745
806
867
930
993
1,057
1,122
1,189
1,256
1,324
1,392
58.9
94.2
133
174
218
264
312
362
414
467
521
577
634
692
751
812
873
936
999
1,064
1,129
1,196
1,262
1,331
1,400
62.3
97.9
137
179
223
269
317
367
419
472
527
582
640
698
757
818
880
942
1,006
1,070
1,136
1,202
1,269
1,337
1,406
65.7
102
141
183
227
274
322
372
424
477
532
588
645
704
763
824
886
948
1,012
1,077
1,142
1,209
1,276
1,344
1,413
69.1
105
145
187
232
279
327
377
429
483
538
594
651
710
769
830
892
955
1,019
1,083
1,149
1,216
1,283
1,351
1,420
72.6
109
149
192
237
283
332
382
435
488
543
599
657
716
775
836
898
961
1,025
1,090
1,156
1,222
1,290
1,358
1,427
76.1
113
153
196
241
288
337
388
440
494
549
605
663
722
781
842
904
967
1,031
1,096
1,162
1,229
1,297
1,365
1,434
79.6
117
157
200
246
293
342
393
445
491
554
611
669
727
788
849
911
974
1,038
1,103
1,169
1,236
1,303
1,372
1,441
0
-736
-668
-593
-511
-425
-334
-239
-140
-38.3
66.8
175
285
399
514
632
1
-730
-660
-584
-503
-416
-324
-229
-130
-27.9
77.4
186
297
410
526
644
2
-723
-653
-577
-494
-407
-315
-219
-120
-17.5
88.1
197
308
422
538
656
3
-716
-646
-569
-486
-398
-306
-210
-110
-7.06
98.8
208
319
433
550
668
4
-709
-639
-561
-477
-389
-296
-200
-100
3.39
110
219
330
445
561
680
5
-703
-631
-552
-468
-380
-287
-190
-89.6
13.9
120
230
342
456
573
692
6
-696
-623
-544
-460
-371
-277
-180
-79.4
24.4
131
241
353
468
585
704
7
-689
-616
-536
-451
-361
-267
-170
-69.2
35.0
142
252
364
479
597
716
8
-682
-608
-528
-442
-352
-258
-160
-58.9
45.5
153
263
376
491
609
728
9
-675
-600
-519
-433
-343
-248
-150
-48.6
56.1
164
274
387
503
620
741
13-29
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
Table 0-2: Pour Point Blending Indices for Distillate Stocks
ASTM 50% Temp
Pour
Point
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-55
-60
-65
-70
300
350
375
400
425
450
475
500
525
550
575
600
625
650
675
700
133
114
99
88
72
60
52
44
37
32
27
23
20
17
14
12
10
8.8
7.5
6.4
5.5
4.6
4.0
3.3
2.8
2.5
2.1
1.8
1.5
131
111
94
79
68
56
48
41
34
29
24
20
17
15
12
10
8.8
7.4
6.3
5.3
4.5
3.7
3.2
2.7
2.3
1.9
1.6
1.4
1.1
129
109
92
77
66
54
46
39
32
27
23
19
16
14
11
9.5
8.0
6.8
5.7
4.7
4.0
3.3
2.8
2.4
2.0
1.7
1.4
1.2
0.99
128
107
90
75
63
52
44
37
31
26
21
18
15
13
10
8.7
7.3
6.1
5.1
4.2
3.6
2.9
2.5
2.1
1.7
1.4
1.2
1.0
0.84
127
105
87
73
61
50
42
35
29
24
20
17
14
12
9.6
8.0
6.6
5.5
4.6
3.7
3.2
2.6
2.2
1.8
1.5
1.2
1.0
0.85
0.71
125
103
85
71
59
48
40
33
27
23
19
16
13
11
8.7
7.2
5.9
4.9
4.1
3.3
2.8
2.3
1.9
1.5
1.3
1.1
0.87
0.72
0.60
123
101
82
68
56
46
38
32
26
21
17
14
12
9.7
7.9
6.5
5.3
4.4
3.6
2.9
2.4
2.0
1.6
1.3
1.1
0.90
0.74
0.60
0.50
120
98
80
66
54
44
36
30
24
20
16
13
11
8.8
7.1
5.8
4.7
3.9
3.2
2.5
2.1
1.7
1.4
1.1
0.93
0.77
0.62
0.50
0.42
118
96
77
63
52
42
34
28
23
18
15
12
9.8
7.9
6.3
5.1
4.1
3.4
2.8
2.2
1.8
1.4
1.2
0.98
0.78
0.65
0.52
0.41
0.36
115
94
74
61
49
40
32
26
21
17
14
11
8.8
7.1
5.6
4.5
3.6
3.0
2.4
1.9
1.5
1.2
1.0
0.82
0.66
0.55
0.43
0.34
0.30
113
91
72
58
47
38
30
24
19
15
12
10
8.0
6.3
5.0
3.9
3.2
2.6
2.1
1.7
1.3
1.0
0.86
0.68
0.56
0.46
0.36
0.28
0.25
110
88
69
56
44
35
28
23
18
14
11
9.0
7.1
5.6
4.4
3.4
2.8
2.2
1.8
1.4
1.1
0.90
0.73
0.58
0.47
0.37
0.30
0.23
0.20
108
85
67
53
42
33
26
21
16
13
10
8.1
6.3
5.0
3.8
3.0
2.5
1.9
1.5
1.2
0.96
0.75
0.62
0.48
0.38
0.30
0.24
0.18
0.15
105
82
64
50
39
31
24
19
15
12
9.1
7.2
5.6
4.4
3.4
2.7
2.2
1.7
1.3
1.0
0.80
0.62
0.51
0.38
0.31
0.24
0.19
0.14
0.11
103
79
62
48
37
29
22
18
14
11
8.3
6.4
5.0
3.8
3.0
2.4
1.9
1.4
1.1
0.90
0.67
0.51
0.41
0.31
0.25
0.19
0.14
0.10
0.08
100
76
60
46
35
27
21
16
13
10
7.5
5.8
4.5
3.5
2.7
2.1
1.6
1.2
0.94
0.72
0.56
0.43
0.33
0.25
0.20
0.15
0.10
0.07
0.05
From Gary & Handwerk
Online Blending
 Because of limited storage space, many refineries today (MAB refinery) have the
ability to use computer-controlled in-line product blending.
 Inventories of blending stocks, together with cost and physical property data are
maintained in the computer.
 When a certain volume of a given quality product is specified, the computer uses
linear programming models to optimize the blending operations (select the optimum
volume of blending components) to produce the required product at the lowest cost.
 To ensure that the blended streams meet the desired specifications, stream analyzers,
such as boiling point, specific gravity, RVP, and research and motor octane are
installed to provide feedback control of blending streams and additives (if necessary).
 Blending components to meet all critical specifications most economically is a trialand-error (iterative) procedure which is easily handled by a computer.
 The large number of variables leads to a number of equivalent solutions that give the
approximate equivalent total overall cost or profit.
 Optimization programs (like PIMS for example) permit the computer to provide the
optimum blend to minimize cost and maximize profit.
 Both linear and nonlinear programming techniques are used.
13-30
Petroleum Refining – Chapter 13: Product Blending

Nonlinear programming is preferred if sufficient data are available to define the
equations because components blend non-linearly and values are functions of the
quantities of the components and their properties (specs).
Figure 13-4: Refinery online blending facilities
Figure 13-5: Schematic representation of the online blending system for diesel product
Problems
1. Using values from Table 12.1, calculate the number of barrels of n-butane that have to
be added to a mixture of 1250 barrels of HSR gasoline, 750 barrels of LSR gasoline,
and 620 barrels of C 5 FCC gasoline to produce a 9 psi Reid vapor pressure. What are the
research and motor octane numbers of the blend?
2. For the blend of components in problem 1, what would be the posted octane number of the
9.0 psi RVP gasoline if 10 vol% MTBE was added to the gasoline mixture?
3. Calculate the amount of n-butane needed to produce a 12.5 psi RVP for a mixture of
2730 barrels of LSR gasoline, 2490 barrels of 94 RON reformate, 6100 barrels of heavy
hydrocrackate, and 3600 barrels of C 5 + FCC gasoline. How much ETBE must be added
to produce a 90 RON product? Calculate the RVP of the final blend.
4. What is the flash point of a mixture of 2500 barrels of oil with a flashpoint of 120°F,
3750 barrels with a flashpoint of 35°F, and 5000 barrels with a 150°F flashpoint?
5. Calculate the pour point of the following mixture:
13-31
Dr. Tareq Albahri, Chemical Engineering, Kuwait University, 2016
ASTM
Pour
Compone Barrel
50%
point,
nt
s
temp.,
°F
A
5,200
57
10
°F
5
B
3,000
42
50
C
6,500
50
65
5
D
3,250
55
45
0
0
6. What is the viscosity of a blend of 2000 barrels of oil with a viscosity of 75.5 cSt at 130°F,
3000 barrels with 225 cSt at 130°F, and 5000 barrels with 6500 cSt at 130°F?
7. Calculate the octane numbers of the final blend and amount of n-butane needed for
producing a 9.5 psi RVP gasoline from 5100 BPSD of LSR gasoline, 3000 BPSD light
hydrocrackate, 4250 BPSD alkylate, 10,280 BPSD heavy hydrocrackate, 14,500 BPSD
FCC C 5+ gasoline, 14,200 BPSD of 96 RON reformate, and 2500 BPSD of polymer
gasoline.
8. Recommend the best method for increasing the clear posted octane number of the pool
gasoline in problem 7 by 3 numbers. Estimate the cost involved. Assume any necessary
processing units are available and have the necessary capacity.
9. Calculate the number of barrels of n-butane that have to be added to a mixture of 1000
barrels of light thermal gasoline, 1000 barrels of polymer gasoline, and 1000 barrels of
C 4= alkylate to produce a gasoline product having 10 psi Reid vapor pressure.
10. What is the posted octane number and Reid vapor pressure of the gasoline product of
problem 3?
11. Calculate the clear octane numbers (RON and MON) and the amount of butane needed for
a 12.0 psi RVP gasoline produced from the following:
Belding component
LSR naphtha
Light hydrocrackate
C 5+ alkylate
Heavy hydrocrackate
Reformate (94 RON)
C 5+ FCC gasoline
BPSD
4,200
1,800
4,500
9,150
11,500
15,600
12. Recommend the best method (lowest capital cost) for increasing the posted octane number
of the pool gasoline in problem 11 by 5.5 octane numbers. Estimate the size of the unit
and its 1994 construction cost.
HW solve problems 3, 5, 6, 10
13-32