Edexcel GCE - physicsinfo.co.uk

Surname
Centre
No.
Initial(s)
Paper Reference
6 7 3 2
Candidate
No.
0 1
Signature
Paper Reference(s)
6732/01
Examiner’s use only
Edexcel GCE
Physics
Advanced Subsidiary
Unit Test PHY2
Team Leader’s use only
Question Leave
Number Blank
1
Thursday 22 May 2008 – Afternoon
Time: 1 hour 15 minutes
2
3
4
5
Materials required for examination
Nil
Items included with question papers
Nil
6
7
8
Instructions to Candidates
In the boxes above, write your centre number, candidate number, your surname, initial(s) and
signature.
Answer ALL questions in the spaces provided in this question paper.
In calculations you should show all the steps in your working, giving your answer at each stage.
Calculators may be used.
Include diagrams in your answers where these are helpful.
Information for Candidates
The marks for individual questions and the parts of questions are shown in round brackets.
There are eight questions in this paper. The total mark for this paper is 60.
The list of data, formulae and relationships is printed at the end of this booklet.
Advice to Candidates
You will be assessed on your ability to organise and present information, ideas, descriptions and
arguments clearly and logically, taking account of your use of grammar, punctuation and spelling.
Total
This publication may be reproduced only in accordance with
Edexcel Limited copyright policy.
©2008 Edexcel Limited.
Printer’s Log. No.
N30424A
W850/R6732/57570 7/6/6/5/22,000
Turn over
*N30424A0116*
Leave
blank
1.
The current–potential difference characteristics of an electrical component are shown
below.
Current / mA
250 –
200 –
150 –
100 –
50 –
–
–
–
–
–
–0.8
–0.4
0
0.4
0.8
Potential difference / V
(a) Name the component. ....................................................................................................
(1)
(b) (i) Calculate the resistance of this component when the potential difference is
+0.60 V.
................................................................................................................................
................................................................................................................................
Resistance = .............................
(2)
(ii) State its resistance when the potential difference is –0.80 V.
................................................................................................................................
(1)
(c) State a practical use for this component.
.......................................................................................................................................
(1)
(Total 5 marks)
2
*N30424A0216*
Q1
Leave
blank
2.
(a) Define resistivity.
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
(2)
(b) (i) The heating element used in a hairdryer consists of a long nichrome wire coiled
around an insulator. The hairdryer operates at 230 V and has a power of 1.0 kW.
Calculate the resistance of the heating element.
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
Resistance = ..................................
(3)
(ii) The wire has a cross-sectional area of 1.3 × 10–7 m2. The resistivity of nichrome
is 1.1 × 10–6 Ω m. Calculate the length of the nichrome wire.
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
Length = ..................................
(3)
(iii) The nichrome wire in this heating element has a diameter of 0.41 mm.
A manufacturer wishes to make a hairdryer of the same resistance but using half
the length of nichrome wire. What diameter wire must be used?
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
Diameter = ..................................
(2)
Q2
(Total 10 marks)
*N30424A0316*
3
Turn over
Leave
blank
3.
(a) Define the term electromotive force (e.m.f.).
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
(2)
(b) A battery of e.m.f. 3.0 V is connected to a 5.0 Ω resistor with a very high resistance
voltmeter placed across the resistor.
3.0 V
5.0 Ω
V
(i) The very high resistance voltmeter gives a reading of 2.8 V. Show that the
internal resistance of the battery is about 0.4 Ω.
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
(3)
(ii) A voltmeter with a resistance of 10 Ω is used instead of the original one. Calculate
the combined resistance of this voltmeter and the 5.0 Ω resistor.
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
Combined resistance = ..................................
(2)
4
*N30424A0416*
Leave
blank
(iii) Calculate the reading on this voltmeter.
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
Voltmeter reading = ..................................
(3)
(c) State and explain what the resistance of an ideal voltmeter should be.
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
(2)
Q3
(Total 12 marks)
*N30424A0516*
5
Turn over
Leave
blank
4.
An experiment is set up to investigate how the current I in a filament lamp varies with the
potential difference V across it. The components used are shown below.
A
V
(a) Readings are taken over the full range from 0 V to the cell’s maximum potential
difference. In the space below, draw a circuit diagram for this experiment.
(2)
(b) (i) Sketch on the axes below the shape of the graph you would expect the results to
give.
(2)
6
*N30424A0616*
Leave
blank
(ii) Explain the shape of your graph. You may be awarded a mark for the clarity of
your answer.
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
(4)
Q4
(Total 8 marks)
*N30424A0716*
7
Turn over
Leave
blank
5.
The apparatus shown can be used as a thermometer. It consists of a bulb containing a
fixed volume of gas (connected to a pressure gauge). The bulb is placed in thermal contact
with the system whose temperature is being measured and the pressure is measured using
the pressure gauge. This pressure can be converted to a temperature.
Pressure
gauge
Narrow bore
tubing
Glass bulb to be placed
in thermal contact with
the system
(a) What is meant by thermal contact?
.......................................................................................................................................
.......................................................................................................................................
(1)
(b) Although this thermometer can give accurate results it is not a very practical
instrument for measuring temperatures. Suggest and explain two difficulties you
might have with using this thermometer.
Difficulty 1 ...................................................................................................................
.......................................................................................................................................
Explanation ...................................................................................................................
.......................................................................................................................................
Difficulty 2 ...................................................................................................................
.......................................................................................................................................
Explanation ...................................................................................................................
.......................................................................................................................................
(4)
(Total 5 marks)
8
*N30424A0816*
Q5
Leave
blank
6.
(a) What is meant by the absolute zero of temperature?
.......................................................................................................................................
.......................................................................................................................................
(1)
(b) (i) The Football Association rules require a football to have a maximum volume
of 5.8 × 10–3 m3 and a maximum pressure of 1.1 × 105 Pa above atmospheric
pressure (1.0 × 105 Pa). Assuming that the thickness of the material used for the
ball is negligible and that the air inside the ball is at a temperature of 10 °C, show
that the maximum amount of air inside the football is about 0.5 mol.
................................................................................................................................
................................................................................................................................
................................................................................................................................
................................................................................................................................
(4)
(ii) One mole of air has a mass of 0.029 kg. Calculate the maximum mass of air
allowed in the football.
................................................................................................................................
................................................................................................................................
Maximum mass = ..................................
(1)
(iii) A football is also required to have a minimum pressure 0.6 × 105 Pa above
atmospheric pressure. Assuming the volume of the football remains constant,
calculate the lowest temperature to which the air inside this ball could fall to
while still meeting the pressure requirements.
................................................................................................................................
................................................................................................................................
................................................................................................................................
Lowest temperature = ..................................
(3)
Q6
(Total 9 marks)
*N30424A0916*
9
Turn over
Leave
blank
7.
Brownian motion of smoke particles suspended in air can be observed by viewing light
reflected from smoke particles through a microscope.
Microscope
Smoke cell
The diagram below shows the light reflected off a number of smoke particles suspended
in air. The arrows show the direction of motion of the particles at one particular time.
(a) Explain why the smoke particles move.
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
(2)
10
*N30424A01016*
Leave
blank
(b) The smoke particles have different directions and speeds. State two conclusions that
can be made about the air molecules and their motion, as a result of the motion of the
smoke particles.
Conclusion 1 .................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
Conclusion 2 .................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
(2)
(c) Sketch below the possible path taken by one smoke particle.
(2)
Q7
(Total 6 marks)
*N30424A01116*
11
Turn over
Leave
blank
8.
The pressure exerted by an ideal gas is given by
p = 13 ρ〈c2〉
where the symbols have their usual meanings.
(a) Five gas molecules have speeds of 300 m s−1, 450 m s−1, 520 m s−1, 680 m s−1 and
730 m s−1. Calculate the value of 〈c2〉 for these molecules.
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
〈c2〉 = ....................................
(3)
(b) The molecules of a real gas have both kinetic and potential energy. Explain why an
ideal gas only has kinetic energy.
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
.......................................................................................................................................
(2)
(Total 5 marks)
TOTAL FOR PAPER: 60 MARKS
END
12
*N30424A01216*
Q8
List of data, formulae and relationships
Data
Speed of light in vacuum
c 3.00 u108 m s 1
Acceleration of free fall
g
9.81m s 2
Gravitational field strength
g
Elementary (proton) charge
e 1.60 u10 19 C
me
Electronic mass
9.81 N kg
(close to the Earth)
1
(close to the Earth)
9.11 u10 31 kg
1eV 1.60 u10 19 J
Electronvolt
Planck constant
h 6.63 u10 34 J s
Molar gas constant
R 8.31J K 1 mol 1
Rectilinear motion
For uniformly accelerated motion:
v
u at
x ut 12 at 2
v2
u 2 2ax
Forces and moments
Moment of F about O = F u (Perpendicular distance from F to O)
Sum of clockwise moments
Sum of anticlockwise moments
about any point in a plane = about that point
Dynamics
Force
Impulse
F
m
'v
't
F 't
'p
P
Fv
'p
't
Mechanical energy
Power
Radioactive decay and the nuclear atom
Activity
Half-life
A ON
Ot 12
(Decay constant O)
0.69
*N30424A01316*
13
Turn over
Electrical current and potential difference
I nAQv
Electric current
Electric power
P
I 2R
Electrical circuits
Terminal potential difference
Circuit e.m.f.
V
6H
H Ir
(E.m.f. H Internal resistance r)
6IR
Resistors in series
R
R1 R2 R3
Resistors in parallel
1
R
1
1
1
R1 R2 R3
Heating matter
Change of state:
energy transfer
Heating and cooling:
energy transfer
l 'm (Specific latent heat or specific enthalpy change l)
mc'T (Specific heat capacity c; Temperature change '7)
T /qC T/K 273
Celsius temperature
Kinetic theory of matter
T v Average kinetic energy of molecules
Kinetic theory
p
1
3
U ¢ c 2²
Conservation of energy
'U
Change of internal energy
'Q ' W
Efficiency of energy transfer
Useful output
Input
For a heat engine, maximum efficiency
T1 T2
T1
(Energy transferred thermally 'Q;
Work done on body 'W)
Mathematics
sin(90 q T ) cos T
Equation of a straight line
Surface area
Volume
y
cylinder
2Srh 2Sr 2
sphere
4 Sr 2
cylinder
Sr 2h
sphere
For small angles:
mx c
4
3
Sr 3
sin T | tan T | T
(in radians)
cosT | 1
Experimental physics
Percentage uncertainty
14
Estimated uncertainty u 100%
Average value
*N30424A01416*
BLANK PAGE
*N30424A01516*
15
BLANK PAGE
16
*N30424A01616*