Surname Centre No. Initial(s) Paper Reference 6 7 3 2 Candidate No. 0 1 Signature Paper Reference(s) 6732/01 Examiner’s use only Edexcel GCE Physics Advanced Subsidiary Unit Test PHY2 Team Leader’s use only Question Leave Number Blank 1 Thursday 22 May 2008 – Afternoon Time: 1 hour 15 minutes 2 3 4 5 Materials required for examination Nil Items included with question papers Nil 6 7 8 Instructions to Candidates In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Answer ALL questions in the spaces provided in this question paper. In calculations you should show all the steps in your working, giving your answer at each stage. Calculators may be used. Include diagrams in your answers where these are helpful. Information for Candidates The marks for individual questions and the parts of questions are shown in round brackets. There are eight questions in this paper. The total mark for this paper is 60. The list of data, formulae and relationships is printed at the end of this booklet. Advice to Candidates You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking account of your use of grammar, punctuation and spelling. Total This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited. Printer’s Log. No. N30424A W850/R6732/57570 7/6/6/5/22,000 Turn over *N30424A0116* Leave blank 1. The current–potential difference characteristics of an electrical component are shown below. Current / mA 250 – 200 – 150 – 100 – 50 – – – – – – –0.8 –0.4 0 0.4 0.8 Potential difference / V (a) Name the component. .................................................................................................... (1) (b) (i) Calculate the resistance of this component when the potential difference is +0.60 V. ................................................................................................................................ ................................................................................................................................ Resistance = ............................. (2) (ii) State its resistance when the potential difference is –0.80 V. ................................................................................................................................ (1) (c) State a practical use for this component. ....................................................................................................................................... (1) (Total 5 marks) 2 *N30424A0216* Q1 Leave blank 2. (a) Define resistivity. ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... (2) (b) (i) The heating element used in a hairdryer consists of a long nichrome wire coiled around an insulator. The hairdryer operates at 230 V and has a power of 1.0 kW. Calculate the resistance of the heating element. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Resistance = .................................. (3) (ii) The wire has a cross-sectional area of 1.3 × 10–7 m2. The resistivity of nichrome is 1.1 × 10–6 Ω m. Calculate the length of the nichrome wire. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Length = .................................. (3) (iii) The nichrome wire in this heating element has a diameter of 0.41 mm. A manufacturer wishes to make a hairdryer of the same resistance but using half the length of nichrome wire. What diameter wire must be used? ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Diameter = .................................. (2) Q2 (Total 10 marks) *N30424A0316* 3 Turn over Leave blank 3. (a) Define the term electromotive force (e.m.f.). ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... (2) (b) A battery of e.m.f. 3.0 V is connected to a 5.0 Ω resistor with a very high resistance voltmeter placed across the resistor. 3.0 V 5.0 Ω V (i) The very high resistance voltmeter gives a reading of 2.8 V. Show that the internal resistance of the battery is about 0.4 Ω. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ (3) (ii) A voltmeter with a resistance of 10 Ω is used instead of the original one. Calculate the combined resistance of this voltmeter and the 5.0 Ω resistor. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Combined resistance = .................................. (2) 4 *N30424A0416* Leave blank (iii) Calculate the reading on this voltmeter. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Voltmeter reading = .................................. (3) (c) State and explain what the resistance of an ideal voltmeter should be. ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... (2) Q3 (Total 12 marks) *N30424A0516* 5 Turn over Leave blank 4. An experiment is set up to investigate how the current I in a filament lamp varies with the potential difference V across it. The components used are shown below. A V (a) Readings are taken over the full range from 0 V to the cell’s maximum potential difference. In the space below, draw a circuit diagram for this experiment. (2) (b) (i) Sketch on the axes below the shape of the graph you would expect the results to give. (2) 6 *N30424A0616* Leave blank (ii) Explain the shape of your graph. You may be awarded a mark for the clarity of your answer. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ (4) Q4 (Total 8 marks) *N30424A0716* 7 Turn over Leave blank 5. The apparatus shown can be used as a thermometer. It consists of a bulb containing a fixed volume of gas (connected to a pressure gauge). The bulb is placed in thermal contact with the system whose temperature is being measured and the pressure is measured using the pressure gauge. This pressure can be converted to a temperature. Pressure gauge Narrow bore tubing Glass bulb to be placed in thermal contact with the system (a) What is meant by thermal contact? ....................................................................................................................................... ....................................................................................................................................... (1) (b) Although this thermometer can give accurate results it is not a very practical instrument for measuring temperatures. Suggest and explain two difficulties you might have with using this thermometer. Difficulty 1 ................................................................................................................... ....................................................................................................................................... Explanation ................................................................................................................... ....................................................................................................................................... Difficulty 2 ................................................................................................................... ....................................................................................................................................... Explanation ................................................................................................................... ....................................................................................................................................... (4) (Total 5 marks) 8 *N30424A0816* Q5 Leave blank 6. (a) What is meant by the absolute zero of temperature? ....................................................................................................................................... ....................................................................................................................................... (1) (b) (i) The Football Association rules require a football to have a maximum volume of 5.8 × 10–3 m3 and a maximum pressure of 1.1 × 105 Pa above atmospheric pressure (1.0 × 105 Pa). Assuming that the thickness of the material used for the ball is negligible and that the air inside the ball is at a temperature of 10 °C, show that the maximum amount of air inside the football is about 0.5 mol. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ (4) (ii) One mole of air has a mass of 0.029 kg. Calculate the maximum mass of air allowed in the football. ................................................................................................................................ ................................................................................................................................ Maximum mass = .................................. (1) (iii) A football is also required to have a minimum pressure 0.6 × 105 Pa above atmospheric pressure. Assuming the volume of the football remains constant, calculate the lowest temperature to which the air inside this ball could fall to while still meeting the pressure requirements. ................................................................................................................................ ................................................................................................................................ ................................................................................................................................ Lowest temperature = .................................. (3) Q6 (Total 9 marks) *N30424A0916* 9 Turn over Leave blank 7. Brownian motion of smoke particles suspended in air can be observed by viewing light reflected from smoke particles through a microscope. Microscope Smoke cell The diagram below shows the light reflected off a number of smoke particles suspended in air. The arrows show the direction of motion of the particles at one particular time. (a) Explain why the smoke particles move. ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... (2) 10 *N30424A01016* Leave blank (b) The smoke particles have different directions and speeds. State two conclusions that can be made about the air molecules and their motion, as a result of the motion of the smoke particles. Conclusion 1 ................................................................................................................. ....................................................................................................................................... ....................................................................................................................................... Conclusion 2 ................................................................................................................. ....................................................................................................................................... ....................................................................................................................................... (2) (c) Sketch below the possible path taken by one smoke particle. (2) Q7 (Total 6 marks) *N30424A01116* 11 Turn over Leave blank 8. The pressure exerted by an ideal gas is given by p = 13 ρ〈c2〉 where the symbols have their usual meanings. (a) Five gas molecules have speeds of 300 m s−1, 450 m s−1, 520 m s−1, 680 m s−1 and 730 m s−1. Calculate the value of 〈c2〉 for these molecules. ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... 〈c2〉 = .................................... (3) (b) The molecules of a real gas have both kinetic and potential energy. Explain why an ideal gas only has kinetic energy. ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... (2) (Total 5 marks) TOTAL FOR PAPER: 60 MARKS END 12 *N30424A01216* Q8 List of data, formulae and relationships Data Speed of light in vacuum c 3.00 u108 m s 1 Acceleration of free fall g 9.81m s 2 Gravitational field strength g Elementary (proton) charge e 1.60 u10 19 C me Electronic mass 9.81 N kg (close to the Earth) 1 (close to the Earth) 9.11 u10 31 kg 1eV 1.60 u10 19 J Electronvolt Planck constant h 6.63 u10 34 J s Molar gas constant R 8.31J K 1 mol 1 Rectilinear motion For uniformly accelerated motion: v u at x ut 12 at 2 v2 u 2 2ax Forces and moments Moment of F about O = F u (Perpendicular distance from F to O) Sum of clockwise moments Sum of anticlockwise moments about any point in a plane = about that point Dynamics Force Impulse F m 'v 't F 't 'p P Fv 'p 't Mechanical energy Power Radioactive decay and the nuclear atom Activity Half-life A ON Ot 12 (Decay constant O) 0.69 *N30424A01316* 13 Turn over Electrical current and potential difference I nAQv Electric current Electric power P I 2R Electrical circuits Terminal potential difference Circuit e.m.f. V 6H H Ir (E.m.f. H Internal resistance r) 6IR Resistors in series R R1 R2 R3 Resistors in parallel 1 R 1 1 1 R1 R2 R3 Heating matter Change of state: energy transfer Heating and cooling: energy transfer l 'm (Specific latent heat or specific enthalpy change l) mc'T (Specific heat capacity c; Temperature change '7) T /qC T/K 273 Celsius temperature Kinetic theory of matter T v Average kinetic energy of molecules Kinetic theory p 1 3 U ¢ c 2² Conservation of energy 'U Change of internal energy 'Q ' W Efficiency of energy transfer Useful output Input For a heat engine, maximum efficiency T1 T2 T1 (Energy transferred thermally 'Q; Work done on body 'W) Mathematics sin(90 q T ) cos T Equation of a straight line Surface area Volume y cylinder 2Srh 2Sr 2 sphere 4 Sr 2 cylinder Sr 2h sphere For small angles: mx c 4 3 Sr 3 sin T | tan T | T (in radians) cosT | 1 Experimental physics Percentage uncertainty 14 Estimated uncertainty u 100% Average value *N30424A01416* BLANK PAGE *N30424A01516* 15 BLANK PAGE 16 *N30424A01616*
© Copyright 2026 Paperzz