�������� ��� ��������� To what polynomial degree are the following rules exact? Midpoint rule (� ¡ � )� �+� 2 Trapezoidal rule � ¡� (� (�) + � (� )) 2 Simpson's rule � ¡� �+� + � (� ) � (�) + 4� 6 2 parabola ����� �������� ��� ��������� ������������� ����������� �������� Let �� ¡1 be an interpolant of � at nodes �1; :::; �� (of degree � ¡ 1) Recall Z � X �� ¡1(� )d� : !�� (�� ) = � � What can you say about the accuracy of the method? ����� Accuracy of Newton-Cotes ������������� ����������� ��������� Let �� be an interpolant of � at nodes �1; :::; �� (of degree � ¡ 1) Recall Z � X ��(� )d� !�� (�� ) = � � What can you say about the stability of this method? ����� ������������ What's not to like about Newton-Cotes quadrature? ����� ��������� ���������� High-order polynomial interpolation requires a high degree of smoothness of the function. ����� Stitch together multiple lower-order quadrature rules to alleviate smoothness requirement. e.g. trapezoidal What can we say about the error in this case? ����� �������� ���������� So far: nodes chosen from outside. Can we gain something if we let the quadrature rule choose the weights, too? ����� More design freedom ! Exact to higher degree. ����� Gaussian quadrature weight nder ��� ��������� ��������������
© Copyright 2026 Paperzz