Corrosion Potential Refinery Overhead Systems Amit Patel Bartlesville, Oklahoma OLI Simulation Conference November 16-18, 2010 Whippany, NJ Agenda • Corrosivity – Amine Hydrochlorides – Impact of overhead corrosion • Overhead Corrosion – Crude Unit Operation – Controlling Overhead Corrosion – Electrolyte Modeling • Case Study - Use of OLI Stream Analyzer – Vacuum Tower – Coker Fractionator • Summary Outlet line on crude vs. ovhd exchanger Note heavy build up of salts and corrosion products Salts and corrosion products flowed out of exchanger where corrosion was occurring Corrosivity - Amine Hydrochlorides Amine hydrochlorides are corrosive salts formed from neutralizer application and tramp amines - Leaks in equipment develop leading to Health and Safety issues - Unscheduled shutdown of equipment results in Lost Production Overhead Corrosion Salt Hydrolysis MgCl2 + 2H2O --> Mg(OH)2 + 2HCl (g) CaCl2 + 2H2O --> Ca(OH)2 + 2HCl (g) NaCl + 2H2O --> NaOH + HCl (g) Overhead corrosion control Neutralizer Filming inhibitor High Overhead Temperature Salt Formation NH3(g) + HCl(g) <=> NH4Cl(s) R-NH2(g) + HCl(g) <=> R-NH2 HCl(s) HCl Organic acids NH3, H2S Corrosion NH4Cl(s) <=> NH4+(aq) + Cl- (aq) R-NH2 NH4+(aq) + Cl-(aq) <=> NH3(aq) + HCl(aq) R-NH2 HCl(s) <=> R-NH3+(aq) + Cl- (aq) R-NH3+(aq) + Cl-(aq) <=> R-NH2(aq) + HCl(aq) Fe + 2HCl(aq) --> FeCl2 + H2 (Salt hydrolysis) NH3, R-NH2 Salts (MgCl2, CaCl2, NaCl) Organic acids NH3, H2S R-NH2 R-NH2 ** Similar crude contaminants in slop oil Water wash Naphtha Line Corrosion – High Corrosion Rate of in 6 O’clock position Liquid Amine Salts Corroding the Bottom Side of the 18-inch Carbon Steel Pipe Leaving the Top Pump-around Draw off of the Crude Tower Equilibrium Salt Formation Salt will form No salt will form Controlling Overhead Corrosion – Reduce contaminant levels • Improve desalting performance, desalter wash water quality, re-route slop streams – Increase tower overhead temperature – Water washing overheads – Inject neutralizer • Change overhead chemistry Benefits of different corrosion control options can be evaluated using a good overhead system model Refining Overheads – Electrolyte Modeling Input • Flows Output • Temperature • Water dew point • Pressure • Salt Point (ammonia, amine) • Water Analysis • Properties of hydrocarbons • Neutralizer • Aqueous pH • Phase behavior OLI Equilibrium Thermodynamic Model How can overhead modeling help ? – Proper selection of amines for overhead system • Different amines form salts at different temperatures • Neutralizer amines exhibit differences in ability to control pH at water dew point • Model can help analyze effect of various neutralizer amines – Troubleshoot events • Did changes in unit operation create a corrosive environment ? • Identify significant shifts in unit operation – NH4Cl/Amine-HCl salt point – Water dew point Overhead modeling can improve overall unit performance and reliability Case Study – Vacuum Tower Concern: Is there ammonium chloride salt formation potential in the main overhead line of the vacuum tower ? Motive Steam X-1 X-2 Vacuum Tower X-3 Vent Gas to Ejector/Liquid Ring Pump Hotwell Sour H20 Slop Oil 2/ 2/ 2 2/ 00 16 9 /2 2/ 009 27 /2 4/ 00 15 9 /2 4/ 009 24 /2 0 5/ 09 4/ 2 5/ 00 13 9 /2 5/ 009 26 /2 0 6/ 09 5/ 20 6/ 15 09 /2 0 7/ 09 3/ 2 7/ 00 20 9 /2 0 8/ 09 5/ 2 8/ 00 18 9 /2 8/ 009 31 /2 9/ 00 17 9 /2 10 00 /2 9 / 10 200 /1 4/ 9 2 11 00 /2 9 / 11 200 /1 8/ 9 2 12 00 /9 9 12 / 20 /2 09 1/ 20 1/ 09 4/ 2 1/ 01 13 0 /2 1/ 010 22 /2 0 2/ 10 1/ 20 10 pH 7 0.30 6 0.25 5 4 0.15 3 2 0.10 1 0.05 0 0.00 Date pH 1/18/2010 1/20/2010 1/22/2010 1/25/2010 1/27/2010 1/29/2010 6.19 6.27 6.32 6.36 6.28 6.28 Cl ppm 2.4 2.4 2.4 2.4 2.4 2.4 Fe ppm 0.12 0.1 0.08 0.07 0.1 0.09 Ammonia ppm 4 6 6 6 5 6 H2S ppm 6 10 10 10 8 8 Iron, ppm Lab Analysis - Condensate 0.20 Inputs Pressure: 5 mmHg Off-gas: 6.5 mscfh Distillate oil: 10 gpm Steam: 11600 lb/hr Contaminants: HCl 3 ppm NH3 6 ppm H2S 10 ppm Salt point Overhead Temperature, deg F 170 150 Salt Point 130 110 Fouling Potential 90 70 Pressure ~ 5 mmHg Fe b10 Ja n10 ec -0 9 D ov -0 9 N ct -0 9 O Se p09 Au g09 Ju l-0 9 Ju n09 09 M ay - 09 Ap r- 09 M ar - Fe b09 50 Results - calculated salt formation temperature was 129 deg F (close to the temperature where the tower overhead operates) Modeling shows high risk for NH4Cl salt formation in the main overhead line Case Study – Coker Fractionator Concern: Increased pressure drop observed across the overhead fin fan exchanger of the E-501 ubblecoker Towerfractionator Overview would lead to equipment shutdown 1.7 MMSCFD otts Lab Data 2 DegF 26 DegF 40 TARGET 32 DegF 151 DegF 48 psig Pressure: 50 psig 284 DegF 1 57% 3531 BPD sid VT 5.3 MBPD esid 2469 BPD 71 % 0.0 MBPD 0.43psi MBPD MBPD MBPD MBPD MBPD 0.29psi 0.02psi 796 DegF ms Resid BPD 45% 553 DegF 48% 39% G-216 FIC781 23.7MBPD 606 DegF 17 19 0 Wild Na MBPD 37% LIC792 To Product storage MBPD LCGO Lab 10% 465 LCGO Predict 95% 783 95% 800 782 DegF FBP 861 420DegF Sour water E-209 D-207 46% 532 DegF E-211 LIC750 E-208 G-222 213DegF Cl- 62% 8% 1151 3 % BPD E212 1197 lb/hr FIC789 60% D-208 1 ppm H-5 0% FIC776 HCGO Lab 10% 646 95% 979 0% 95% 1000 FBP 1158 PIC691 6100 ppm 0 BPD HS 8800 ppm 54% 679DegF HVGO 2 NO MBPD DAT A LIC755 21% E-213A/B G-217 0 MBPD (Start-u NH3 759DegF RECYCLE RATIO: NO DATA 3088 BPD Contaminants: T IC307 FIC782 LCGO 420DegF 38% 1127BPD HC BPD 20.5 MBPD 52% 12% (start-up LIC to tray 20) G-227 FIC777 What is causing the plugging across the fin fan tubes ? 71% H-204 E-511 4.2 1802 lb/hr FIC788 70% 29% 46% 711 DegF 79 psig FIC794 LIC747 FIC1780 2461BPD 16 16.7 MMSCFD 8.3 71 337 psig BPD ums 0 9 20 191 DegFCoke Drums From m U240 6 756DegF 62% LIC202 G-102 FIC1780 E-214 E-207 12.3 39% MBPD 10 nced Control ON/OFF Adv Cont. 0 O Adv Cont. 1 ot D-206 2% 37% 63% 640DegF sid Lab 844 DegF CHARGE 31.4 l 7.9 l 7.8 l 7.8 l 7.8 16.3MMSCFD G501 32psig 33 9.0 MBPD Reflux Product: 4000 bpd el Lab Data Reflux: 8000 bpd 21 DegF 12 DegF Water: 6 gpm 0.00psi 13 DegF 96% F-203 228 DegF FIC783 5 53% 34 psig E-206 FIC154712 mmscfd Off-gas: to SCT PIC202 101 DegF E-205A/B/C E-205A/B/C 5.7 MBPD Coil Charge to B-202 1448 BPD(low) 2.6 MBPD(high Mix FIC922 199 BPD De 2469BPD Very low scaling tendency for ammonium bisulfide (NH4HS) in the coker fractionator overhead • NH4HS salt formation unlikely in this temperature region Condensing water • water dew point 192 deg F Performed survey calculation (vary chloride composition) Salt point NH4Cl salt can form when HCl concentration gets near 213 ppm in the system - salt formation temperature 199 deg F Condensing water - water dew point 192 deg F Distillate wash caused spike in overhead chlorides From overhead 285 F 185 F 141 C 85 C Fin Fan 100 F To accumulator Summary Corrosion never takes vacation – Health and Safety issues and LPO Ammonia/amine salts are major contributors to refining unit overhead corrosion Modeling the crude unit overhead system can improve overall unit performance and reliability – Troubleshooting tool – Unit monitoring OLI Stream Analyzer has enabled us to model potential for salt formation in refining overhead systems Understanding when liquid amine salts form via ionic models is important to reliable unit operation – Need better understanding of properties that best describe formation of amine salts Acknowledgments – Eric Vetters, ConocoPhillips – Emily Amizich, ConocoPhillips – Matt Keating, ConocoPhillips – AJ Gerbino, OLI Systems – Jim Berthold, OLI Systems – Pat McKenzie, OLI Systems
© Copyright 2025 Paperzz