/
Exam 2
Math 104
Fall 2015
Myers
For full credit, please show all of the steps necessary to arrive at your answers.
You may use scratch paper to work out your responses, and then write them
neatly in the spaces provided here. You may use a calculator or GeoGebra and
two 3.5 x 5 inch notecards.
1. Fill in the blanks.
(a) The area under the normal curve between -1 and + 1 is about
(b) The area under the normal curve between -2 and +2 is about
(c) The area under the normal curve between -3 and +3 is about
63, 17!
q 5, L/5 '/ .
q q ,73 f
2. When should you not use r to summarize the relationship between two
variables?
3. What is the regression fallacy?
\~
~rv5S\Q~
eR-fe.u\vJ.r,\\.(,
-~9.f:..
~o.~t-'i
~(.l
~~\\~~~
~ \~U
9n>1.lf
+~.d\V\
~~ ~
V)V\Q.;V')
l\aJ\I-~,:t""f
~1l!LS lJ..l",rst) ~
-t~ r'l)vet;;Sr~~~JV\
-\~
~
v--e~r·e.sS\~Q1\
\,,,-\\c, r 1~Q. \-\~""
\1'~s ~
". . "tt.
~
',\-$ :AAw~'I1~
"
(pJ50~'5 \1\ "\'e~ l~ \,...,CJy\~~i'\;"'\ ~ ~\r
Se-Ul"t"- 4;-",-'\- \!j wo,$<L, ""(ANA, ~,\" ~t.O
"'~ \0 ...~\~~
~
~(J-.~ . -tcs+does \oe \-kr OY'\ -\-\r\{i,r 1 L&.. -\-e5\- ~V\~ j ov .:\'t~~-l\ ~
~~
!~
W(J>..~
b~C{foO~ ~\~
\~ ~SoV\ WOtS OV'U' (_~V\~\d~ V\-t a(W
Sr e.1)(g..v~'qj'(,! '~ (.).
~
~ ~
-\-0lS ,-,,-,o~tc\
"lA)V\tc""' \. S
\90 LA
VJ~J ~
~~l'es-sto~
(}, d
\A.)0'l"i~ ov,\
·~\\(},t~.
\~(j. lc~.
1-.~;t
4. Why do you have to be careful when interpreting ecological correlations?
b~C-ctu5~
V"i
h; ch
beefY)
t-hey
hid
e
lo.l"eer
af"'e booe__d
t-h e.
t--hc..'")n
ep
on r'Qree
r-e cd
DI
n d
o()d
overoBe.-6
fY)ot< e
t-h e C'o"'r~t':1 Cf+iOf)'O
°r-he __y ~cT--uall,/
"",,,hot
c::tt·...
5. What does the Central Limit Theorem say?
Nhe() dJ'a""itt3
cr+ rClndorn
""I ,...eplac~me()'t,
h'I t1t-o~rof(l
-for
re-30f'dle66
o
if
+ri e 61..\rfI
t-h e
- h ;0+0 5ro(Y\
rY'Iqs'F
- +h e_ d
rnw6t
00
V'4~
V'J\\t
cDn+-errt-~
be
v;::)e
e
+he. probob;I;t-y
FD~\OV"'i +-h~ r")or-mol
e:..f' boX clO('lI+.
i (\ oh::tndd . . -d
let r-q~ enouab
'V
i...t
ni'h~
c-u,'vel
1
\
6. In a large statistics class, the correlation between midterm scores and
final scores is found to be nearly 0.50, every term. The scatter diagrams are'
football-shaped. Predict the percentile rank on the final for a student whose
percentile rank on the midterm is
A~551J-fh ; V'-fV 4__, () 0 r Ih V'--\ ~ S1-c<1u.,{\6V\ o~- sC0r--,a.~
(a) 5%,
0
o
'N
L I I \(
\Y2,r:Qii\T\ I.e r-.<:_"K ::: ')/,0 , ~ S1-J:Adu-('d. \AD ItS) l.~ /\05'
)j,
,
~~
v
\
lfw_ 5~efH- 5cof\ed ' I. b5 (J~nib beJb{;0 ~I{J Oil tN_ (VI'\"j;-·errtYI
_1iJ~
I
~_,
i
I
'On +N
-RAAt
2=-
0,0d-.5;
p-e-U' c en 4-; I e
~7, £
o.Y\€C\_ ~
=-
lMk
(b) 50%
«s «
i5 Lite} -to S(t>~
hC>l
:,:t.
+--
GOll.{~l '~
',I"
?-
s-q, bc;o;o
)-
'5[)/-;
~bo\)'€_
-t/Ae_ )'>1;j
OY\
O~6 X 0 -:-' OSDs cJ,oV'f_'
k: p-e r c e(1-h I.e r AI) Ie 0 f)
<,.
_g-(\t:\.1
-)-0.e
(c) unknown
, . ,:;'
~
.
(Y)
~'J,t~r~
,,'
600~
_ ~,~
He
L i ~~
(5
J
(,0 () 1.(-1 j
b-e
as W-eJ(,
S'0
%
,I
~>
6~d~ft~"
.
t<efP') ,
!In +he ·A-"cd
(}.lJ.-U'tl1£
1'/;
~
h0b4l
,-b%
£:;;'0
(}_1.J'er~<::'-
6, 0).5' ()//~t-s
~Yo
5~, 05%
=-
~-
o
r'-r
/,(,5
~~
I
r:t
!'~;-~:
,
",,,. ',
•
':i.: ':;~/!I~ii ~\;)~~~>
',_'
(71;05+ If{i~' .t; "~~,.'~,~rD,;;~\'
C<;,
:
'f
...,.J':',.:
. ':~, . )"" ~",:
.~,J.'~:'.'
kpM/;e t0At:: ~ ttts2 fo;hq- o~ yJ~~:,i' ~~t:~;~~!~~ 9L{f If'-e
vWP~~;
. I,' '1' t\:I!'~5:"
.' .: 'J-.lVLe,-'\ ti/':L.L1," ~. 7'-" \JW't'J\
wl'fh. t-Rt
II
t-~ :, ~~l~' 1$' l~!~e(d;
+D
~.Ji'\IA·!)
V'''C /
b-e_ ~~)d
t{"i:,' .f:t!:,C,fff\tlJ~ i,r_,N1,h; 61\
:.~.'i'" ,', .. !,'
".',"
(,
- ,
~to."., ,,',
;d~:'' ,'
7. In a survey of ~Igh-$chool students, a pOSItIvecorr~latlOn was fO:uri4:
between hours sp,ent per we~k doing homework, an~ sc,oreson,:~st~haii~aj~ed
achievement tests. The investigators concluded that doing homework helps
prepa,re students
thes~ tests. Does the con~lusiori.:'toilow fiom t~'e,d~~ir,
Answer yes or no, and explain, briefly.
'. .h '
\9r
,.
Nn,
A fb5?~h~
TlA0VLt
6ou..tct
bQ"
clo
[0
he>
IZ-
stu'<il
(A>-e)J.
0(\
~0e_s het-' )I'l(\flj'
'a5SDv\~f;()t'\
,
(A(/
Y'l'eo f\-Q_
n
I
('l
\171;(-11.&-,"'6
~(Vt-'DIS
-h ~
,.;
cM\
-t-ktvt, ,
d- hol'Vl e>liork
5~Ad c"-{~\ ied
+est-s,
C6{_,(/LX
as
ccitStX.;h()n,
:5+(,\~aP1+"':)
,
well
q s +0
+-0
o..v-elAjQ
/
/
7
8. True or false: A student who is at the 40th percentile of first-year GPAs is
also likely to be at the 40th percentile of second-year GPAs. Explain briefly.
(The scatter diagram is football-shaped.)
J=.ctl-se..,
Be_Co. vse .~
;"3 LkeJj
o f ft5
\
+kcd-\IV ;
+~ll_
f'e.ofle.-
iVl
1f"2_'jlf"e ..S'S-ioVl
+h.e_
1I
9. Match the correlations with the scatter plots.
C)-O.30
Match the correlations with the scatter plots.
'------------------
-------
(ow~
~f-k(.._+-) i+h~l.p v-P
10. A gambler plays roulette 1,000 times. There are two possibilities:
(i) Betting $1 on a column each time.
(ii) Betting $1 on a number each time.
A column pays 2 to 1, and there are 12 chances in 38 to win; a number pays
35 to 1, and there is 1 chance in 38 to win.
(a) What is the gambler's expected net gain for option (i)?
-
-
\
(ttotroW.3) (O-NB of Icox)
fJY-f,.1cf.rli:l vcdue-- ~
=:
'OCX)
(tg Cd -,~ -+2.6 '-1))
-=- \.0;::)0
'::-$
[-0,
0526}
62,63
(c) What is the gambler's expected net gain for option (ii)?
30
~-
-I
I -hc~·t
s -=r -1lc\cJl,-{J)
eJi. c-lw(
'J()\\ve---:;;
V
0-dfOW~) (oN3 of bW)
=- \ COO (tg C~ 5 -r 37 (-I)) )
::: ICOC) C -O,()~'(t)
-c;
-11 '52,(;3
.
(e) True or false and explain: The chance of coming out ahead is the same
with (i) and (ii).
p;/o-& '
8ftro"", (1') :
~
2>Q-l~
iF ~
1he:rf
~
>Nia
c~
~ t.?e..J
~
a~
'1l1j{VJ
ofJ I <It le-«df,7.-------f,,_;;:__..:..:..::::...£:-L.-~..L..L_
vV.:1
'5
-)3
'-I
vI~, ~ e.
e
C:L, t:y1·G
4lt
e.yr~~
I
~F :
,-(-53J=S4,
,L-.e_ 0~St
fk
tL(_,
L,v/J
\V/f~
Sv_.
100 - 7-71 2'::;' ~
Z.'I
'3
~.-.....
Z:
-
Iso> ~ Z3 . S 5'
~
(3~
~
C<
2),
5~%
tL.c-
t2cree-tecA ikt/vC ~
-=7- 6'"
42
!
I~
~
C~~c.e.-.
at
5
c~.,._,ee..
.r:":
Co--/:'-'j
0""/-
(ves
().f
.c.:
~<>-'J
0'
/r
I.L~
.J LeJ~ . . ./I:~/'_,
J
C-<r-I""J
,.
i'-u.
G(J'
j-Lto-· (~
I B, 5 -T.
-53
TL.ere-- Cs'
g
~ 73, g} % c~~~
6recfe4 Va !/}{(_
tize_
•.1
/,2,$ S.[
{OcL.1e,
"'oY-O {
ct
oJt ~h.e.et
Il-j
Sv--
Le/-.~
ie.n %
v-/{~i.--,
cL~e
j81~:;
70
0( I
o,.s
of
5 {*"
fr--
7
~
qJO.o.t'>
~
11. Consider the GeoGebra output below for the variables x = weight (in
pounds) and y = height (in inches).
~ r S D \-\
LA ~ 1. +b
(a) Find the regression line for yon x.
J
~ Dx
m
m
.
j( ~
\'-z ~.
q 'Z-4l~
~
DOt{
~ -:;. 10.3075
( lo.3D15
17"_
:: C043d3)(\l~,~9_1{4)
(0
t-
. .,. 4~loq
----
,\
(~.(PcmJ
d. q 1330'6
3~ 3
b
[~ :::. ,o43d:->")(
d ' sliD)
~ ::-~-t-
v:
-do 2 ,51191
~w~Vtt
(b) Use the regression equation to predict the height of a person that weights
225 pounds.
~ '" ,04?Ja?(1-I.-5)
I~
co.
"5710)
+-(q1.,
l;)_. 30 UAcAe,>]
_
/1
(b) Write the five-number suminary forE)
h49ht
(d) In what range of heights do we find the middle .,.....--.
50% of the people
measured?
lL,15LVlches
lo
© Copyright 2025 Paperzz