Review for the Quiz 2 Math202 LM SP2014 1. Compute each of the following integrals. ! 2 a) " sin 2 x!cos 2 x!dx b) " ln(2x + 1)dx 0 x2 1 c) " dx d) " x 2 x 2 + 4 dx (x # 3)(x + 2)2 e) " x ! 3 ! 6 f ) " sin 2 (2x)dx 9 # x dx 3 2 x 2 + 11x g) " e sin(2x)dx h) " dx (x # 1)(x + 1)2 #x 4 + x2 3x 3 i) " dx j) " dx 2 x2 9#x 2 x +1 k) " x 2 lnx!dx l) " dx 1 1 + 4x 2 1 x3 x m) " e dx n) " !dx o) " !dx x + 4x 2 x2 # 4 2. Evaluate each of the following Integrals: a) b) " c) # 2xe! x !dx 2 1 d) # !1 !2 e) ex dx f ) " !1 e x ! 1 1 1 (x + 1) 4 !dx 3 3. Compute each of the following limits (6+2 =8 points): a)lim(1" 2x) 1 2 x!0 b)lim x! # 2 1" sin $ csc$ c)lim(cos x) 3 x2 x!0 d)lim(sec x " tan x) x! # 2 e)limx 3e" x x!% f )limx x 2 x!0 " 4. Use midpoint, trapezoidal and Simpson’s rule to approximate subintervals. The integral must be computed completely for full credit. From The Previous Final: Spring 2013: 1(a‐b), 2(a‐d), 7(b), 8(a‐b), 11(a); Fall 2012: 2(a‐d), 3(a‐b), 8 (a‐b); Spring 2011: 1, 3(a‐f), 7(a‐b), 8(b); Fall 2010: 2(a‐e), 3(a‐b), 8(a‐b); Spring 2009: 2(a‐e), 3(a‐b), 9(b), 10(b); using 4
© Copyright 2026 Paperzz