Homework #10 Solutions Math 128, Fall 2013 Instructor: Dr. Doreen De Leon 1 p. 220: 3, 6 1 3. FInd the Taylor series for the function about the point z0 = 2. Then, by differentiating that z series term by term, show that ∞ 1X 1 = (−1)n (n + 1) 2 z 4 n=0 z−2 2 n (|z − 2| < 2). Solution: 1 1 1 1 = = · z 2 + (z − 2) 2 1 + z−2 2 n ∞ X z−2 1 − = 2 2 n=0 n ∞ 1X n z−2 = (−1) . 2 2 n=0 n ! ∞ d 1 d 1X z − 2 . = (−1)n dz z dz 2 2 n=0 ∞ 1 1X z−2 n n d − 2 = (−1) z 2 dz 2 n=1 ∞ 1X z − 2 n−1 n 1 = (−1) n 2 2 2 n=1 ∞ 1 1X z − 2 n−1 nn (−1) =− z2 2 2 2 n=1 ∞ 1X z − 2 n−1 n+1 = (−1) n . 4 2 n=1 Shift the index to start from n = 0: ∞ 1 1X = (−1)n (n + 1) z2 4 n=0 Convergence: The series for z−2 2 n . (since (−1)n+2 = (−1)n ) 1 |z − 2| about the point z0 = 2 converges for < 1, or |z − 2| < 2. z 2 1 6. In the w plane, integrate the Taylor series expansion ∞ X 1 = (−1)n (w − 1)n (|w − 1| < 1) w n=0 along a contour interior to the circle of convergence from w = 1 to w = z to obtain the representation Log z = ∞ X (−1)n+1 n n=1 (z − 1)n (|z − 1| < 1). Solution: Z C 1 dw = w = ∞ X Z C ∞ X ! n n (−1) (w − 1) dw n=0 n Z (−1) (w − 1)n dw. C n=0 1 is continuous and has an antiderivative that exists w n inside the circle of convergence and (w − 1) is also continuous with an antiderivative that exists inside the circle of convergence. Z Z z 1 1 =⇒ dw = dw w w C 1 = Log w|z1 The integrals are path-independent, because = Log z − Log 1 = Log z, and Z n z Z (w − 1)n dw (n ≥ 0) z 1 n+1 = (w − 1) n+1 1 1 n+1 = (z − 1) . n+1 (w − 1) dw = C 1 So, Log z = ∞ X (−1)n n=0 1 (z − 1)n+1 , n+1 or Log z = ∞ X (−1)n+1 n=1 Convergence: Since the series expansion for n (z − 1)n , 1 converges for |z − 1| < 1, so does its integral. w 2 2 p. 225: 1, 2, 4 1. Use multiplication of series to show that ez 1 1 5 = + 1 − z − z 2 + · · · (0 < |z| < 1). 2 z(z + 1) z 2 6 Solution: z2 1 1 = +1 1 − (−z)2 ∞ X = (−z 2 )n = n=0 ∞ X (−1)n z 2n , | − z 2 | < 1 =⇒ |z| < 1. n=0 So, ez 1 1 = ez 2 2 z(z + 1) z z +1 z2 z3 1 1+z+ + + ··· 1 − z2 + z4 − z6 + · · · = z 2! 3! 1 2 5 3 1 1 + z − z − z + · · · , 0 < |z| < 1 = z 2 6 1 1 5 2 = + 1 − z − z + · · · , 0 < |z| < 1. z 2 6 2. By writing csc z = 1 and using division, show that sin z 1 1 1 3 1 − z + · · · (0 < |z| < π). csc z = + z + z 3! (3!)2 5! Solution: First, we know that sin z = ∞ X (−1)n n=0 z 2n+1 z3 z5 z7 =z− + − + ··· . (2n + 1)! 3! 5! 7! So, 1 = sin z z− 1 z3 3! + z5 5! − z7 7! − 1 5! i + ··· , or 1 z + 1 3! z + h 1 (3!)2 z3 + · · · z − 3!1 z 3 + 5!1 z 5 − 7!1 z 7 + · · · 1 1 + 0 − 13 z 2 + 0 + 0+ 0+ 1 2 3! z 1 2 3! z h +0 +0 1 2 h (3!) 1 (3!)2 1 4 1 6 5! z − 7! z · · · − 5!1 z 4 + 0 − 7!1 z 6 + · · · 1 1 6 4 − (3!) 0 + 3!5! z + ··· 2z + − − i 1 4 5! i z 1 4 5! z .. . 3 + + 1 0 − 0 − h + 7! 1 − (3!)2 1 z6 + · · · 3!5! i 1 1 6 5! 3! z + · · · Therefore, 1 3 1 1 1 − z + ··· . csc z = + z + z 3! (3!)2 5! 1 Convergence: has singularities at z = nπ, n ∈ Z, so the series can only converge for 0 < |z| < sin z π. 4. Use the expansion 1 1 1 1 7 − · + z + · · · (0 < |z| < π) 3 z 6 z 360 in Example 2, Sec. 67 and the method illustrated in Example 1, Sec. 62, to show that Z dz πi =− , 2 3 C z sinh z z 2 sinh z = where C is the positively oriented unit circle |z| = 1. Solution: From Example 1, Sec. 62, we know that Z 1 b1 = f (z) dz, 2πi C where C is a simple closed contour and b1 is the residue of f (z) at z = z0 , the only singularity inside C. Then, Z f (z) dz = 2πib1 , C and since Res z=0 1 z 2 sinh z 1 =− , 6 we obtain Z C dz πi 1 = 2πi − = − i. 2 z sinh z 6 3 4
© Copyright 2025 Paperzz