Poroelasticity Zhuoran Wang Colorado State University Zhuoran Wang Poroelasticity Linear poroelasticity Poroelasticity equation: ( −∇ · (2µε(u) + λ(∇ · u)I) + α∇p = f ∂t (c0 p + α∇ · u) + ∇ · (−K∇p) = s , (1) where µ = 1, λ = 1, α = 1, c0 = 0.1, K = κI. It is a coupled PDEs for poroelasticity. Zhuoran Wang Poroelasticity Numerical experiments for linear poroelasticity We test the example which is on (0, 1)2 for linear poroelasicity. Dirichlet boundary condition for displacement is uD = u and for pressure is pD = p. Zhuoran Wang Poroelasticity Numerical experiments for linear poroelasticity u is the known vector valued displacement function: 1 cos(2πx) sin(2πy ) . u = − sin(2πt) sin(2πx) cos(2πy ) 4π The strain tensor is: 1 ε(u) = (∇u + (∇u)T ) 2 The stress tensor is: σ(u) = 2µε(u) + λ(∇ · u) · I Zhuoran Wang Poroelasticity Numerical experiments for linear poroelasticity p is the known scalar valued pressure function: p = sin(2πt) sin(2πx) sin(2πy ). cos(2πx) sin(2πy ) ∇p = 2π sin(2πt) sin(2πx) cos(2πy ) Zhuoran Wang Poroelasticity Numerical experiments for linear poroelasticity So right hand side of linear poroelasticity: cos(2πx) sin(2πy ) f = (−2µ − λ + α)2π sin(2πt) , sin(2πx) cos(2πy ) s = (sin(2πx) sin(2πy ))(2π cos(2πt)(c0 + α) + 8π 2 κ sin(2πt)). Zhuoran Wang Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Following figures are numerical displacement and pressure based on different κ when n = 32. Numerical displacement elementwise at final time 1 Numerical pressure elementwise at fime time 1 0.8 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.2 0.5 0.5 0 0.4 0.4 -0.2 0.3 0.3 0.2 0.2 0.1 0.1 0.6 0.4 -0.4 -0.6 0 0 0.2 0.4 0.6 0.8 1 -0.8 0 0 0.2 0.4 0.6 0.8 1 Figure: Left: Displacement with n = 32, κ = 10−6 . Right: Pressure with n = 32, κ = 10−6 . Zhuoran Wang Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Numerical pressure elementwise at fime time Numerical displacement elementwise at final time 1 1 0.9 0.8 0.9 0.8 0.8 0.6 0.7 0.7 0.4 0.6 0.6 0.2 0.5 0.5 0 0.4 0.4 -0.2 0.3 0.3 -0.4 0.2 0.2 -0.6 0.1 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.8 0 0 0.2 0.4 0.6 0.8 1 Figure: Left: Displacement with n = 32, κ = 1. Right: Pressure with n = 32, κ = 1. Zhuoran Wang Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Numerical displacement elementwise at final time 1 Numerical pressure elementwise at fime time 1 0.9 0.8 0.9 0.8 0.8 0.6 0.7 0.7 0.4 0.6 0.6 0.2 0.5 0.5 0 0.4 0.4 -0.2 0.3 0.3 -0.4 0.2 0.2 -0.6 0.1 0.1 0 0 0.2 0.4 0.6 0.8 1 -0.8 0 0 0.2 0.4 0.6 0.8 1 Figure: Left: Displacement with n = 32, κ = 103 . Right: Pressure with n = 32, κ = 103 . Zhuoran Wang Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure The table shows the maximum of differences of the exactly displacement and numerical displacement, and the maximum of differences of the exactly pressure and numerical pressure with n = 16, 32, 64, κ = 10−6 , 1, 103 . Table: Errors of numerical value with different κ error n = 16 n = 32 n = 128 κ = 10−6 max(ErrDsplT) max(ErrPresT) 2.6488E-03 2.4404E-01 1.6019E-03 1.3404E-01 8.6522E-04 7.0095E-02 κ=1 max(ErrDsplT) max(ErrPresT) 8.1006E-03 1.6961E-02 3.9255E-03 5.4317E-03 1.9366E-03 1.9185E-03 Zhuoran Wang Poroelasticity κ = 103 max(ErrDsplT) max(ErrPresT) 8.3049E-03 1.2560E-02 4.0192E-03 3.1964E-03 1.9811E-03 8.0311E-04 Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure For calculating L2 error in space in one time step, find the difference between exact displacement u(·, tn ) and the numerical (n) value uh (·) and then calculate the L2 error on the domain Ω. Z 2 (n) u(·, tn ) − uh (·) , Ω where tn means the time step. On the unit square domain, we have a mesh. And we calculate the L2 error on each element simultaneously. 2 X Z (n) u(·, tn ) − uh (·) . E ∈εh E Zhuoran Wang Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Here, we have the same time step ∆t with NT time steps totally. So the L2 error in displacement and time is v u NT Z 2 uX (n) t L2(L2)err = ∆tn u(·, tn ) − uh (·) . n=1 Zhuoran Wang Ω Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Table: Convergence rates of errors in the numerical displacement with time steps,Q1. n n n n n n = = = = = 8 16 32 64 128 L2L2ErrDispl. 2.1187E-03 6.8777E-04 2.6531E-04 1.1697E-04 5.5224E-05 Zhuoran Wang conv. rate – 1.6232 1.3742 1.1815 1.0828 Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Another example is on a square domain. The final time as T = 10−3 . The value of permeability is κ = 10−6 . The Lamé coefficients are λ = 12500 and µ = 8333. On the top edge of the domain, p = 0, σn = (0, −1)T . The boundary conditions of other sides are: ∇p · n = 0, u = 0. Zhuoran Wang Poroelasticity Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Numerical pressure elementwise at final time 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0.2 0.4 0.6 0.8 1 Figure: Left: Numerical Pressure with n = 40. Right: Contours of numerical pressure with n = 40. The figure shows the numerical pressure at final time. From the contour of the numerical pressure, we can see the pressure value. Zhuoran Wang Poroelasticity
© Copyright 2026 Paperzz