An updated approach to calculation of diffusion coefficients E. Fridman, J. Leppänen Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Outline • Diffusion coefficient from P1 equations • Different forms of transport correction • Numerical example • Conclusions Page 2 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Getting diffusion coefficient from P1 equations • Multi-group P1 equation in 1D: • • • • Page 3 d 1,g t,g0,g dx 1 d 0,g t,g1,g 3 dx S0,g S1,g s0,g' g 0,g' g' s1,g' g 1,g' g' ϕ0 and ϕ1 – 0th and 1st flux moments Σ0 and Σ1 – 0th and 1st moments of scattering XS Σt – total XS S - sources E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Getting diffusion coefficient from P1 equations • Multi-group P1 equation in 1D: d 1,g t,g0,g dx 1 d 0,g t,g1,g 3 dx S0,g S1,g s0,g' g 0,g' g' s1,g' g 1,g' g' • Diffusion coeff. can be derived from the 2nd equation: – Assuming isotropy of the sources S1,g= 0 – Using Fick’s law: Page 4 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Getting diffusion coefficient from P1 equations • Multi-group P1 equation in 1D: d 1,g t,g0,g dx 1 d 0,g t,g1,g 3 dx S0,g S1,g s0,g' g 0,g' g' s1,g' g 1,g' g' • Diffusion coeff. can be derived from the 2nd equation: – Assuming isotropy of the sources S1,g= 0 – Using Fick’s law: Jg 1,g Page 5 D 3 t,g d 0,g dx 1 d 0,g s1,g' g1,g' dx g' 1,g E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Getting diffusion coefficient from P1 equations • Multi-group P1 equation in 1D: d 1,g t,g0,g dx 1 d 0,g t,g1,g 3 dx S0,g S1,g s0,g' g 0,g' g' s1,g' g 1,g' g' • Diffusion coeff. can be derived from the 2nd equation: – Assuming isotropy of the sources S1,g= 0 – Using Fick’s law: Jg 1,g In-scatter Σtr,g Page 6 D 3 t,g d 0,g dx 1 d 0,g s1,g' g1,g' dx g' 1,g E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Complexities in calculations of diffusion coefficient t , g s1, g ' g 1, g ' g' 1, g • Current spectra is needed - not easy to calculate • What can be done? Examples: – – – – Page 7 Out-scatter approximation Replacing ϕ1 by ϕ0 Hydrogen transport correction P1 spectral calculations E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Some relevant references: • Yamamoto et al. “Simplified Treatments of Anisotropic Scattering in LWR Core Calculations”, Journal of Nuclear Science and Technology 45, 2008. • Herman et al. “Improved Diffusion Coefficients Generated From Monte Carlo Codes”, Proc. MC2013, Sun Valley, 2013. • Choi et al., “Impact of inflow transport approximation on light water reactor analysis,” Journal of Computational Physics 299, 2015. Page 8 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Out-scatter approximation Page 9 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Out-scatter approximation • Additional assumption: – P1 in-scatter and out-scatter sources are equal g' Page 10 s1,g' g 1,g' s1,g g' 1,g g' E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Out-scatter approximation • Additional assumption: – P1 in-scatter and out-scatter sources are equal s1,g' g 1,g' g' s1,g g' 1,g g' • Then: s1,g'g 1,g' g' 1,g s1,gg' 1,g g' 1,g s1,gg' 1,g g' 1,g s1,gg' s1,g g' • Typical out-scatter form of Σtr,g – Knowledge of current spectra is not required – Current Serpent approach tr ,g t,g s1,g t,g ˆ g s0,g Page 11 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Out-scatter approximation 2.5 P1 Out-scatter/In-scatter 2 1.5 1 0.5 -3 10 • • -2 10 -1 10 0 10 1 2 10 Energy, eV 10 3 10 4 10 5 10 6 10 7 Out-scatter and in-scatter sources are not everywhere close (ratio is shown) Difference in fast region can result in “too strong” transport correction – Page 12 10 Serpent results: UO2 PWR assembly, current spectra from 0-D P1 equation (modified B1) E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Hydrogen transport correction Page 13 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Hydrogen transport correction • Idea: – Obtain H-transport correction curve: Σtr Σ T – From H-only slab with a fixed fission source – Use the H-correction curve to modify Σtr from lattice calculations • Assumption: – H is a major source for scattering anisotropy (μ ≈ 2/3A) • Procedure: 1. Calculate 2. Calculate 3. Calculate , , Correction curve tr ,all tr ,H T,H corr tr .H T,H corr tr .all corr tr ,all tr ,H tr .H • Described in details in MC2013 paper by Bryan Herman – “Improved Diffusion Coefficients Generated From Monte Carlo Codes” Page 14 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Hydrogen transport correction curve 1 Tr - out-scatter Tr - H-corr. 0.9 0.8 Tr / Tot 0.7 0.6 0.5 0.4 0.3 0.2 -10 10 10 -8 10 -6 -4 10 Energy, eV 10 -2 • Available in version 2.1.27 • H2O curve is shown Page 15 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 10 0 10 2 Diffusion coefficient: Serpent vs. Casmo Casmo Page 16 Serpent Out-scatter H-correction B1 g1 1.47534 1.55880 1.48000 1.44966 g2 0.42139 0.41320 0.43040 0.44533 g1 - 5.7% 0.3% -1.7% g2 - -1.9% 2.1% 5.7% E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Some test problems Page 17 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 2D PWR core • Serpent - few-group XS + reference solution • DYN3D - nodal diffusion calculations • Verify DYN3D results vs. full core Serpent solution Page 18 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 2D PWR core: Radial power distribution Page 19 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 3D PWR core – OECD MOX benchmark • Serpent - few-group XS + reference solution • DYN3D - nodal diffusion calculations • Verify DYN3D results vs. full core Serpent solution Page 20 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 3D PWR core: Radial power distribution Page 21 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Summary and future work • H-transport correction was implemented in Serpent 2.1.27 • LWR diffusion coefficients are consistent with Casmo • Somewhat improved nodal diffusion results… • But some other factors should be accounted for – Discontinuity factors – Reflector models – Leakage correction • H-like correction can be used for other scatters – deuterium, graphite, … – importance (anisotropy) decreases with A (μ≈2/3A) – further investigation is required Page 22 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Thank you! Page 23 E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Generation of few-group diffusion coefficients • Σtr,g can be used for the generation of DG in two ways: Option 1: Collapsing of Σtr,g tr ,G gG tr ,g g gG Page 24 g DG 1 3 tr ,G E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 Generation of few-group diffusion coefficients • Σtr,g can be used for the generation of DG in two ways: Option 1: Collapsing of Σtr,g tr ,G gG tr ,g g gG Page 25 g 1 DG 3 tr ,G Option 2: Collapsing of Dg 1 Dg DG 3 tr ,g E. Fridman | Serpent I UGM | Milan, 26-29.09.2016 D gG gG g g g
© Copyright 2026 Paperzz