MATH 126, QUIZ 1 Instructions: Solve the following problems in a piece of paper with your name on it. (1) Determine the value of the limit 1 lim (1 − 2x) x . x→0 Solution We have 1 ln((1 − 2x) x ) = ln((1 − 2x)) , x and hence, by Lôpital's rule, ln((1 − 2x)) −2 = lim = −2. x→0 x→0 1 − 2x x 1 lim ln((1 − 2x) x ) = lim x→0 Therefore, taking exponential in both sides, and using the continuity of the exponential function, we get 1 1 1 lim (1 − 2x) x = lim eln((1−2x) x ) = elimx→0 ln((1−2x) x ) = e−2 , x→0 x→0 where the last equality follows by an application of Lôpital's rule, indenite integral (2) Determine the value of the Z Solution Making the substitution Z sin(x) dx = 2 + cos(x) Z sin(x) dx. 2 + cos(x) u = 2 + cos(x), du = − sin(x)dx, we obtain −u−1 du = − ln(u) + C = − ln(2 + cos(x)) + C. (3) Determine the value of the following denite integrals (a) π 2 Z cos(x) sin(sin(x))dx. 0 (b) Z 0 Solution π 2 Z Date we obtain 1 sin(u)du = − cos(1) − (− cos(0)) = − cos(1). cos(x) sin(sin(x))dx = 0 ez + 1 dz. ez + z u = sin(x), du = cos(x)dx, (a) Making the substitution Z 1 0 : August 31. 1 2 MATH 126, QUIZ 1 (b) Making the substitution Z 0 1 z e +1 dz = ez + z Z 1 u = ez + z , du = ez + 1, e+1 we get 1 du = ln(e + 1) − ln(1) = ln(e + 1). u
© Copyright 2026 Paperzz