October 2001: Photosystem I Look around. Just about everywhere that you go, you will see something green. Plants cover the Earth, and their smaller cousins, algae and photosynthetic bacteria, can be found in nearly every corner. Everywhere, they are busy converting carbon dioxide into sugar, creating living organic molecules out of air using the energy of sunlight as power. This process, termed photosynthesis, provides the material foundation on which all life rests. Capturing Light At the center of photosynthesis is a class of proteins termed photosynthetic reaction centers. These proteins capture individual light photons and use them to provide power for building sugar. The example shown here is photosystem I (PDB entry 1jb0), one of the two large reaction centers used in cyanobacteria, algae and plants. Photosystem I is a trimeric complex that forms a large disk. In cells, the complex floats in a membrane (the membrane is indicated by the two red lines in the lower picture) with the large flat faces exposed above and below the membrane. Colorful Cofactors Each of the three subunits of photosystem I is a complex of a dozen proteins, which together support and position over a hundred cofactors. Some of these cofactors, shown here in green and orange, are exposed around the edge of the complex and many others are buried inside. Cofactors are small organic molecules that are used to perform chemical tasks that are beyond the capabilities of pure protein molecules. The cofactors in photosystem I include many small, October 2001: Photosystem I brightly-colored molecules such as chlorophyll, which is bright green, and carotenoids, which are orange. The colors are, in fact, the reason that these molecules are useful: the colors are an indication that the cofactors absorb other colors strongly. For instance, chlorophyll absorbs blue and red light, leaving the beautiful greens for us to see. The energy from these absorbed colors is then captured to perform photosynthesis. The Electron Transfer Chain The heart of photosystem I is an electron transfer chain, a chain of chlorophyll (shown in green), phylloquinone (shown in orange) and three iron-sulfur clusters (yellow and red at the top). These cofactors convert the energy from light into energy that the cell can use. The two chlorophyll molecules at the bottom capture the light first. When they do, an electron is excited into a higher energy state. Normally this electron would quickly decay, releasing heat or releasing a new photon of slightly lower energy. But before this has a chance to happen, photosystem I passes this electron on, up the chain of cofactors. At the top, the electron is transferred to a small ferredoxin protein (not shown here), which then ferries it on to the other steps of photosynthesis. At the bottom, the hole left by this wandering electron is filled by an electron from another protein, plastocyanin. October 2001: Photosystem I This may seem rather mundane until you see the trick that the photosystem is performing. The proteins at both ends of this process, ferredoxin and plastocyanin, are carefully chosen. Because of the special design of their own cofactors, it is more difficult to add an electron to ferredoxin than it is to plastocyanin--normally, the flow would be in the opposite direction. But photosystem I uses the energy from light to energize the electron, moving it in a difficult direction. Then, since the electron is placed in such an energetic position, it can be used to perform unfavorable duties such as the production of sugar from carbon dioxide. Photosynthetic Cousins Different photosystems are used by different photosynthetic organisms. Higher plants, algae, and some bacteria have the photosystem I shown here and a second one termed photosystem II. A low resolution structure of photosystem II is available in PDB entry 1fe1 (not shown here). Photosystem II uses water instead of plastocyanin as the donor of electrons to fill the hole left when the energized electron is passed up the chain. When it grabs electrons from a water molecule, photosystem II splits the water and releases oxygen gas. This reaction is the source of all of the oxygen that we breathe. Some photosynthetic bacteria contain a smaller photosynthetic reaction center, such as the one shown on the right (PDB entry 1prc). As in photosystem I, a stack of chlorophyll and other cofactors transfer a light-energized electron up to an energetic electron carrier. October 2001: Photosystem I Harvesting Light Of course, plants do not rely on the slim chance of a photon running into one tiny chlorophyll molecule in the middle of the reaction center. As with all things in life, cells have found an even better way. Photosystem I, shown here looking from the top, contains an electron transfer chain, colored here in bright colors, at the center of each of the three subunits. Each one is surrounded by a dense ring of chlorophyll and carotenoid molecules that act as antennas. In this picture, the protein is transparent so that only the cofactors are seen. These antenna molecules each absorb light and transfer energy to their neighbors. Rapidly, all of the energy funnels into the three reaction centers, where is captured to create activated electrons. October 2001: Photosystem I Exploring the Structure You can look at the many photosystem I cofactors of the electron transfer chain and the antenna in PDB entry 1jb0. Only one of the three subunits is included in the file, but you will find that this is complicated enough. If you display only the cofactors, you will get a picture like the one shown here. This picture shows the electron transfer chain at the center, drawn in spacefilling spheres. Two special chlorophyll molecules, residues 1140 and 1239, are also shown in spheres and colored green. These two chlorophyll molecules act as a bridge between the reaction center in the middle and the many molecules in the surrounding antenna. The many antenna cofactors are shown here in bond representation with small spheres for the magnesium ions at the center of each chlorophyll. November 2004: Photosystem II Three billion years ago, our world changed completely. Before then, life on Earth relied on the limited natural resources found in the local environment, such as the organic molecules made by lightning, hot springs, and other geochemical sources. However, these resources were rapidly being used up. Everything changed when these tiny cells discovered a way to capture light and use it to power their internal processes. The discovery of photosynthesis opened up vast new possibilities for growth and expansion, and life on the earth boomed. With this new discovery, cells could take carbon dioxide out of the air and combine it with water to create the raw materials and energy needed for growth. Today, photosynthesis is the foundation of life on Earth, providing (with a few exotic exceptions) the food and energy that keeps every organism alive. The Colors of Photosynthesis Modern cells capture light using photosystem proteins, such as the one pictured here from PDB entry 1s5l. These photosystems use a collection of highly-colored molecules to capture light. These lightabsorbing molecules include green chlorophylls, which are composed of a flat organic molecule surrounding a magnesium ion, and orange carotenoids, which have a long string of carbon-carbon double bonds. These molecules absorb light and use it to energize electrons. The high-energy electrons are then harnessed to power the cell. November 2004: Photosystem II Energetic Electrons Photosystem II is the first link in the chain of photosynthesis. It captures photons and uses the energy to extract electrons from water molecules. These electrons are used in several ways. First, when the electrons are removed, the water molecule is broken into oxygen gas, which bubbles away, and hydrogen ions, which are used to power ATP synthesis. This is the source of all of the oxygen that we breathe. Second, the electrons are passed down a chain of electron-carrying proteins, getting an additional boost along the way from photosystem I. As these electrons flow down the chain, they are used to pump hydrogen ions across the membrane, providing even more power for ATP synthesis. Finally, the electrons are placed on a carrier molecule, NADPH, which delivers them to enzymes that build sugar from water and carbon dioxide. The Reaction Center The heart of photosystem II is the reaction center, where the energy of light is converted into the motion of energized electrons. At the center is a key chlorophyll molecule. When it absorbs light, one of its electrons is promoted to a higher energy. This energized electron then hops downward, through several other pigmented molecules, on to plastoquinone A, and finally over to plastoquinone B. When it gets enough electrons, this small quinone is released from the photosystem, and it delivers its electrons to the next link in the electron-transfer chain. Of course, this leaves the original chlorophyll without an electron. The upper half of the reaction center has the job of replacing this electron with a lowenergy electron from water. The oxygen-evolving center strips an electron from water and passes it to a tyrosine amino acid, which then delivers it to the chlorophyll, making it ready to absorb another photon. November 2004: Photosystem II Harvesting Light Of course, this whole process wouldn't be very efficient if plants had to wait for photons to hit that one special chlorophyll in the reaction center. Fortunately, the energy from a light-excited electron is easily transferred through the process of resonance energy transfer. Thanks to the mysteries of quantum mechanics, the energy can jump from molecule to molecule, as long they are close enough to each other. To take advantage of this property, photosystems have large antennas of light-absorbing molecules that harvest light and transfer their energy inwards to the reaction center. Plants even build special light-harvesting proteins that sit next to the photosystems and assist with light collection. The picture shows a top view of photosystem II (PDB entry 1s5l), showing all of the light-absorbing molecules inside. The central chlorophyll molecule of the reaction center is shown with the arrow (notice the second reaction center in the bottom half--photosystem II is composed of two identical halves). The little triangular molecules at top and bottom, stuffed full of chlorophyll and carotenoids, are light-harvesting proteins (PDB entry 1rwt). November 2004: Photosystem II Exploring the Structure The oxygen-evolving center of photosystem II is a complicated cluster of manganese ions (magenta), calcium (blue green) and oxygen atoms (red). It grips two water molecules and removes four electrons, forming oxygen gas and four hydrogen ions. The actual binding site of the two water molecules is not known for certain, but in the PDB structure 1s5l a bicarbonate ion is bound to the cluster, providing a clue for location of the active site. The picture shows two oxygen atoms from this ion (colored blue): one is bound to a manganese ion, the other is bound to the calcium ion. Notice that the oxygen-evolving center is surrounded by histidines, aspartates and glutamates, which hold it in place. The tyrosine shown in the middle forms a perfect bridge between the water site and the light-capturing chlorophyll.
© Copyright 2026 Paperzz