Inequality 1. (a) (m3 + 1) – (m2 + m) = (m – 1)2 (m + 1) > 0, unless m = 1, where equality holds. ∴ m3 + 1 > m2 + m. (b) (x5 + y5 ) – (x4y + xy4) = (x2 + y2)(x + y)(x – y)2 > 0, unless x = y, where equality holds. ∴ x5 + y5 > x4y + xy4. (c) (b + c – a)2 + (c + a – b)2 + (a + b – c)2 – (bc + ca + ab) = 3(a2 + b2 + c2) – 3(ab + bc + ca) 3 = [(a − b) 2 + ( b − c) 2 + (c − a ) 2 ] > 0 , unless a = b = c, where equality holds. 2 ∴ (b + c – a)2 + (c + a – b)2 + (a + b – c)2 > bc + ca + ab. (d) a + b > 2 ab , b + c > 2 bc , c + a > 2 ca , equalities hold iff a = b = c . Multiply these three inequalities, we get: (a + b)(b + c)(c + a) > 8abc. (e) a2b + b2c + c2a + ab2 + bc2 + ca2 – 6abc = a(b – c)2 + b(c – a)2 + c(a – b)2 > 0, unless a = b = c , where equality holds. ∴ a2b + b2c + c2a + ab2 + bc2 + ca2 > 6abc. (f) a+b = ∴ (g) b+c + c+a −6= ab(a + b) + bc( b + c) + ac( b + a ) − 6abc c a b 2 a ( b − c) + b (c − a ) 2 + c(a − b ) 2 a+b c + abc b+c a + c+a b abc > 0 , unless a = b = c , where equality holds. >6. (ay + bx ) 2 − 4(ay)( bx ) ay + bx ay + bx ⎛ x y ⎞⎛⎜ a b ⎞⎟ − = × − = 4 4 + + ⎟ ⎜ ⎝ a b ⎠⎜⎝ x y ⎟⎠ abxy ab xy = ∴ (h) + (ay − bx ) 2 abxy > 0 , unless ay = bx, where equality holds. x y ⎛ x y ⎞⎛⎜ a b ⎞⎟ ⎜ + ⎟⎜ + ⎟ > 4 , equality holds ⇔ = . a b ⎝ a b ⎠⎝ x y ⎠ (a + b + c )⎛⎜ + + ⎞⎟ − 9 = 1 = ∴ 1 1 (a + b + c)(bc + ca + ab) − 9abc ⎝a b c⎠ a ( b − c) 2 + b (c − a ) 2 + c(a − b ) 2 abc > 0 , unless a = b = c , where equality holds. abc 1 1 1 (a + b + c )⎛⎜ + + ⎞⎟ > 9 . ⎝a b c⎠ (i) In (h), replace a by l/a , b by b/m, c by c/n, result follows. l m n Equality holds ⇔ = = . a b c (j) x7 + y7 – (x4y3 + x3y4) = (x4 – y4)(x3 – y3) = (x2 + y2)(x + y)(x – y)2(x2 + xy + y2) > 0 Equality holds ⇔ x = 1. ∴ x7 + y7 > x4y3 + x3y4, (k) x7 + 1 – (x6 + x) = (x6 – 1)(x – 1) = (x – 1)2(x5 + x4 + x3 + x2 + x + 1) > 0 Equality holds ⇔ x = 1. ∴ x7 + 1 > x6 + x, 1 (l) x5 + x-5 – (x2 + x-2) = x5 – x2 – (x-2 – x-5) = x2(x3 – 1) – xP-5(x3 – 1) = (x3 – 1)(x2 – x-5) = x-5(x3 – 1)(x7 – 1) = x-5(x – 1)2(x2 + x + 1)(x6 + x5 + x4 + x3 + x2 + x + 1) > 0 Equality holds ⇔ x = 1. ∴ x5 + x-5 > x2 + x-2, (m) a3 + b3 + c3 – 3abc = (a + b + c)(a2 +b2 + c2 – ab – bc – ca) 1 = (a + b + c)[(a − b) 2 + ( b − c) 2 + (c − a ) 2 ] > 0 , unless a = b = c, where equality holds. 2 ∴ a3 + b3 + c3 > 3abc. Also, (a3 + b3 + c3)3 > 27a3b3c3. Replace a3 by a , b3 by b , c3 by c, ∴ (a + b + c)3 > 27abc. (n) Put 2A = x + y – z, 2B = y + z – x, 2C = z + x – y The inequality is changed to: (A + B)(B + C)(C + A) > 8ABC (*) (1) If A, B, C are all positive, (*) is proved in part (d). (2) If one of A, B, C is negative, The R.H.S. of (*) is negative while the L.H.S. is positive. ∴ (*) is always true. (3) If two or more of the A, B, C are negative, without lost of generality, let A, B < 0. ∴ x + y – z < 0 and y + z – x < 0. Adding the inequalities, we have y < 0. Contradict to the given that y > 0. 2. Since n is a positive integer, n + 1 < n + 2 < … < n + n = 2n (Equality holds when n = 1) 1 1 1 1 1 1 1 1 + + ... + > + + ... + = n× = ∴ n +1 n + 2 2n 2n 2n 2n 2n 2 3. (1) 1 n+i − p ∑ 1 n + i +1 1 (n + i) i =1 ⎡ 1 =⎢ + ⎣ n +1 ⎡ 1 =⎢ + ⎣ n +1 1 (2) − n + i −1 = ( n + i )( n + i + 1) i =1 1 ⎤ ⎡ p < 1 (n + i) 2 1 ⎤ ⎡ 1 ⎢⎣ n + i − n + i + 1 ⎥⎦ = p ∑ > 2 1 p ∑ i =1 p −1 1 n +i − p ∑ i =1 1 n + i +1 ⎤ ∑ n + i ⎥⎦ − ⎢⎣ n + p + 1 + ∑ n + i + 1⎥⎦ 1 i=2 i =1 p −1 ⎤ ⎡ 1 + ⎥−⎢ n + i + 1⎦ ⎣ n + p + 1 ∑ i =1 1 1 n+i = 1 ( n + i − 1)( n + i ) > 1 p −1 ⎤ ∑ n + i + 1⎥⎦ = n + 1 − n + p + 1 1 1 1 i =1 1 ( n + i) 2 1 ⎤ 1 1 ⎡ 1 − = − ⎢ ⎥ (n + i) n +i⎦ n n + p i =1 i =1 ⎣ n + i − 1 Combining (1) and (2), result follows. p ∑ 4. 1 2 1 = (i + 1) – i = i +1 − i = ∑[ n ( p ∑ < i +1 − i 1 i +1 + i < i =1 i+ i n ∑ 2 1 i =1 1 i = ) 1 2 i 1 i i =1 n i +1 + i 1 ] 1∑ 2 i +1 − i < n +1 − 1 < )( , result follows. 2 5. By Mathematical Induction. 1 Let P(s) be the proposition : < 2 s 1 For P(2), ∴ 2 s P(2) is true. = 1 2 2 ≈ 0.354, 1 4 s C s2 s < 1 4 s 1 2s + 1 C s2 s = 1 4 2 1 Assume P(k) is true for some k ∈ N, that is, 1 C 24 ≈ 0.375, < 1 C 2k k < 2s + 1 1 2k + 1 2 k 4 2k + 1 ( 2k + 2)(2k + 1) = , For P(k + 1), From (1), multiply throughout by 2( k + 1) 4( k + 1) 2 1 2k + 1 1 ( 2k + 2)(2k + 1) k 1 2k + 1 < k C2k < 2 4( k + 1) 2 k 2( k + 1) 4 2k + 1 2( k + 1) 1 2k + 1 4 k ( k + 1) < 1 4 k +1 C 2k +k1+ 2 < k 2k + 1 2(k + 1) = 1 5 ≈ 0.447 …. (1) …. (2) 2 But (2k + 1) 2 4k 2 + 4k + 1 1 1 ⎡ 1 2k + 1 ⎤ = = > ⎥ ⎢ 2 [4k (k + 1)] [4(k + 1)] 4k + 4k 4(k + 1) 4(k + 1) ⎣ 4 k ( k + 1) ⎦ 2 ⎡ 2k + 1 ⎤ 2k + 1 1 ( 2 k + 3)( 2 k + 1) 1 4 k 2 + 8k + 3 1 And = = = < ⎢ ⎥ 2 2 2 4 k + 8k + 4 2 k + 3 4 k + 8k + 4 2 k + 3 4 k + 8k + 4 2 k + 3 ⎣ 2( k + 1) ⎦ 1 1 1 < k +1 C k2 +k1+ 2 < From (2), we get: 2k + 3 2 k +1 4 ∴ P(k + 1) is also true. By the Principle of Mathematical Induction, P(s) is true s ∈ N. 6. Method 1 θ θ θ ⎛ θ ⎞ θ ⎞ ⎛ 2 θ − 2 cot + 1 ≥ 0 ⇒ 2 cot 2 ≥ 2 cot + ⎜ cot 2 − 1⎟ ⎜ cot − 1⎟ ≥ 0 ⇒ cot ⎝ 2 ⎠ 2 2 2 2 ⎝ 2 ⎠ θ As 0 < θ < π, divide (1) by 2 cot ≥ 0 , 2 θ cot 2 − 1 θ 2 cot ≥ 1 + = 1 + cot θ ∴ θ 2 2 cot 2 Method 2 θ θ 1 ⎛θ⎞ f ' (θ ) = − csc 2 ⎜ ⎟ + csc 2 θ Let f (θ ) = cot 2 − 2 cot + 1, ⎝2⎠ 2 2 2 2 π π 1 1 ⎛π⎞ f ' ⎜ ⎟ = − csc 2 + csc 2 = − 2 +1 = 0 ⎝2⎠ 2 4 2 2 θ θ θ θ ⎞⎛ 1 ⎞ θ ⎞⎛ 1 1⎛ f " (θ ) = − ⎜ 2 csc ⎟⎜ − csc cot ⎟⎜ ⎟ + 2 csc θ( − csc θ cot θ ) = csc 2 cot − 2 cot θ cot θ 2 2 2 2⎝ 2 ⎠⎝ 2 2 ⎠⎝ 2 ⎠ π π π π 1 ⎛π⎞ 1 f " ⎜ ⎟ = csc 2 cot − 2 cot cot = × 2 × 1 − 2 × 1× 0 = 1 > 0 ⎝2⎠ 2 4 4 2 2 2 π ∴ f(θ) is the minimum when θ = . 2 θ ⎛π⎞ cot ≥ 1 + cot θ , ∀θ ∈ (0, π) ∴ f(θ) > f ⎜ ⎟ = 0 , ⎝2⎠ 2 2 ...( 1) ( ) 3 7. (bc-ad)2 ≥ 0 ⇒ b2c2 + a2d2 ≥ 2abcd ⇒ b2c2 + 2abcd + a2d2 ≥ 4abcd 2 2 ∴ (bc + ad) ≥ [2√(abcd)] . As a, b, c, d > 0, taking the positive square root, we have: bc + ad ≥ 2√(abcd). ab + bc + cd + da ≥ ab + 2√(abcd) + cd (a + c )( b + d ) ≥ ( ab + cd ) 2 (a + c )( b + d ) ≥ ab + cd Take the positive square root again, 8. 9. a 3 + b3 2 (a) ∴ 3 2 ⎛a+b⎞ −⎜ ⎟ = (a + b )(a − b ) ≥ 0 . ⎝ 2 ⎠ 8 3 Let d be the common difference of the arithmetic progression. For 0 ≤ k ≤ n, ak+1 an-k = (a1 + kd)[a + (n – k – 1) d] = a12 + (n – 1)a1d + k (n – k – 1) d2 ≥ a12 + (n – 1)a1d = a1 [a1 + (n – 1) d] = a1an n −1 Πa ≥ a k +1 n − k k =0 ∴ Πa a 10. k +1 ≥ (a 1a n ) n −k ⎛ ⇒⎜ ⎝ n k =0 a 1 + a n = a k +1 + a n − k ≥ 2 n −1 Π (a 1 + an ) ≥ n n −1 Π2 a 1a 2 ....a n ≤ ak = k, ⇒ (a 1 + a n ) ≥ 2 n a k +1a n −k n k =0 n Π k =1 2 ⎞ n a k ⎟ ≥ (a 1a n ) ⎠ ⎛ ⎜ ⎝ a k +1 a n − k ⎞ ak ⎟ ⎠ k =1 n Π 2 a1 + a n 2 a 1a n ≤ n a 1a 2 ....a n ≤ a1 + a n 2 1× n ≤ n 1.2....n ≤ for 0 ≤ k ≤ n, 1+ n 2 ∴ n < n n! < n +1 2 . Cauchy-Bunyakovskii-Schwarz (CBS) inequality: n ⎡ n ⎤ ⎡ n ⎤ ⎡ n ⎤ ( a i x + b ) 2 ≥ 0 ⇒ ( a i x + b ) 2 = ⎢ ( a i ) 2 ⎥ x 2 + 2 ⎢ ( a i b i )⎥ x + ⎢ ( b i ) 2 ⎥ ≥ 0 ⎣ i=1 ⎦ ⎣ i=1 ⎦ ⎣ i=1 ⎦ i =1 ∑ ∴ 11. Πa Πa k =0 For 0 ≤ k ≤ n, Combining (a) and (b), Putting n −1 n k =0 ∴ ⇒ 1 n k =0 n −1 a 1a n ≤ a 1a 2 ....a n ∴ (b) n −1 ∑ ∑ n ⎡ n ⎡ n ⎤ 2 ⎤⎡ 2⎤ Δ ≤ 0 ⇒ ⎢ (a i ) ⎥ ⎢ ( b i ) ⎥ ≥ ⎢ (a i b i )⎥ ⎣ i =1 ⎦ ⎣ i =1 ⎦ ⎣ i=1 ⎦ ∑ ∑ ∑ ∑ 2 By CBS inequality : (a 1b1 + a 2 b 2 + .... + a n b n ) 2 ≤ (a 12 + a 2 2 + .... + a n 2 )(b12 + b 2 2 + .... + b n 2 ) Put bi = 1 ∀ i = 1, 2,… , n. 2 2 2 (a 1 + a 2 + .... + a n ) 2 ≤ (a 1 + a 2 + .... + a n )(n ) Take the square root, a 1 + a 2 + .... + a n ≤ n (a 1 2 + a 2 2 + .... + a n 2 ) 12. Method 1 By CBS inequality : (a 1b1 + a 2 b 2 + .... + a n b n ) 2 ≤ (a 12 + a 2 2 + .... + a n 2 )(b12 + b 2 2 + .... + b n 2 ) Put ai2 = xi, bi2 = 1/xi ∀ i = 1, 2,… , n. ⎛ 1 ⎜ x1 + x2 ⎜ x1 ⎝ ∴ 1 x2 2 ⎛ 1 1 ⎞ 1 1 ⎞ ⎟ ≤ ( x 1 + x 2 + ... + x n )⎜⎜ + ⎟ + ... + ⎟ x n ⎟⎠ xn ⎠ ⎝ x1 x 2 + ... + x n ⎛ 1 ( x 1 + x 2 + .... + x n )⎜⎜ ⎝ x1 + 1 x2 + .... + 1 ⎞ ⎟⎟ ≥ n 2 xn ⎠ 4 Method 2 x 1 + x 2 + .... + x n ≥ n n x 1 x 2 ....x n 1 x1 + 1 x2 + .... + 1 xn ≥ nn 1 1 x1 x 2 ... (A.M. ≥ G.M.) 1 (A.M. ≥ G.M.) xn ⎛ 1 1 1 ⎞ ⎟ ≥ n2 Multiply the two inequalities, ( x 1 + x 2 + .... + x n )⎜⎜ + + .... + x n ⎟⎠ ⎝ x1 x 2 Method 3 a1 ≥ a2 ≥ … ≥ an (Tchebychef’s inequality) If ∑a ∑b ≥ ∑a b i n i n i i n . Without lost of generality, let x1 ≥ x2 ≥ … ≥ xn and y1 ≥ y2 ≥ … ≥ yn, and put ai = xi, bi = 1/xi for all i = 1,2, …, n in Tchebychef’s inequality, 1 1 xi xi 1 xi n xi xi ≥ = =1 ⇒ ≥ n2 xi n n n n Method 1 n n ⎛ 1⎞ ⎛ n +1⎞ n n +1 n n +1 n > n +1 ( n + 1) < n ⇔ ⇔ ⇔ ⎟ <n ⎜1 + ⎟ < n ⎜ ⎝ n⎠ ⎝ n ⎠ n ⎛ 1⎞ Let P(n) be the proposition : ⎜1 + ⎟ < n . ⎝ n⎠ 3 64 ⎛ 1⎞ For P(3), ∴ P(3) is true. <3 ⎜1 + ⎟ = ⎝ 3⎠ 27 k ⎛ 1⎞ Assume P(k) is true for some k ∈ N. i.e. ⎜1 + ⎟ < k … (1) ⎝ k⎠ k +1 k k 1 ⎞ 1 ⎞ ⎛ 1 ⎞ ⎛ 1⎞ ⎛ 1 ⎞ 1 ⎞ ⎛ ⎛ For P(k + 1), ⎛⎜1 + 1 1 1 < + + = + ⎟ , by (1) ⎟ < k ⎜1 + ⎟ ⎜1 + ⎟ ⎜ ⎟ ⎜ ⎜ ⎟ ⎝ k +1⎠ ⎝ k +1⎠ ⎝ k +1 ⎠ ⎝ k ⎠ ⎝ k +1⎠ ⎝ k +1 ⎠ k =k+ < k +1 . k +1 ∴ P(k + 1) is also true. By the Principle of Mathematical Induction, P(n) is true ∀n ∈ N. ∑ ∑ 13. b1 ≥ b2 ≥ … ≥ bn, then and ∑ ∑ ∑ Method 2 1 d Let f ( x ) = x x , If x > e, then d dx dx 1 xx = 1 x 1 xx −1 1 dx 1 x + (ln x )x x d 1 dx x 1 −2 = x x (1 − ln x ) 1 xx <0. 1 14. x x is decreasing when x is increasing and x ≥ 3. ∴ Putting x = 3, 4, …., n , n + 1 in f(x), since 3 < 4 < … < n < n + 1, we have: 3 3 > 4 4 > 5 5 > .... > n n > n +1 n + 1 > .... Method 1 n −1 ⎛ 1⎞ n −1 ⇔ n > n n +1 n n > ( n + 1) n −1 ⇔ n > ⎜1 + ⎟ ⎝ n⎠ Use Mathematical Induction to prove the last assertion similar to 13 (Method 1). Method 2 1 Consider g ( x ) = ( x + 1) x , use the same method as in 13 (Method 2) to show that g(x) is decreasing. 5 15. For the sequence of positive numbers 1, a, a2, …, an-1, apply A.M. ≥ G.M. 1 1 + a + a 2 + ... + a n −1 ≥ 1.a.a ....a n Multiply by a – 1 > 0, n 2 (a − 1)(1 + a + a 2 + ... + a n −1 ) ≥ na n −1 (a − 1) ⎧ n ( n −1) ⎫ n ≥ n ⎨a 2 ⎬ ⎩ ⎭ 1 + a + a + ... + a ⇒ n −1 ⎛ n +1 ⎞ a n − 1 ≥ n ⎜⎜ a 2 − a 2 ⎟⎟ ⎝ ⎠ n −1 2 n −1 ⇒ 2 16. Let 1 ≤ r ≤ n, r ∈ N. 2 + 4 + 6 + ... + 2n n > 2.4.6...( 2n ) , A.M. > G.M. (n – r)(r – 1) ≥ 0 ⇒ r(n – r + 1) ≥ n. n Put r = 1, 1.n =n 1 ( 2 + 2n ) n n Put r = 2, 2(n – 1) > n > 2.4.6...( 2n ) n 2 Put r=3 3(n – 2) > n ∴ 2 ⋅ 4 ⋅ 6 ⋅ …. ⋅ (2n) < (n + 1)n : : : : : Put r=n n.1 =n Multiply the inequalities (n!)2 > nn. 17. Similar to No. 1(m). 18. [n – (2r – 1)]2 ≥ 0 ⇒ ⇒ ⇒ Putting r = 1, 2, …, n. n2 ≥ [2n – 1] [1] n2 ≥ [2(n-1) – 1] [3] n2 ≥ [2(n-3) – 1] [5] : : : 2 n ≥ [1] [2n – 1] ∴ [n2]n ≥ [1.3.5…(2n – 1)]2. Multiply all inequalities, 19. n2 – 2n(2r – 1) + (2r – 1)2 ≥ 0 n2 ≥ 2n(2r – 1) + (2r – 1)2 n2 ≥ [2(n – r + 1) – 1] [2r – 1] Method 1 Similar to the first part of Number 15 where a = 2. Method 2 Let P(n) be the proposition : 2 n > 1 + n 2 n −1 . For P(2), 22 = 4 =1+ 2×1.5 >1+ 2 2 For P(3), 23 = 8 = 1 + 3 × 7 3 > 1 + 3 22 ∴ P(3) is true. 2 k > 1 + k 2 k −1 … (1) Assume P(k) is true for some k ∈ N. i.e. For P(k + 1), ∴ P(2) is true. ( ) 2 k +1 = 2 × 2 k > 2 1 + k 2 k −1 , by (1) = 2 + 2 k 2 k −1 > 1 + 2 k 2 k −1 = 1 + 2 k 2 k > 1 + (1 + 0.4) k 2 k = 1 + ( k + 0.4 k ) 2 k > 1 + ( k + 1) 2 k , where k ≥ 3. ∴ P(k + 1) is also true. By the Principle of Mathematical Induction, P(n) is true ∀n ∈ N. 20. 1 + 2 + ... + n n But ≥ n 1.2....n nn ≥ n! Multiply (1) and (2), ⇒ n ( n + 1) 2n ⎛ n +1⎞ ≥ n n! ⇒ ⎜ ⎟ ≥ n! ⇒ ⎝ 2 ⎠ n ⎛ n +1⎞ ⎜ ⎟ ⎝ 2 ⎠ 2n ≥ ( n!) 2 (1) (2) ⎛ n +1⎞ nn ⎜ ⎟ ⎝ 2 ⎠ 2n > ( n!) . 3 6 21. (i) (ii) Since sum of two sides of a Δ ≥ third side, therefore (x + y – z), (y + z – x), (z + x – y) ≥ 0 . Apply A.M. ≥ G.M. (x + y − z ) + (y + z − x ) + (z + x − y ) ≥ 3 (x + y − z )(y + z − x )(z + x − y ) 3 3 ∴ (x + y + z) > 27(x + y – z)(y + z – x)(z + x – y) (y + z − x ) + (z + x − y ) ≥ (y + z − x )(z + x − y ) 2 z≥ ∴ Similarly, (y + z − x )(z + x − y ) y ≥ (x + y − z )(y + z − x ) x ≥ (x + y − z )(z + x − y ) (1) × (2) × (3), 22. E …. (1) …. (2) …. (3) xyz > (x + y – z)(y + z – x)(z + x – y) 1! 2! 3! 4! 5! ... (2n − 1)! 1! 2! ...(n − 1)! n! (n + 1)! ... (2n − 1)! = (2 ×1)! (2 × 2)! ... [2(n − 1)] ! 2! 4! ... [2(n − 1)] ! (n − 1)! (2n − 1)! × n! = n! nΠ−1 k! (n + k )! 1! (n + 1)! 2! (n + 2)! × × ... × = k =1 (2 × 1)! (2 × 2)! (2k )! [2(n − 1)] ! = 1! 3! 5! ….(2n – 1)! = But k! (n + k )! ⎡ n + 1⎤ ⎡ n + 2 ⎤ ⎡ n + k ⎤ = × n!≥ n! , since n ≥ k . ... (2k )! ⎢⎣ k + 1⎥⎦ ⎢⎣ k + 2 ⎥⎦ ⎢⎣ k + k ⎥⎦ ∴ E ≥ n! Π n!= n!(n!) n −1 k =1 n −1 = (n!) n E = a2 (p – q)(p – r) + b2 (q – r)(q – p) + c2 (r – p)(r – q) = ( b2 + c2 – 2bc cos A ) (p – q)(p – r) + b2 (q – r)(q – p) + c2 (r – p)(r – q) = b2 [(p – q)(p – r) + (q – r)(q – p)] + c2 [(p – q)(p – r) + (r – p)(r – q) ] – 2bc (p – q)(p – r) cos A = b2 (p – q)2 + c2 (p – r)2 – 2bc (p – q)(p – r) cos A ≥ b2 (p – q)2 + c2 (p – r)2 – 2bc (p – q)(p – r) , it is trivial that E ≥ 0 if (p – q)(p – r) cos A ≤ 0. = [ b(p – q) – c(p – r) ]2 ≥ 0 (ii) E = a2yz + b2zx + c2xy = a2yz + b2z (–y –z) + c2 (–y –z)y = (a2 – b2 – c2)yz – b2z2 – c2y2 2 2 = –2bc cos A yz – b z – c2y2 ≤ –2bc yz – b2z2 – c2y2, it is trivial that E ≤ 0 if 2bc cos A ≥ 0 = –(bz + cy)2 ≤ 0 23. (i) 24. E (a, b, c) = a(a – b)(a – c) + b(b – c)(b – a) + c(c – a)(c – b) Since E(a, b, c) = E(b, a, c) = E(b, c, a) = E(c, a, b) = … , E is cyclic and symmetric. Therefore, without lost of generality, let a ≤ b ≤ c. E (a, b, c) = a(a – b) [(a – b) + (b – c)] + b(b – c)(b – a) + c(c – a)(c – b) = a(a – b)2 + [a(a – b) (b – c) – b(b – c)(a – b)] + c(c – a)(c – b) = a(a – b)2 + (a – b)2 (b – c) + c(c – a)(c – b) ≥ 0 , since c – a ≥ 0 , c – b ≥ 0. Similarly let F(a, b, c) = a2(a – b)(a – c) + b2(b – c)(b – a) + c2(c – a)(c – b) Since F(a, b, c) = F(b, a, c) = F(b, c, a) = F(c, a, b) = … , F is cyclic and symmetric. F(a, b, c) = a2(a – b) [(a – b) + (b – c)] + b2(b – c)(b – a) + c2(c – a)(c – b) = a2(a – b)2 + [a2(a – b) (b – c) – b2(b – c)(a – b)] + c2(c – a)(c – b) = a2(a – b)2 + (a2 – b2)(a – b)(b – c) + c2(c – a)(c – b) = a2(a – b)2 + (a + b)(a – b)2(b – c) + c2(c – a)(c – b) ≥ 0 , since c – a ≥ 0 , c – b ≥ 0. 25. ⎞ ⎛ 4 2 ⎞⎛ 4 2 ⎞ ⎛ 4 By CBS inequality, ⎜⎜ ∑ x i ⎟⎟⎜⎜ ∑ y i ⎟⎟ ≥ ⎜⎜ ∑ x i y i ⎟⎟ ⎠ ⎠ ⎝ i=1 ⎠⎝ i=1 ⎝ i=1 2 Put x 1 = a , x 2 = b , x 3 = c , x 4 = d ; y1 = a 3 , y 2 = b 3 , y 3 = c 3 , y 4 = d 3 ∴ (a + b + c + d) (a3 + b3 + c3 + d3) ≥ (a2 + b2 + c2 + d2)2. 7 26. Let f(x) = x – ln (1 + x) , then f ' ( x ) = 1 − 1 x = > 0 , as x > 0. Therefore f(x) is increasing. 1+ x 1+ x Since x > 0 , f(x) > f(0) = 0 – ln (1 + 0) = 0 ⇒ x – ln (1 + x) > 0 ⇒ x > ln (1 + x). (1 + x ) − x = 1 − 1 = 1 + x − x = x > 0 1 x − , then g' ( x ) = Let g(x) = ln(1 + x ) − 1+ x 1+ x (1 + x )2 1 + x (1 + x )2 (1 + x )2 (1 + x )2 Therefore g(x) is increasing. Since x > 0 , g(x) > g(0) = ln(1 + 0) − 27. ⇒ ln(1 + x ) > 0 =0 1+ 0 x . 1+ x Method 1 ( ) ( ) ( ) 1 − x n 1 − x n +1 (n + 1) 1 − x n − n 1 − x n +1 1 − x n − nx n (1 − x ) − = = n n +1 n (n + 1) n (n + 1) E= = (1 − x ) [(1 + x + x 2 + ... + x n −1 ) − nx n ] = (1 − x )2 [1 + 2x + 3x 2 + ... + (n − 1)x n −2 + nx n −1 ] n (n + 1) n (n + 1) > 0. 1 − x n +1 1 − x n . < n +1 n ∴ Method 2 Since 0 ≤ x ≤ 1 ⇒ 0 ≤ xn-1 ≤ 1 and 0 ≤ xn ≤ 1 ⇒ x n = x xn-1 ≤ 1 xn-1 = xn-1 . Since xn-1 and xn are positive, ∀x, 0 ≤ x ≤ 1 x n ≤ xn-1 ∫ ⇒ 1 1 x n dx ≤ ∫ x n −1dx x x x n +1 1 x n 1 ≤ n +1 x n x ⇒ 1 − x n +1 1 − x n ≤ n +1 n ⇒ When x = 1 , equality holds. When x > 1 , x n > xn-1 > 1 ⇒ ∫ 28. x 1 x n dx > ∫ x 1 x n −1dx x n +1 x x n x > n +1 1 n 1 ⇒ x n +1 − 1 x n − 1 > ⇒ n +1 n ⇒ Let a, m , n > 0 , m > n . 1 1 log 1 + a m < log 1 + a n ⇔ n log 1 + a m < m log 1 + a n ⇔ log 1 + a m m n ( ) ( ( ) < (1 + a ) (1 + a ) > 1 ⇔ ⇔ (1 + a ) ⇔ 1+ am n n m ) ( ) ( ) ( ) n ( 1 − x n +1 1 − x n . < n +1 n < log 1 + a n ) m , since log x is an increasing function. n ⎡1 + a n ⎤ 1+ an ⎢ m ⎥ 1 + a ⎣ ⎦ n m m n ( ) m−n >1 ( If a < 1, then am < an ⇒ 1 + a m < 1 + a n ⇒ 1 + a m If a = 1, then (1 + a ) (1 + a ) If a > 1, then ⎡1 + an ⎤ 1+ an ⎢ m ⎥ ⎣1 + a ⎦ n m = m n n ( ) < (1 + a ) n n m ⇒ (1 + a ) (1 + a ) n m m n >1 . 2m >1 . 2n ) m−n n ⎡ an ⎤ > ⎢ m ⎥ 1+ an ⎣a ⎦ ( ) m−n ( = a ( n −m ) n 1 + a n ) m −n > an 2 − mn (a ) n m −n = a0 =1 . 8 29. ⎛1 + y ⎞ 1 1 ⎟⎟ − − ln⎜⎜ 1− y 1+ y ⎝1− y ⎠ f ( y) = (a) f ' ( y) = = 1 1 1 − y (1 − y ) − (1 + y )(− 1) 1 1 2 + − × = + − 2 2 (1 − y) (1 + y) 1 + y (1 − y)2 (1 + y)2 (1 − y )(1 + y) (1 − y )2 (1 + y )2 + (1 − y )2 − 2(1 − y 2 ) = 4y 2 2 2 (1 − y ) (1 + y ) (1 − y )2 (1 + y )2 > 0. for 0 < y < 1 . ∴ f(y) is an increasing function. 1 1 ⎛1 + 0 ⎞ − − ln⎜ f(y) > f(0) = ⎟ =0⇒ 1− 0 1+ 0 ⎝1− 0 ⎠ ⎛1 + y ⎞ 1 1 ⎟⎟ < . ln⎜⎜ − ⎝1− y ⎠ 1− y 1+ y 1 1 c ⎛1+ c / x ⎞ − Put y = where x > c > 0 , then 0 < y < 1 . By (a) , ln⎜ ⎟< x ⎝1− c / x ⎠ 1− c / x 1+ c / x (b) x x ⎛x +c⎞ − . For a > b > c, we have Therefore 0 < ln⎜ ⎟< ⎝x −c⎠ x −c x +c a a ⎛ a a a xdx a x x ⎞ xdx ⎛x +c⎞ ∫b ln⎜⎝ x − c ⎟⎠dx < ∫b ⎜⎝ x − c − x + c ⎟⎠dx ⇒ ∫b ln(x + c)dx − ∫b ln(x − c)dx < ∫b x − c − ∫b x + c 30. a ⎡ a ⎡ a a x ⎤ x ⎤ dx < ∫ ⎢ln (x − c ) + dx ⇒ x ln(x + c ) < x ln (x − c ) ⇒ ∫ ⎢ln(x + c ) + ⎥ ⎥ b b b b x + c⎦ x − c⎦ ⎣ ⎣ ⇒ a ln (a + c) – b ln (b + c) < a ln (a – c) – b ln (b – c) ⇒ a ln (a + c) –a ln (a – c) < b ln (b + c) – b ln (b – c) a b a b ⎛a +c⎞ ⎛b+c⎞ ⎛a +c⎞ ⎛b+c⎞ ⎛a+c⎞ ⎛ b+c⎞ < ⇒ a ln⎜ ⎟ ⇒ ln⎜ ⎟ < ln⎜ ⎟ ⇒ ⎜ ⎟ < b ln⎜ ⎟ ⎜ ⎟ ⎝ a −c⎠ ⎝ b−c⎠ ⎝b−c⎠ ⎝a −c⎠ ⎝b−c⎠ ⎝a −c⎠ Put α = β + γ ⎛ 1 ⎞ ⎡ γ (1) + β(1 + 1 / β ) ⎤ ⎛ 1⎞ ⎜⎜1 + ⎟⎟ = 1γ ⎜⎜1 + ⎟⎟ < ⎢ ⎥ γ+β ⎦ ⎝ β⎠ ⎣ ⎝ β⎠ β ⎡ γ + β + 1⎤ =⎢ ⎥ ⎣ γ+β ⎦ ∴ β γ +β α 1⎞ ⎛ α + 1⎞ ⎛ =⎜ ⎟ = ⎜1 + ⎟ α⎠ ⎝ α ⎠ ⎝ ⎛ 1⎞ Sn = ⎜1 + ⎟ ⎝ n⎠ γ +β , by A.M. > G.M. α n is a monotonic increasing function. n 1 1 ⎞ ⎛ 1⎞ ⎛ For n > 1, Sn = ⎜1 + ⎟ > ⎜1 + ⎟ = 2 . Also, n ⎠ ⎝ 1⎠ ⎝ ⎛n⎞ 1 ⎛n⎞ 1 ⎛n⎞ 1 n (n − 1)...(n − r + 1) ⎛ 1 ⎞ ⎛ 1 ⎞ n (n − 1) ⎛ 1 ⎞ Sn = 1 + ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ 2 + ... + ⎜⎜ ⎟⎟ r + ... = 1 + n ⎜ ⎟ + ⎜ 2 ⎟ + ... + ⎜ r ⎟ + ... 2! ⎝ n ⎠ r! ⎝n⎠ ⎝n ⎠ ⎝1⎠ n ⎝ 2⎠ n ⎝r⎠n n×n⎛ 1 ⎞ n × n × ... × n ⎛ 1 ⎞ 1 1 1 ⎜ 2 ⎟ + ... + ⎜ r ⎟ + ... = 1 + 1 + + + ... + + ... 2! ⎝ n ⎠ r! 2! 3! r! ⎝n ⎠ < 1 + 1 + 0.5 + 0.16667 + 0.04167 + 0.00833 + 0.00138 +… = 2.718… m ⎛ n + 1⎞ m m 2 m + 4 m + 6 m + ... + (2n ) ≥ n (n + 1) ⇔ 1m + 2 m + 3m + ... + n m ≥ n ⎜ ⎟ ⎝ 2 ⎠ By Tchebychev’s inequality, n 1m−1 × 1 + 2 m−1 × 2 + 3m−1 × 3 + ... + n m−1 × n ≥ 1m−1 + 2 m−1 + 3m−1 + ... + n m−1 (1 + 2 + 3 + ... + n ) <1+1+ 31. ( ) ( = (1 m −1 ) ⎡ n (n + 1) ⎤ + 2 m−1 + 3m−1 + ... + n m−1 ⎢ ⎥ ⎣ 2 ⎦ ) ….(1) 9 ⎡ n (n + 1) ⎤ n 1m − 2 × 1 + 2 m − 2 × 2 + 3m − 2 × 3 + ... + n m − 2 × n ≥ 1m − 2 + 2 m − 2 + 3m − 2 + ... + n m − 2 ⎢ ⎥ ⎣ 2 ⎦ : : : : : : ( ) n n + 1 ⎡ ⎤ n (1 × 1 + 2 × 2 + 3 × 3 + ... + n × n ) ≥ (1 + 2 + 3 + ... + n )⎢ ⎥ ⎣ 2 ⎦ Multiply the inequalities, m −1 m ⎛ n (n + 1) ⎞⎛ n (n + 1) ⎞ m⎛ n +1⎞ n m −1 1m + 2 m + 3m + ... + n m ≥ ⎜ ⎟ ⎟⎜ ⎟ =n ⎜ ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 2 ⎠ ( ) ( ( ) ….(2) …(n) ) m 32. ⎛ n +1⎞ Therefore 1m + 2 m + 3m + ... + n m ≥ n ⎜ ⎟ ⎝ 2 ⎠ a 4 + b 4 + c4 a 2a 2 + b 2b 2 + c2c2 a 2 + b 2 + c2 a 2 + b 2 + c2 = ≥ By Tchebychev’s inequality, 3 3 3 3 2 2 ⎛ aa + bb + cc ⎞ ⎛ a + b + c a + b + c ⎞ ⎛ a + b + c ⎞ =⎜ ⎟ ⎟ =⎜ ⎟ ≥⎜ 3 3 3 3 ⎠ ⎠ ⎝ ⎝ ⎠ ⎝ 4 4 4 4 ∴ 27(a + b + c ) > (a + b + c) . 33. 4 Method 1 1 2 13 + 23 + 33 + …. + n3 = n 2 (n + 1) 4 1 2 3 2 2 8(13 + 23 + 33 + …. + n3) – n(n + 1)3 = 8 × n 2 (n + 1) − n (n + 1) = n (n + 1) [2n − n − 1] = n (n + 1) (n − 1) 4 ≥ 0, n > 1. ∴ n(n + 1)3 ≤ 8(13 + 23 + 33 + …. + n3) . Method 2 8k3 – [ k (k + 1)3 – (k – 1) k3 ] = 8k3 – k [k3 + 3k2 + 3k + 1 – k3 + k2 ] = 4k3 – 3k2 – k = k(4k + 1)(k – 1) ≥ 0 ∑ [k(k + 1) − (k − 1)k n ∴ k (k + 1)3 – (k – 1) k3 ≤ 8k3 ∴ n(n + 1)3 ≤ 8(13 + 23 + 33 + …. + n3) . k =1 34. By A.M. > G.M., (i) (ii) ]≥ 8∑ k n 3 3 k =1 …. (1) …. (2) ⎛ 1 1 1 ⎞ + + ⎟⎟ ≥ 9 ⎝ x1 x 2 x 3 ⎠ x Put f(x) = e – (1 + x), then f ’(x) = ex – 1 . ∴ f(x) is increasing. If x > 0 , f ’(x) > e0 – 1 = 0 . 0 ∴ f(x) is decreasing. If x < 0 , f ’(x) < e – 1 = 0 . ∴ f(x) is a minimum at x = 0 . ∴ f(x) = ex – (1 + x) > f(0) = e0 – (1 + 0) = 0 and ex > 1 + x for x ≠ 0. 9×(1)×(2), 35. x1 + x 2 + x 3 3 ≥ x1x 2 x 3 3 1 1 1 + + x1 x 2 x 3 1 1 1 ≥3 3 x1 x 2 x 3 3 Put (x1 + x 2 + x 3 )⎜⎜ ⎛ x3 ⎞ ⎛ π⎞ g(x) = tan x − ⎜⎜ x + ⎟⎟, x ∈ ⎜ 0, ⎟ , then g’(x) = sec2 x – 1 – x2 = tan2 x – x2 > 0, 3 ⎠ ⎝ 2⎠ ⎝ ⎛ π⎞ since tan x > x, for x ∈ ⎜ 0, ⎟ . ⎝ 2⎠ 10 36. 37. ⎛ ⎛ x3 ⎞ 03 ⎞ ∴ g(x) is increasing. Since x > 0, g(x) = tan x − ⎜⎜ x + ⎟⎟ > g(0) = tan 0 − ⎜⎜ 0 + ⎟⎟ = 0. 3⎠ 3 ⎠ ⎝ ⎝ x3 ⎛ π⎞ < tan x , x ∈ ⎜ 0, ⎟ . ∴ x+ ⎝ 2⎠ 3 If b2 < ac , then x2 + 2bx + ac > 0 ∀ x∈ and a ≠ 0. Put x = 2a, a(4a + 4b + c) > 0 …. (1) Put x = a, a(a + 2b + c) >0 …. (2) (1) × (2), a2(4a + 4b + c) (a + 2b + c) > 0. Since a2 > 0 and a + 2b + c > 0 , we have 4a + 4b + c > 0. C nk 1 n! 1 1 n n −1 n − 2 n − k +1 1 2 ⎞ ⎛ k + 1⎞ 1 ⎛ 1 ⎞⎛ = = × × × × ... × = × 1 × ⎜1 − ⎟⎜1 − ⎟...⎜1 − ⎟≤ k k n k!(n − k )! n k! k k k k k! n ⎠ k! ⎝ n ⎠⎝ n ⎠ ⎝ n 1 1 1 1 1⎞ ⎛ n 1 n 1 n 1 n 1 ⎜1 + ⎟ = 1 + C1 + C 2 2 + ... + C k k + ... + C n n ≤ 1 + + + ... + + ... + n! k! 1! 2! n n n n n⎠ ⎝ 1 1 1 1 <1+1+ + + ... + + 1× 2 2 × 3 (n − 2)(n − 1) (n − 1)n 1 ⎞ ⎛ 1 1⎞ 1 ⎛ 1⎞ ⎛1 1⎞ ⎛ 1 = 1 + 1 + ⎜1 − ⎟ + ⎜ − ⎟ + ...⎜ − − ⎟ =1+1+1− < 3 ⎟+⎜ n ⎝ 2⎠ ⎝ 2 3⎠ ⎝ n − 2 n −1⎠ ⎝ n −1 n ⎠ 38. (i) (ii) 2(x2 + y2) – (x + y)2 = x2 – 2xy + y2 = (x – y)2 ≥ 0 ∴ 2(x2 + y2) ≥ (x + y)2 and the equality holds ⇔ (x – y)2 = 0 ⇔ x = y. 2 2 2 2 2 ⎡⎛ 1⎞ ⎛ 1⎞ ⎤ 1 1⎞ ⎛ 1 1⎞ ⎛ a +b⎞ ⎛ 2⎢⎜ a + ⎟ + ⎜ b + ⎟ ⎥ ≥ ⎜ a + + b + ⎟ = ⎜1 + + ⎟ = ⎜1 + ⎟ a⎠ ⎝ b ⎠ ⎥⎦ by ( a ) ⎝ a b⎠ ⎝ a b⎠ ⎝ ab ⎠ ⎢⎣⎝ 2 ⎛ ⎛ 2 ⎞2 ⎞ ⎟ , ≥ ⎜1 + ⎜ ⎜ ⎝ a + b ⎟⎠ ⎟ ⎠ ⎝ [ ] (i) (ii) 2 2 1⎞ ⎛ 1⎞ 25 ⎛ . ⎜a + ⎟ + ⎜b + ⎟ ≥ ⎝ a⎠ ⎝ b⎠ 2 1 x5 − 1 (1) If x ≥ 1, x 2 − 3 = ≥0 , since x5 ≥ 1. 3 x x 1 x5 − 1 ≤0, (2) If 0 < x < 1, x 2 − 3 = since x5 ≤ 1. x x3 1 1 x −1 1 ⎞ ⎛ Combining (1) and (2), (x − 1)⎜ x 2 − 3 ⎟ ≥ 0 ⇒ x 2 (x − 1) ≥ 3 ⇒ x 3 − x 2 ≥ 2 − 3 x x x x ⎝ ⎠ The equality holds when x = 1. 2 = 1 + 2 2 = 25 39. 2 ⎛a +b⎞ sin ce ⎜ ⎟ ≥ ab . ⎝ 2 ⎠ ∴ Let a, ar, ar2 be the sides of the triangle. Since the sum of any two sides > the third side. …. (1) ar + ar2 > a …. (2) ar + a > ar2 From (1), Since r > 0, From (2), Since a > 0, r + r2 > 1, r2 + r – 1 > 0 ∴ r> ∴ r> 5 −1 − 5 −1 or r < ….(3) 2 2 5 −1 2 Since a > 0, r2 – r – 1 < 0. ∴ r< 1+ 5 5 −1 or r > …. (4) 2 2 11 Combining (3) and (4), 40. 41. 5 −1 2 2 x < 1 or x > 2. B C 1 − tan tan π − (B + C ) A B+C ⎛π B+C⎞ 2 2 = tan⎜ − tan = tan = ⎟ = cot B C 2 2 2 ⎠ 2 ⎝2 tan + tan 2 2 A⎛ B C⎞ B C tan ⎜ tan + tan ⎟ = 1 − tan tan ⇒ 2⎝ 2 2⎠ 2 2 A B B C C A ⇒ tan tan + tan tan + tan tan = 1 2 2 2 2 2 2 2 Now, ⇒ 2 …. (1) 2 A B⎞ ⎛ B C⎞ ⎛ C A⎞ ⎛ ⎜ tan − tan ⎟ + ⎜ tan − tan ⎟ + ⎜ tan − tan ⎟ ≥ 0 2 2 2 2 2 2⎠ ⎠ ⎝ ⎝ ⎠ ⎝ A B C⎞ ⎛ A B B C C A⎞ ⎛ 2⎜ tan 2 + tan 2 + tan 2 ⎟ − 2⎜ tan tan + tan tan + tan tan ⎟ ≥ 0 2 2 2⎠ ⎝ 2 2 2 2 2 2⎠ ⎝ A B C⎞ ⎛ 2⎜ tan 2 + tan 2 + tan 2 ⎟ − 2(1) ≥ 0 2 2 2⎠ ⎝ A B C tan 2 + tan 2 + tan 2 ≥ 1 2 2 2 ⇒ ⇒ 42. 5 +1 <r< ⎛a +b⎞ Since ⎜ ⎟ ⎝ 2 ⎠ a +b > ( ab ) a +b = (ab ) a +b 2 a +b It remains to show (ab ) 2 > a b b a …. Since (1) is symmetric in a, b we can let a ≥ b > 0 . a +b (ab) 2 a −b ⎛a⎞ 2 = ⎜ ⎟ >1, b a a b ⎝b⎠ Result follows. since a ≥ 1, b (1) a−b ≥0 . 2 12
© Copyright 2026 Paperzz