Geometry 4.1 Translations 4.1 Warm Up Translate point P. State the coordinates of P'. 1. P(-4, 4); 2 units down, 2 units right 2. P(-3, -2); 3 units right, 3 units up 3. P(2,2); 2 units down, 2 units right 4. P(-1, 4); 3 units left, 1 unit up 11/9/2015 4.1 Translations 4.1 Essential Question How can you translate a figure in a coordinate plane? 11/9/2015 4.1 Translations Goals Identify and use translations in the plane. 11/9/2015 4.1 Translations Translation A translation is a transformation that maps every two points P and Q to points P’ and Q’ so that the following properties are true: P’ 1. PP’ = QQ’ P 2. PP’ || QQ’ Q’ A Translation is an isometry. 11/9/2015 Q 4.1 Translations Postulate 4.1 Postulate 4.1 Translation Postulate A translation is a rigid motion. A rigid motion preserves length and angle measure, so it is an isometry. The following statements are true for the translation shown. 11/9/2015 4.1 Translations Translations in the Coordinate Plane Translation Mapping Formula: (x, y) (x + a, y + b) -a a and b are constants. (x + a, y + b) shifts a units horizontally. 11/9/2015 4.1 Translations +a Translations in the Coordinate Plane Translation Mapping Formula: (x, y) (x + a, y + b) -a a and b are constants. -b (x + a, y + b) shifts a units horizontally. (x + a, y + b) shifts b units vertically. 11/9/2015 +b +a 4.1 Translations Translations in the Coordinate Plane a > 0 shift right (x, y) (x + 3, y) a < 0 shift left (x, y) (x – 2, y) b > 0 shift up (x, y) (x, y + 9) b < 0 shift down (x, y) (x, y – 5) a = 0 no horizontal shift (x, y) (x, y + 4) b= 0 no vertical shift (x, y) (x + 7, y) 11/9/2015 4.1 Translations Use coordinate notation to describe the translation. A point is translated 10 units to the right and 8 units up. (x, y) (x + 10, y + 8) A point is translated 7 units to the left, and 2 units up. (x, y) (x – 7, y + 2) A point is translated 1 unit to the left, and 2 units down. (x, y) (x – 1, y – 2) 11/9/2015 4.1 Translations Example 1 Translate RS using: (x, y) (x + 3, y + 2) R(1, 2) (1 + 3, 2 + 2) R S 3 11/9/2015 4.1 Translations Example 1 Translate RS using: (x, y) (x + 3, y + 2) R(1, 2) (1 + 3, 2 + 2) R S 3 11/9/2015 4.1 Translations 2 Example 1 Translate RS using: (x, y) (x + 3, y + 2) R(1, 2) (1 + 3, 2 + 2) R’(4, 4) 11/9/2015 R’(4, 4) S R 4.1 Translations Example 1 Translate RS using: (x, y) (x + 3, y + 2) R(1, 2) (1 + 3, 2 + 2) R’(4, 4) R’(4, 4) S R S(3, 3) (3 + 3, 3 + 2) 11/9/2015 4.1 Translations Example 1 Translate RS using: (x, y) (x + 3, y + 2) R(1, 2) (1 + 3, 2 + 2) R’(4, 4) S’(6, 5) R’(4, 4) S R S(3, 3) (3 + 3, 3 + 2) 11/9/2015 4.1 Translations Example 1 Translate RS using: (x, y) (x + 3, y + 2) R(1, 2) (1 + 3, 2 + 2) R’(4, 4) S’(6, 5) R’(4, 4) S R S(3, 3) (3 + 3, 3 + 2) S’(6, 5) 11/9/2015 4.1 Translations Example 2 Given ABC with: A(-2, 5), B(-4, 1), C(0, 0) Sketch the image after translation (x, y) (x + 4, y – 4) A B C A(-2, 5) A’(2, 1) B(-4, 1) B’(0, -3) C(0, 0) C’(4, -4) 11/9/2015 A’ B’ C’ 4.1 Translations Identify the Translation Rule Write the rule that translates (-4, -2) to (1, 4). To move from (-4, -2) to (1, 4) go to the right 5 and up 6. So the translation rule is: (x, y) (x + 5, y + 6). 11/9/2015 4.1 Translations Example 3 What rule translates (4, 2) to (– 3, –1)? (x, y) → (x – 7, y – 3) 11/9/2015 4.1 Translations Example 4 Complete the statement. If (4, 0) maps onto (5, 1), then (6, 8) will map (7, 9) onto_______. Why? (4 + 1, 0 + 1) (5, 1) So (6 + 1, 8 + 1) (7, 9) 11/9/2015 4.1 Translations Your Turn Complete the statement. If (7, 8) maps onto (4, 10), then (20, 5) will map (17, 7) onto_______. Why? (7 – 3, 8 + 2) (4, 10) So (20 – 3, 5 + 2) (17, 7) 11/9/2015 4.1 Translations Example 5 B’ Write the rule used to translate ABCD. (x, y) → (x + 6, y + 4) 11/9/2015 B A 4.1 Translations C D A’ C’ D’ Example 6 Translate JKL using the notation (x, y) → (x – 4, y +3). L’ Notice: the rays drawn from each point to its image are parallel. L J’ K’ K J 11/9/2015 4.1 Translations Example 7 Translate ABC by (x, y) → (x + 4, y – 3). A(-4, 8) B(-10, -2) C(-22, 15) 11/9/2015 4.1 Translations A’B’C’ A’(0, 5) B’(-6, -5) C’(-18, 12) Performing Compositions Theorem 4.1 Composition Theorem The composition of two (or more) rigid motions is a rigid motion. 11/9/2015 4.1 Translations Example 8 Graph 𝑅𝑆 with endpoints R(−8, 5) and S(−6, 8) and its image after the composition. S’ Translation: (x, y) → (x + 5, y − 2) Translation: (x, y) → (x − 4, y − 2) R S’’ R’ Write a single translation rule for the composition. (x, y) → (x + 1, y − 4). 11/9/2015 S 4.1 Translations R’’ Summary A translation shifts a figure horizontally or vertically. A translation is an isometry. Translation formula: (x, y) (x + a, y + b) 11/9/2015 4.1 Translations Assignment 11/9/2015 4.1 Translations
© Copyright 2026 Paperzz