This article was downloaded by: [Smithsonian Institution Libraries] On: 30 May 2011 Access details: Access Details: [subscription number 935277109] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK Palynology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t913285617 A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia Carlos A. Jaramilloa; Milton Ruedab; Vladimir Torresc a Smithsonian Tropical Research Institute Balboa, Panama b Paleoflora Ltd., Bucaramanga, Colombia c Colombian Petroleum Institute, Bucaramanga, Colombia Online publication date: 23 May 2011 To cite this Article Jaramillo, Carlos A. , Rueda, Milton and Torres, Vladimir(2011) 'A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia', Palynology, 35: 1, 46 — 84 To link to this Article: DOI: 10.1080/01916122.2010.515069 URL: http://dx.doi.org/10.1080/01916122.2010.515069 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Palynology Vol. 35, No. 1, June 2011, 46–84 A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia Carlos A. Jaramilloa*, Milton Ruedab and Vladimir Torresc Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 a Smithsonian Tropical Research Institute Balboa, Panama; bPaleoflora Ltd., Bucaramanga, Colombia; cColombian Petroleum Institute, Bucaramanga, Colombia Hydrocarbon exploration in the Llanos Foothills of Colombia has intensified during the past several decades. Exploration in this region is problematic owing to structural complexities, rapid lateral facies changes, and the difficulties of acquiring good seismic imaging. These elements increase the uncertainties about the prognosis and subsequent drilling of exploratory wells. Under these conditions, biostratigraphy can play a significant role in the exploratory process. In the Llanos Foothills, palynology is the most useful biostratigraphic tool because pollen is the most abundant fossil group. In this study we analyze pollen information from 70 sections (624,744 palynomorph grains from 6707 samples) to construct a biostratigraphic zonation for the Llanos Foothills and Llanos basins. Using both graphic correlation and constrained optimization in our analysis, we propose 18 palynological zones for the Cenozoic of the Llanos and Llanos Foothills. These zones are tied to the geological timescale using 18 calibration points that include carbon isotopes, foraminifera, and magnetostratigraphy. Keywords: Cenozoic; tropics; pollen; zonation; biostratigraphy; South America 1. Introduction The Llanos Foothills of Colombia are actively being explored for hydrocarbons. The structural, stratigraphic and seismic complexity of this region increases the uncertainty of geological models for exploration (Bayona et al. 2008). In this type of environment, biostratigraphy is a very useful tool, especially during the drilling of exploratory wells and in determining new prospects and target areas. Palynomorphs are the most abundant and useful fossil group in Cenozoic rocks of the Colombian Foothills, and palynology has long been used by the oil industry in Colombia (Jaramillo and Rueda 2004). Nonetheless, there still is no published biostratigraphic scheme for Colombian basins that accommodates the needs of modern hydrocarbon exploration. Previous zonations for northern South America (Van der Hammen 1954; Germeraad et al. 1968; Van der Hammen et al. 1973; Regali et al. 1974; Lorente 1986; Muller et al. 1987; Kuhry and Helmens 1990; Wijninga 1996) lack data from Colombian basins and are not easily applied in Colombia. In this study, we analyzed the palynological information of 70 sections that together encompass the entire Cenozoic, to produce a biostratigraphic zonation tailored to the Llanos and Llanos Foothills of *Corresponding author. Email: [email protected] ISSN 0191-6122 print/ISSN 1558-9188 online Ó 2011 AASP – The Palynological Society DOI: 10.1080/01916122.2010.515069 http://www.informaworld.com Colombia. The zonation was calibrated with foraminifera, carbon isotopes and magnetostratigraphy. 2. Previous zonations Few palynological zonations have been proposed for Colombia (Van der Hammen 1957a, 1957b; Gonzalez 1967; Germeraad et al. 1968; Muller et al. 1987; Jaramillo and Rueda 2004; Jaramillo et al. 2005, 2009). Van der Hammen (1957a, 1957b, 1958) was the pioneer of palynological studies of Tertiary strata in northern South America. He and his students (e.g. Gonzales, 1967) used pollen/spore fluctuations based on coal samples from different areas in Colombia as proxies for climatic cycles that presumably have a chronostratigraphic value. In this method, proportions of different elements, such as the Psilamonocolpites, Mauritiidites and Psilatriletes groups, are then calculated and plotted along the stratigraphic sections. Abundance peaks of specific groups, assumed to represent vegetational changes due to regional climatic changes and therefore to have a chronostratigraphic value, can be used for correlation. The ages are then positioned on the pollen diagram based on the changes of relative proportions of certain groups, assuming that climatic changes are correlated with key boundaries. 47 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Van der Hammen (1958) correlated the base of each epoch to a sandstone, and this biostratigraphic scheme has been used to date most of the Tertiary continental formations of Colombia and Guyana (Van der Hammen 1954, 1956a, 1956b, 1957a, 1957b, 1958; Van der Hammen and Wymstra 1964; Leidelmeyer 1966; Van der Hammen and Burger 1966; Van der Hammen and Garcı́a 1966; Gonzalez 1967). Many of those dates are still deeply rooted in Colombian stratigraphy and used for correlation and modelling purposes. However, there are many problems associated with this approach. First, there is a statistical artifact associated with Van der Hammen’s pollen diagrams, known as the ‘closed sum’ (Moore et al. 1991; Kovach and Batten 1994). Percentages of each sporomorph group were calculated by counting 200– 300 grains per sample and then normalizing the results. This method, however, tends to produce artificial negative correlations when the abundance of one group in a sample significantly increases, causing an automatic decrease in abundance in a second group even though its real abundance did not change. Such negative correlations among Van der Hammen’s groups could be an artifact of normalization, and peaks of certain groups could in fact be simply the product of a decrease in other groups. It is also unlikely, as this approach assumes, that pollen production and dispersal is similar for all species and that all taxa have a regional distribution (Porta and Sole de Porta 1962). Furthermore, coals, the main source of Van der Hammen’s samples, generally have a unique and facies-restricted flora that is unsuitable for biostratigraphic purposes (Traverse 2007). Porta and Sole de Porta (1962) analyzed 24 samples in 12 m of a Miocene section in Cundinamarca, and found that the resultant pollen diagram could be easily correlated with zones A and B of a general pollen diagram for the Oligocene. Moreover, because this approach does not use an independent dataset that can test the ages given by pollen groups, circular reasoning is highly possible. In conclusion, correlation of ‘climatic cycles’ deduced from the pollen record probably reflects similar ecological conditions rather than time lines, and should not be used as a tool for dating Cenozoic rocks. Germeraad et al. (1968) proposed a number of palynological zones for tropical Tertiary sediments. The zones were based mainly on material from Nigeria, Venezuela, and Colombia. The zonation proposed by Germeraad is still extensively used in Colombia and has been the basis for using pollen as a dating tool in Colombia over the past 40 years. However, the level of resolution is not adequate for modern exploration, and Germeraad’s zonation also relies on some palynomorph species that are very common in Venezuelan sediments but rare in Colombia. Muller et al. (1987) expanded Germeraad’s zonation to the Cretaceous and proposed many more subdivisions for the Cenozoic. Most of the information for this work, however, came from Venezuelan basins rather than from Colombia. Jaramillo and Rueda (2004), and Jaramillo et al. (2005, 2009) published a zonation for the middle to late Paleocene and the Eocene-Oligocene, respectively. The zonation presented here is a continuation of that work, but it includes 50 new sites and is expanded to the entire Cenozoic. A comparison of our previous zonations with the proposed in this article is shown in the supplementary online material, Figure S1. 3. Methods The research was developed following two phases, the first phase constructed the zonation, and the second calibrated the proposed zonation. 3.1. Zonation We analyzed the palynological information from 70 sites located along the Llanos and Llanos Foothills and adjacent basins (Table 1, Figure 1). We also include sites outside the region (e.g. Urumaco in western Venezuela) that could contain both foraminifera and pollen for calibration purposes. Many sites were either outcrops or cores, to minimize the effect of contamination by caving when using ditch-cutting samples (Table 1). Sites from the literature were also added (Jaramillo and Dilcher 2001). Only sites that had numerical counts were used. A master taxonomic dictionary was developed to contain all species named in all of the sites, along with their possible synonymies (Supplementary material, Table S1). The dictionary was built by comparing the taxa against a morphological electronic database that contains every taxon described for the tropics of South America (Jaramillo and Rueda 2008). Of the 6439 taxa in our dictionary, 372 taxa were then selected for use in the biostratigraphic analysis. These taxa had several characteristics in common: they were present in more than one site, morphologically distinct, relatively common, and had ranges that were constrained stratigraphically. We did not use all the taxa because most of them either were rare or had long stratigraphic ranges (e.g. Psilatriletes sp.). Informal species are denoted by quotation marks (e.g. Retitricolporites ‘beccus’). We used two biostratigraphic methods to analyze the palynological information: graphic correlation and constrained optimization. The goal in both techniques is finding an optimal sequence of events. An event refers to either a first appearance datum (FAD) or a last appearance datum (LAD). Optimal refers to a 48 Table 1. C.A. Jaramillo et al. The locations of the 70 sites in this study. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Site Aga-1 Ara-2 Ara-3 Ara-4 Buc-1 Bue-3Carb Bue-3Cor Bue-H15 Cas-1 Cerrejon Cer-3 Chi-1 Colorado Concentracion Cop-1 Cor-1 Cus-5 Din-K12 Flo-C3 Gib Gig-1 Gol-1 Gon-1 Gonzales-1 GonOut Gua-1 Gua-2 Guac-1 Hig-1 Jor-1 Jub-1 LaHe-1 LaMar-1 La Sorda Las-1 Lis-1 Man-31 Medina Mol-1 Mon-1A Muc-3 Nis-E1 Olini Ori-1 Ort-12 Pac-1 Pal-1 Pau-C2FZ Pij-1 Pum-1 Qui-1 Regadera Reg-1 RieMacheRull RioOro-14 RioLoro RioMolino RioCh-1 SanFel-1 SanJRS SanJ-1 SanMar-1 Latitude Longitude 5.83 6.96 6.98 6.98 5.61 4.98 4.98 4.95 6.76 11.07 8.21 6.57 4.84 6.03 4.45 3.77 5.11 3.09 5.49 7.04 2.28 5.25 8.28 8.60 8.28 4.74 4.70 2.15 3.10 6.07 6.99 6.25 5.07 7.19 5.38 7.10 2.62 4.50 11.30 6.83 8.10 5.62 3.75 0.57 3.98 3.98 4.43 5.44 3.00 0.57 2.08 7.40 6.88 10.92 9.10 8.40 10.68 4.93 5.13 4.86 3.38 6.01 774.32 771.84 771.82 771.84 771.36 772.75 772.75 772.73 773.57 772.69 772.74 770.92 773.22 772.76 773.28 773.73 772.66 775.30 772.42 772.18 775.56 772.69 772.58 772.70 772.58 773.14 773.16 775.88 775.27 771.24 771.53 771.00 772.51 773.29 771.97 773.53 775.54 773.10 772.49 774.04 772.52 772.31 775.32 776.89 775.19 773.51 773.36 772.46 775.27 776.90 775.93 772.40 773.55 772.26 772.90 771.80 772.94 772.73 771.85 774.63 773.86 771.65 Table 1. Type # of samples ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting core core ditch-cutting core ditch-cutting ditch-cutting outcrop outcrop ditch-cutting ditch-cutting core core ditch-cutting outcrop ditch-cutting ditch-cutting ditch-cutting ditch-cutting outcrop core ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting outcrop ditch-cutting ditch-cutting core outcrop ditch-cutting ditch-cutting ditch-cutting ditch-cutting outcrop ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting ditch-cutting outcrop ditch-cutting outcrop ditch-cutting outcrop outcrop ditch-cutting ditch-cutting outcrop ditch-cutting ditch-cutting 214 137 61 52 19 76 144 30 122 278 90 19 62 37 33 100 111 48 61 251 22 63 199 26 39 13 110 146 59 30 29 25 128 60 17 41 39 678 87 207 79 141 79 88 26 18 216 21 46 185 64 100 205 21 77 57 20 184 28 49 105 52 (continued) (Continued). Site Sutatatuza Tam-2 Tib-182/187 Toc-1 Uribe UrumacoEast UrumacoWest Zul-1 Latitude Longitude 5.13 6.57 8.59 6.28 7.25 11.47 11.18 8.21 773.50 771.76 772.67 771.80 773.37 769.55 770.26 772.47 Type # of samples outcrop ditch-cutting ditch-cutting ditch-cutting outcrop outcrop outcrop ditch-cutting 69 96 172 150 62 31 293 127 sequence that best agrees with the empirical sequence of events found in a given site. Because a species originates and goes extinct only once, there is only one true sequence of events, and the work of a biostratigrapher is finding that true sequence. The sequences generated by each method were then compared. Graphic correlation (Shaw 1964; Edwards 1984, 1989) dismisses narrative-type scenarios and produces alternative hypotheses that can be expressed in testable forms (Mann and Lane 1995). Graphic correlation does not make the a priori assumption that first and last appearances in a section record speciation and extinction events. By combining the information of multiple sections, the method allows the true stratigraphic range of a taxon to be determined; therefore, the use of an ‘index’ fossil is not necessary because the whole assemblage is being compared. This approach also produces a biostratigraphic framework that can be challenged constantly as new information (more sections) becomes available. Graphic correlation has been successfully used by many authors including Amoco/BP researchers for many years (Carney and Pierce 1995). The graphic correlation analysis was done using GraphCor (Hood 1998). In sites with ditch-cutting samples, the FADs were not used, in order to minimize the effect introduced by caving. Three rounds of correlation were performed until the ranges of every taxon became stable. We chose the Medina section as the reference section for three main reasons: it had the largest number of samples (678), it is an outcrop section that encompasses the whole Cenozoic sequence (6660 m), and it is located in the central part of the Llanos Foothills. To evaluate the degree of confidence in the position of a datum in the composite section, we used the spreading parameter (Jaramillo et al. 2005). A low value of the spreading parameter indicates that the event has a similar biostratigraphic position across all sections, and is therefore a reliable biostratigraphic marker. Only taxa occurring in two or more wells were used to calculate this spreading parameter. For each FAD, the spreading parameter ¼ (oldest FAD in composite units – youngest FAD in composite units)/ 49 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Figure 1. The location of the 70 sites studied. 50. For each LAD, the spreading parameter ¼ (oldest LAD in composite units – youngest LAD in composite units)/50. A spreading value of 50 represents 50 feet in the reference section. This number was chosen because it represents the level of precision expected by drilling engineers when trying to determine the top of a Formation in the Llanos Foothills. Our second technique for biostratigraphic analysis, constrained optimization (Kemple et al. 1995), identifies a best-fit sequence of events that is optimal in the sense that all the empirical data may be fit to the sequence with a minimum of range extensions. Acceptable sequences are constrained to include all observed coexistences of pairs of taxa. The technique allows many taxa to be used, and quantifies the stability of the position of each event in the best sequence of events. CONOP9 software (Sadler 2003) was used to perform the constrained optimization. A code written for R (R-Development-Core-Team 2005) was developed to export the biostratigraphic data from R to CONOP9 (Annex S1 of supplementary material). Abundance matrices in ASCII files were previously introduced in R using the command ‘read.table’. For the constrained analysis, only 53 sites were used; 21 were excluded because they had a large edge effect (Foote 2000). All LAD and FAD events were introduced in CONOP as unpaired events, to allow a much better control on FADs Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 50 C.A. Jaramillo et al. from ditch-cutting wells. Edge effects were further reduced by excluding FAD events of the oldest two samples of every site, and excluding the LAD events of the youngest two samples of every site. FAD events from ditch-cutting wells were also excluded. Those taxa for which FAD and LAD were at the same depth (a single occurrence) were discriminated according to the depth in the site they were found: (1) if the event was located at the top of the well/ section it was considered as a FAD; (2) if the event was located at the base of the well/section is was considered as a LAD; (3) if the event was located neither in the top nor in the base of the well/section, it was excluded to avoid ambiguity. Once a sequence had been derived by both CONOP and graphic correlation, the Kendall Tau rank correlation coefficient was used to compare the sequence order obtained by each method. A value of one means positive and perfect concordance in the comparison (Legendre and Legendre 1998). 3.2. Calibration The next phase consisted of calibrating the sequence of events to the standard geological timescale (Gradstein et al. 2005). Because epoch boundaries within the Cenozoic are defined by foraminifera, magnetostratigraphy, and isotopes, we used published data on foraminifera and magnetostratigraphy (e.g. Herrera 2008), as well as carbon isotope analyses, which have been shown to be a good correlation tool for the Cenozoic (Carvajal-Ortiz et al. 2009). Stable carbon isotope values of bulk sediment (d13CTOM) were measured via flash-pyrolysis at 11008C in a Costech elemental analyser fitted to a Thermo Finnigan Delta plusXL isotope ratio mass spectrometer. Carbonate was removed from the samples by HCl digestion. Analytical precision and accuracy was determined on the basis of repeated analyses of two internal lab standards calibrated against the internationally accepted V-PDB standard. Overall uncertainty was better than 0.08%. Organic carbon content was determined on the basis of the liberated CO2 in the elemental analyzer. Isotope analyses were performed for 11 sites that encompassed most of the Cenozoic. 4. 4.1. Results Zonation The graphic correlation of the 70 sections was performed. The equation of the line of correlation of each site versus the composite section is shown in the supplementary material, Table S4. The entire session of graphic correlation in GraphCor is included in the Annex S2 of the supplementary material. The final sequence of events in the composite section and the spreading parameter for each event is presented in Table 2. A similar version of this table, but with the events organized alphabetically by taxon is presented in the supplementary material, Table S2. Annex S2 of the supplementary material also includes the FAD and LAD of each taxon in every section used in the analysis. Annex S3 of the supplementary material includes the full session of CONOP9 for the constrained optimization analysis. The comparison between the results obtained by graphic correlation and constrained optimization shows a high degree of concordance (Kendall Tau 0.91 when all events are compared, Kendall Tau ¼ 0.98 when only the zonal biomarkers are used, Figure 2). The only key difference is the FAD of Cyclusphaera scabrata (Figure 2b), which is higher in the CONOP analysis than in the sequence obtained through graphic correlation. This is probably due to the rapid radiation at the beginning of the Eocene, which placed many events close together (Jaramillo et al. 2006). The oldest FAD of Cyclusphaera is just below the LAD of Bombacacidites annae. This particular sequence of events occurs only in one site (outcrop section Gonzales), whereas at four other sites, the sequence is the opposite. This pattern explains the difference between the graphic correlation and constrained optimization. After examining the sequence of events and determining which events had the lowest spreading parameters and the greatest presence among sites (Table 2), we selected 20 events as key zonal events as a basis for our proposed zonation (Figure 3). Zone T-01 Spinizonocolpites baculatus. Top: LAD of Spinizonocolpites baculatus. Base: LAD of Echimonocolpites protofranciscoi. Age: early Paleocene (65.5 to 61.9 Ma). Comments: the base of this zone is defined by the LAD of several Cretaceous taxa including Glaphyrocysta perforata, Scabratriletes granularis, Andalusiella gabonensis, Dinogymnium spp. and Buttinia andreevi. Within this zone, there is a large group of events that cluster together at the base of the zone, including the LAD of Gabonisporites vigourouxii, Cerodinium diebelii, Senegalinium bicavatum, Senegalinium laevigatum, Andalusiella gabonensis, Ariadnaesporites spinosus, Duplotriporites ariani, Tercissus sp., Syndemicolpites typicus, Proteacidites dehaani, Phelodinium tricuspe, Echitriletes intercolensis and Bacumorphomonocolpites tausae. There are also several FADs within this zone, including Ctenolophonidites lisamae, Mauritiidites franciscoi franciscoi, M. franciscoi pachyexinatus, Psilabrevitricolporites simpliformis, Racemonocolpites facilis, Proxapertites cursus and the FAD of the acme of Proxapertites operculatus. 51 Palynology Table 2. Biostratigraphic events for the Cenozoic of the Llanos and Llanos Foothill basins. In key zonal taxa ‘A’ represents an event that defines a zone and ‘B’ represents an important event within a zone. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Foveotriletes ornatus Polypodiisporites sp. Verrucatosporites usmensis Monoporopollenites annulatus Cyatheacidites annulatus Clavainaperturites microclavatus Echiperiporites akanthos Echitricolporites spinosus Corsinipollenites sp. Polypodiaceoisporites pseudopsilatus Fenestrites spinosus Magnastriatites grandiosus Perisyncolporites pokornyi Retitricolpites ‘finitus’ Bombacacidites brevis Catostemma type Retitricolpites simplex Tricolpites clarensis Mauritiidites franciscoi franciscoi Mauritiidites franciscoi minutus Crassiectoapertites columbianus Psilaperiporites minimus Proxapertites tertiaria Retitrescolpites? irregularis Striatriletes saccolomoides Echitricolporites mcneillyi Retitriletes sommeri Echitricolporites maristellae Bombacacidites muinaneorum Laevigatosporites granulatus Tetracolporopollenites transversalis Psilatricolporites costatus Nijssenosporites fossulatus Multimarginites vanderhammenii Striatopollis catatumbus Verrutriletes ‘magnoviruelensis’ Verrutriletes virueloides Bombacacidites baculatus Echitriletes muelleri Polysphaeridium subtile Proxapertites operculatus Retitricolporites ‘beccus’ Zonocostites ramonae Fenestrites longispinosus Striatopollis? tenuistriatus Ranunculacidites operculatus Perfotricolpites digitatus Psilabrevitricolporites triangularis Echitricolporites mcneillyi Echiperiporites estelae Polypodiisporites aff. specious Rhoipites guianensis Verrutricolporites rotundiporus Retitricolpites lorentae Scabratricolporites planetensis Tetracolporopollenites maculosus Jandufouria seamrogiformis Margocolporites vanwijhei Psilatricolporites devriesi Spirosyncolpites spiralis Rhoipites hispidus Retimonocolpites retifossulatus Retistephanoporites crassiannulatus Crassoretitriletes vanraadshooveni Grimsdalea magnaclavata Striatricolporites ‘poloreticulatus’ Proteacidites triangulatus Psilatricolporites pachydermatus Composite unit Event 61.5 61.5 61.5 71.7 82.0 102.5 102.5 102.5 112.7 143.5 174.2 174.2 174.2 194.7 204.9 215.2 275.3 275.3 286.8 286.9 316.9 420.1 563.6 563.6 563.6 573.8 604.6 651.9 717.3 727.5 727.5 744.6 758.3 789.0 789.0 789.0 789.0 817.3 817.3 817.3 817.3 817.3 817.3 866.4 866.4 892.2 924.7 1021.2 1150.1 1161.1 1317.3 1317.3 1317.3 1330.7 1351.1 1351.1 1471.1 1471.1 1471.1 1471.1 1471.5 1471.8 1474.1 1874.4 1874.4 1874.4 1878.1 1878.1 LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD FAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD Key zonal taxa B B B B Spreading parameter 289 386 349 382 286 320 347 171 381 281 78 326 337 325 352 325 351 348 391 388 323 326 386 336 321 162 310 248 280 349 342 333 267 136 351 364 387 116 381 318 380 25 331 60 323 330 331 333 B B B B 312 330 321 274 262 281 313 305 323 182 327 327 369 301 52 60 8 289 292 Number of sites Age (Ma) Zone 10 49 39 44 5 14 32 9 41 6 4 34 43 11 38 30 43 12 57 34 28 13 31 43 22 2 12 16 11 22 42 29 9 11 37 5 29 10 33 11 43 2 27 3 20 34 37 35 0 29 10 45 11 4 11 31 36 29 8 47 35 23 17 13 10 2 16 10 0.08 0.08 0.08 0.10 0.11 0.14 0.14 0.14 0.15 0.19 0.24 0.24 0.24 0.26 0.28 0.29 0.37 0.37 0.39 0.39 0.43 0.57 0.77 0.77 0.77 0.78 0.82 0.89 0.97 0.99 0.99 1.01 1.03 1.07 1.07 1.07 1.07 1.11 1.11 1.11 1.11 1.11 1.11 1.18 1.18 1.21 1.26 1.39 1.56 1.58 1.79 1.79 1.79 1.81 1.87 1.87 2.22 2.22 2.22 2.22 2.22 2.22 2.23 3.40 3.40 3.40 3.41 3.41 18 (continued) 52 Table 2. C.A. Jaramillo et al. (Continued). Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Proxapertites humbertoides Tuberculodinium vancampoae Retipollenites crotonicolumellatus L. proxapertitoides reticuloides Palaeosantalaceaepites cingulatus Echitriporites cricotriporatiformis Laevigatosporites catanejensis Psilastephanocolporites fissilis Trichotomosulcites ‘psilatus’ Echiperiporites scabrannulatus Lanagiopollis crassa Retibrevitricolpites retibolus Rhoipites ‘gigantiporus’ Psilastephanoporites tesseroporus Stephanocolpites evansii Selenopemphix nephroides Cyatheacidites annulatus Retitricolporites ‘fragilis’ Retitricolporites ‘heterobrochatus’ Syncolporites poricostatus Lingulodinium machaerophorum Fenestrites longispinosus Psilatricolporites caribbiensis Stephanocolpites evansii Psilatricolporites caribbiensis Tuberositriletes verrucatus Bombacacidites baumfalki Psilastephanoporites herngreenii Mauritiidites crassibaculatus Palaeosantalaceaepites cingulatus Selenopemphix selenoides Selenopemphix selenoides Verrucatotriletes etayoi Retitricolporites ‘fragilis’ Retibrevicolpites yavarensis M. franciscoi pachyexinatus Fenestrites spinosus Ladakhipollenites simplex Loranthacitoides ‘magnopolaris’ Retitricolpites wijningae Scabraperiporites asymmetricus Crototricolpites annemariae Concavissimisporites fossulatus Cicatricosisporites baculatus Magnaperiporites spinosus Rhoipites planipolaris Bombacacidites nacimientoensis Polypodiaceoisporites? fossulatus Operculodinium centrocarpum Cicatricosisporites baculatus Retitriporites dubiosus Retipollenites crotonicolumellatus Psilastephanoporites tesseroporus Echitriletes ‘acanthotriletoides’ Loranthacitoides ‘magnopolaris’ Jandufouria minor Crassoretitriletes vanraadshooveni Retitricolporites ‘heterobrochatus’ Rhoipites ‘gigantiporus’ Striatricolporites ‘poloreticulatus’ Echiperiporites scabrannulatus Multimarginites vanderhammenii Trichotomosulcites ‘psilatus’ Grimsdalea magnaclavata Bombacacidites zuatensis Retitricolpites ‘cacerolensis’ Retitricolporites ‘beccus’ Echinatisporis brevispinosus Psilaperiporites ‘intensus’ Tricolpites antonii Composite unit Event 1880.9 1894.3 1926.9 1945.5 1945.5 1951.5 1962.4 1962.4 1962.4 1968.2 1975.1 1975.1 1975.1 2045.2 2297.4 2522.1 2661.2 2699.0 2870.0 3187.1 3502.3 3537.0 3591.7 3591.7 3591.7 3655.3 3812.0 3852.0 3862.7 3905.4 3950.2 3950.2 3962.0 3963.8 3995.4 3995.9 4039.3 4082.0 4082.0 4082.5 4088.0 4093.5 4098.4 4104.2 4111.0 4126.0 4127.8 4157.0 4225.0 4228.0 4258.1 4352.1 4363.2 4385.3 4399.6 4399.6 4411.3 4647.0 4647.0 4647.0 4908.5 5001.3 5243.3 5243.4 5518.6 5692.8 5822.5 5984.7 6309.8 6585.6 LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD FAD LAD LAD LAD LAD FAD FAD FAD LAD LAD LAD LAD LAD FAD FAD LAD LAD FAD LAD LAD FAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD LAD FAD LAD FAD FAD LAD FAD LAD FAD FAD FAD FAD FAD FAD FAD FAD LAD LAD FAD LAD LAD LAD Key zonal taxa B B B B B A B B B A B B B B B A B B B B B A B B B B B A B B Spreading parameter Number of sites Age (Ma) 366 275 0 358 0 51 369 327 2 54 312 360 17 40 uncertain 95 12 uncertain uncertain 337 278 uncertain uncertain uncertain 26 283 214 253 295 37 uncertain 95 241 uncertain 218 308 39 281 uncertain 207 235 272 248 6 239 239 290 312 321 uncertain 261 45 46 203 uncertain 241 51 uncertain 53 54 57 59 63 65 90 215 75 233 203 243 30 6 2 14 2 4 23 28 2 3 35 15 2 2 1 2 2 1 1 5 5 1 1 1 3 5 9 15 5 2 1 3 15 1 6 50 2 11 1 2 2 5 17 3 26 10 14 9 3 1 12 2 2 7 1 12 3 1 2 2 2 3 2 3 5 3 2 5 7 7 3.42 3.46 3.56 3.72 3.72 3.94 4.32 4.32 4.32 4.53 4.77 4.77 4.77 5.48 6.26 6.89 7.15 7.22 7.53 8.15 9.87 10.06 10.36 10.36 10.36 10.71 11.57 11.79 11.85 12.08 12.32 12.32 12.39 12.40 12.52 12.53 12.70 12.87 12.87 12.87 12.89 12.91 12.93 12.96 12.98 13.04 13.05 13.17 13.44 13.45 13.57 13.94 13.99 14.07 14.13 14.13 14.18 14.94 14.94 14.94 15.69 15.95 16.09 16.09 16.19 16.26 16.31 16.38 16.50 16.61 Zone 17 16 15 14 13 (continued) 53 Palynology Table 2. (Continued). Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Echitriporites cricotriporatiformis dinocyst acme C2 Cyclusphaera scabrata Adnatosphaeridium multispinosum Rugutricolporites intensus Corsinipollenites psilatus Retitrescolpites saturum Rhoipites cienaguensis Bombacacidites baculatus Hystrichosphaeropsis obscura Echitricolporites spinosus Retistephanoporites minutiporus Cribroperidinium tenuitabulatum Echitricolporites maristellae Psilastephanoporites herngreenii Selenopemphix nephroides Cribroperidinium spp. Tuberculodinium vancampoae dinocyst acme C2 Psilatricolporites devriesi Horniella lunarensis Nijssenosporites fossulatus Clavatricolpites densiclavatus Bombacacidites zuatensis Verrustephanocolpites rugulatus Foveotricolporites etayoi Rugutricolporites intensus Rhoipites guianensis ‘perbonus’ Bombacacidites gonzalezii Clavainaperturites microclavatus Foveotricolporites rugulatus Cricotriporites macroporus Polypodiaceoisporites pseudopsilatus Cicatricosisporites dorogensis Multiporopollenites pauciporatus Retistephanoporites angelicus Bombacacidites muinaneorum Psilaperiporites robustus Monocolpopollenites ovatus Venezuelites? distinctus Jandufouria ‘minutus’ Retibrevitricolporites grandis Proteacidites triangulatus Cribroperidinium edwardsii Gemmastephanoporites polymorphus Retitricolpites maturus Echitriletes ‘acanthotriletoides’ Verrutricolporites rotundiporus MgrandiosusMfranciscoiJseamrogiformis ACME Wilsonipites margocolpatus Brevitricolpites microechinatus Corsinipollenites undulatus Momipites africanus Ctenolophonidites cruciatus dinocyst acme lowermost C8 Psilatricolporites pachydermatus Retibrevicolpites yavarensis Foveotriletes ornatus Retitrescolpites magnus Annutriporites iversenii Rhoipites planipolaris MgrandiosusMfranciscoiJseamrogiformis ACME Retitriletes sommeri Spinizonocolpites echinatus Jandufouria ‘minutus’ Scabratricolporites planetensis Magnaperiporites spinosus Foveotricolporites etayoi Venezuelites globoannulatus L. proxapertitoides proxapertitoides Composite unit Event 7176.7 7184.0 7393.4 8170.4 8404.4 8440.8 8440.8 8440.8 8492.0 8606.6 8663.7 8769.1 8828.0 9091.9 9129.3 9212.8 9391.7 9411.4 9841.4 10181.6 10294.0 10419.3 10548.9 10647.3 10775.9 10819.2 10861.9 11136.0 11137.8 11226.7 11669.6 12096.5 14176.4 14377.0 14377.0 14377.1 14393.6 14424.2 14429.1 14429.1 14437.4 14476.3 14548.2 14576.0 14727.9 14727.9 14764.6 14964.0 14964.0 15010.5 15024.1 15285.0 15336.0 15377.0 15464.9 15521.1 15549.9 15599.7 15604.0 15627.6 15694.0 15694.6 15729.8 15745.6 15750.4 15759.5 15765.6 15780.9 15784.4 15785.1 FAD LAD LAD LAD LAD LAD LAD LAD FAD LAD FAD LAD LAD FAD FAD FAD LAD FAD FAD FAD LAD FAD LAD FAD LAD LAD FAD LAD LAD FAD LAD LAD FAD LAD LAD LAD FAD LAD LAD LAD LAD LAD FAD LAD LAD LAD FAD FAD LAD LAD LAD LAD LAD LAD LAD FAD FAD FAD LAD LAD FAD FAD FAD LAD FAD FAD FAD FAD LAD LAD Key zonal taxa Spreading parameter Number of sites Age (Ma) B B B 105 38 211 173 35 216 194 162 129 uncertain 132 177 20 140 uncertain uncertain 239 18 uncertain 174 158 115 160 uncertain 171 113 2 122 128 183 148 112 242 60 57 57 189 42 95 49 41 51 252 uncertain 42 45 202 270 0 51 67 45 71 28 23 273 uncertain 270 31 85 103 17 273 85 uncertain 13 27 0 6 78 3 6 36 3 3 13 12 3 4 1 3 33 4 4 1 1 13 2 1 3 16 2 20 1 4 27 2 10 11 4 13 4 4 43 15 12 4 10 10 6 4 13 4 1 4 4 3 3 5 4 13 8 5 2 3 4 1 4 16 18 2 3 4 22 1 2 4 2 2 13 16.84 16.84 16.92 17.22 17.31 17.33 17.33 17.33 17.35 17.39 17.41 17.46 17.48 17.71 17.75 17.83 18.01 18.03 18.46 18.81 18.92 19.05 19.18 19.27 19.40 19.45 19.49 19.77 19.77 19.86 20.30 20.73 22.83 23.03 23.03 23.03 23.14 23.31 23.36 23.36 23.42 23.67 24.13 24.31 25.29 25.29 25.52 26.80 26.80 27.10 27.19 28.87 29.19 29.46 30.02 30.38 30.57 30.89 30.92 31.07 31.50 31.50 31.73 31.83 31.86 31.92 31.96 32.05 32.08 32.08 B B B B B A B B B B B B A B B B B B B B B A B B B B B B A B B B B Zone 12 11 10 9 (continued) 54 Table 2. C.A. Jaramillo et al. (Continued). Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Psilaperiporites ‘intensus’ Nothofagidites huertasii Retibrevitricolpites triangulatus Bombacacidites echinatus Bombacacidites foveoreticulatus Bombacacidites soleaformis Foveotricolporites fossulatus Striatricolporites digitatus Psilastephanocolpites verrucosus Cordosphaeridium inodes Retitricolpites ‘finitus’ Cricotriporites guianensis Retitrescolpites baculatus Crassiectoapertites columbianus Echitriporites ‘pseudotrianguliformis’ Longapertites sp. 1 Echitriporites ‘pseudotrianguliformis’ Foveotriporites hammenii Ulmoideipites krempii Longapertites microfoveolatus Pseudostephanocolpites perfectus Retistephanocolporites festivus Verrutricolporites reticulatus Magnastriatites grandiosus Concavissimisporites fossulatus Catostemma type Bombacacidites fossureticulatus Bombacacidites simplireticulatus Echitetracolpites? tenuiexinatus Echitriporites trianguliformis Echitriporites trianguliformis orbicularis Homotryblium floripes Retisyncolporites angularis Verrucatotriletes etayoi Syncolporites marginatus Apiculatasporites? cingulatus Retistephanocolpites angeli Arecipites regio Striatriletes saccolomoides Gemmastephanoporites breviculus Luminidites colombianensis Bombacacidites echinatus Proxapertites magnus Racemonocolpites facilis Polotricolporites versabilis Baculamonocolpites hammenii Verrucatosporites usmensis Echimorphomonocolpites solitarius Ischyosporites problematicus Echitriporites variabilis Poloretitricolpites absolutus Araucariacites spp. Racemonocolpites racematus Rugutricolporites felix Spinizonocolpites grandis Siltaria mariposa Echiperiporites akanthos Brevitricolpites macroexinatus Cicatricososporites eocenicus Echimonocolpites densus Retitriporites poricostatus Spinizonocolpites breviechinatus Spinizonocolpites pachyexinatus Grimsdalea polygonalis Echimorphomonocolpites gracilis Zonocostites minor Echitriporites ‘scabrabaculomorphis’ Ladakhipollenites rubinii Tetracolporites pachyexinatus Crusafontites megagemmatus Composite unit Event 15786.0 15786.0 15794.0 15807.7 15807.7 15807.7 15816.3 15816.3 15836.0 15851.1 15878.6 15878.6 15896.5 15916.2 15916.2 15917.0 15959.5 15964.7 15976.8 15999.2 15999.2 16002.9 16024.1 16032.8 16046.3 16068.0 16068.0 16068.0 16068.0 16068.0 16068.0 16068.0 16068.0 16073.3 16087.1 16100.1 16120.8 16131.0 16169.7 16175.1 16194.0 16265.8 16267.2 16278.5 16287.1 16300.2 16304.6 16348.2 16364.7 16383.0 16383.0 16407.3 16414.3 16414.3 16426.0 16426.5 16427.3 16442.3 16442.3 16450.0 16455.7 16455.7 16455.7 16474.6 16490.6 16528.2 16575.0 16594.8 16594.8 16609.9 FAD LAD LAD LAD LAD LAD LAD LAD LAD LAD FAD LAD LAD FAD LAD LAD FAD LAD LAD LAD LAD LAD LAD FAD FAD FAD LAD LAD LAD LAD LAD LAD LAD FAD LAD LAD LAD LAD FAD LAD LAD FAD LAD LAD LAD LAD FAD LAD LAD LAD LAD LAD LAD LAD LAD LAD FAD LAD LAD LAD LAD LAD LAD LAD LAD LAD FAD LAD LAD LAD Key zonal taxa A B B B B B B B B B B B B B B B B A B B B B B B B B B B B A Spreading parameter Number of sites 14 32 87 9 25 35 24 47 47 87 276 79 31 279 uncertain 43 uncertain 30 78 97 26 32 19 279 33 281 15 35 18 80 31 15 16 233 77 30 56 77 240 27 7 7 68 67 17 26 284 24 41 24 41 112 71 12 7 28 287 23 3 83 1 34 68 5 23 21 uncertain 20 5 20 2 13 14 4 17 8 2 3 9 5 4 7 8 4 1 5 1 16 27 10 15 17 7 6 3 4 3 5 10 19 23 4 6 4 10 3 10 14 5 5 4 2 15 13 4 4 6 5 6 3 4 24 19 3 10 5 6 3 2 6 2 4 3 2 38.48 3 2 1 2 2 2 Age (Ma) 32.09 32.09 32.14 32.23 32.23 32.23 32.28 32.28 32.41 32.51 32.68 32.68 32.80 32.92 32.92 32.93 33.20 33.24 33.31 33.46 33.46 33.48 33.62 33.67 33.76 33.90 33.90 33.90 33.90 33.90 33.90 33.90 33.90 33.96 34.12 34.26 34.50 34.61 35.05 35.11 35.32 36.13 36.15 36.27 36.37 36.52 36.57 37.06 37.24 37.45 37.45 37.72 37.80 37.80 37.94 37.94 37.95 38.12 38.12 38.21 38.27 38.27 38.27 Zone 8 7 6 38.66 39.09 39.62 39.84 39.84 40.01 (continued) 55 Palynology Table 2. (Continued). Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Lingulodinium cf. sicula Retibrevitricolporites speciosus dinocyst acme lowermost C8 Retisyncolporites aureus Cricotriporites minutiporus Ranunculacidites operculatus Lingulodinium cf. sicula Rhoipites cienaguensis Proxapertites cursus Retistephanoporites crassiannulatus Grimsdalea polygonalis Longapertites proxapertitoides Crototricolpites protoannemariae S. spiralis acme upper Mirador Bombacacidites fossureticulatus Cicatricososporites eocenicus Ctenolophonidites cruciatus Foveotricolporites fossulatus Luminidites colombianensis Jandufouria minor Retisyncolporites aureus Jandufouria seamrogiformis dinocyst acme middle shale Mirador Adnatosphaeridium multispinosum Laevigatosporites catanejensis Lingulodinium machaerophorum Gemmastephanoporites polymorphus S. spiralis acme upper Mirador Rhoipites guianensis ‘perbonus’ Echimorphomonocolpites gracilis Homotryblium floripes Psilaperiporites minimus dinocyst acme middle shale Mirador Multiporopollenites pauciporatus Rhoipites guianensis Echitetracolpites? tenuiexinatus Polysphaeridium subtile Retistephanoporites angelicus Retisyncolporites angularis Venezuelites? distinctus Gemmastephanoporites breviculus Perisyncolporites pokornyi Rugutricolporites felix Longapertites vaneendenburgi Nothofagidites huertasii Cicatricosisporites dorogensis Psilatricolporites costatus Zonocostites ramonae Tetracolporopollenites spongiosus Perfotricolpites digitatus Verrustephanocolpites rugulatus Retitriporites poricostatus Echitriletes muelleri Bombacacidites foveoreticulatus Echimorphomonocolpites solitarius Retitrescolpites magnus Echimonocolpites densus Psilastephanocolpites verrucosus Spinizonocolpites grandis Pseudostephanocolpites perfectus Bombacacidites soleaformis Wilsonipites margocolpatus Polypodiisporites echinatus Zonocostites minor Retibrevitricolporites speciosus Retibrevitricolpites triangulatus Retitrescolpites? irregularis Crusafontites megagemmatus Lanagiopollis crassa Tetracolporites pachyexinatus Composite unit Event 16609.9 16609.9 16638.8 16639.5 16669.3 16685.0 16711.0 16711.0 16711.0 16711.0 16717.8 16720.0 16727.3 16730.2 16755.3 16755.3 16755.3 16755.3 16755.3 16778.9 16794.4 16808.2 16808.2 16823.1 16833.4 16835.3 16847.7 16847.7 16849.0 16849.4 16849.4 16849.4 16849.7 16849.7 16849.7 16867.7 16867.7 16867.7 16867.7 16867.7 16973.9 17038.0 17038.0 17038.0 17372.2 17372.7 17372.7 17372.7 17413.8 17454.6 17458.0 17458.6 17465.6 17480.8 17496.1 17497.0 17513.2 17513.2 17513.2 17538.9 17563.8 17563.8 17563.8 17584.3 17589.0 17589.3 17589.3 17590.7 17590.7 17593.9 LAD LAD FAD LAD LAD FAD FAD FAD LAD FAD FAD LAD LAD LAD FAD FAD FAD FAD FAD FAD FAD FAD LAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD LAD FAD FAD FAD FAD LAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD LAD FAD FAD FAD FAD FAD FAD FAD Key zonal taxa B B B B B B B B A B B B B 8 B B B B B Spreading parameter Number of sites uncertain 22 uncertain 2 47 293 uncertain 35 62 232 uncertain 53 41 2 3 3 28 uncertain 4 241 uncertain 294 1 uncertain 158 246 1 2 uncertain uncertain 2 297 1 14 297 11 153 11 0 5 4 299 6 60 21 19 306 308 19 310 uncertain 14 308 24 13 30 2 13 22 25 22 34 20 19 13 17 310 20 312 17 1 4 1 2 3 6 1 2 25 4 1 9 7 2 2 2 2 1 3 4 1 6 3 1 4 2 2 2 1 1 2 4 2 2 8 5 4 3 2 2 2 9 2 19 4 7 6 5 5 9 1 2 7 7 2 5 50.34 2 4 6 4 2 3 2 2 4 12 2 10 2 Age (Ma) 40.01 40.01 40.33 40.34 40.68 40.86 41.15 41.15 41.15 41.15 41.23 41.25 41.33 41.36 41.65 41.65 41.65 41.65 41.65 41.91 42.09 42.24 42.24 42.41 42.53 42.55 42.69 42.69 42.70 42.71 42.71 42.71 42.71 42.71 42.71 42.92 42.92 42.92 42.92 42.92 44.11 44.83 44.83 44.83 48.60 48.61 48.61 48.61 49.12 49.62 49.66 49.67 49.76 49.94 50.13 50.14 Zone 5 50.34 50.34 50.66 50.97 50.97 50.97 51.22 51.28 51.28 51.28 51.30 51.30 51.34 (continued) 56 Table 2. C.A. Jaramillo et al. (Continued). Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Polotricolporites versabilis Retitricolpites maturus Echitriporites trianguliformis orbicularis Echitriporites variabilis Corsinipollenites undulatus Foveotriporites hammenii Retitriporites dubiosus Bombacacidites gonzalezii Echiperiporites estelae Ladakhipollenites rubinii Retistephanoporites minutiporus Retistephanocolporites festivus Baculamonocolpites hammenii Brevitricolpites macroexinatus Tricolpites clarensis Verrutricolporites reticulatus Retistephanocolpites williamsi Tetracolporopollenites maculosus Retistephanocolpites williamsi Crototricolpites annemariae Psilabrevitricolporites triangularis Apiculatasporites? cingulatus Cricotriporites macroporus Margocolporites vanwijhei Retibrevitricolporites grandis Striatopollis catatumbus Etm dc13spike Proxapertites minutihumbertoides Bombacacidites simplireticulatus Tuberositriletes verrucatus Spathiphyllum vanegensis Etm dc13spike Spirosyncolpites spiralis Polypodiisporites aff. specious Petm dc13spike Aglaoreidia? foveolata Bombacacidites annae Diporopollis assamica P. operculatus acme lower Cuervos Psilabrevitricolporites simpliformis Polypodiisporites pachyexinatus Bombacacidites brevis Ctenolophonidites lisamae Retidiporites magdalenensis Syncolporites lisamae Heterocolpites palaeocenica Magnotetradites magnus Psilamonocolpites operculatus Proxapertites verrucatus Retidiporites elongatus Cyclusphaera scabrata Foveotricolporites rugulatus Petm dc13spike Retitricolpites simplex Rhoipites hispidus Siltaria mariposa Gemmamonocolpites gemmatus Foveotricolpites perforatus Retitrescolpites peculiaris Tricolpites protoclarensis Longapertites proxapertitoides Clavatisporites mutisii Foveotriletes margaritae Proxapertites minutihumbertoides Polypodiisporites pachyexinatus Palaeocystodinium spp. Curvimonocolpites inornatus Periretisyncolpites magnosagenatus Tetradites umirensis Tetracolporopollenites transversalis Composite unit Event 17594.9 17594.9 17598.0 17603.8 17604.0 17604.0 17604.9 17606.1 17606.1 17606.1 17606.1 17608.2 17625.0 17625.1 17625.1 17625.1 17625.2 17625.2 17625.2 17687.5 17701.1 17708.6 17708.6 17708.6 17708.6 17708.7 17810.0 17810.0 17810.8 17817.3 17817.3 17818.7 17940.3 17941.7 17941.7 17995.0 17995.0 17995.0 17995.0 17995.0 17995.4 18009.4 18010.7 18010.7 18026.7 18031.9 18031.9 18042.2 18047.9 18058.0 18077.2 18077.2 18077.2 18077.2 18077.2 18077.2 18138.8 18143.0 18143.0 18143.0 18143.1 18143.2 18143.4 18143.6 18143.7 18151.2 18167.6 18178.0 18182.7 18249.3 FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD LAD FAD FAD FAD FAD FAD FAD FAD LAD LAD FAD FAD LAD FAD FAD FAD LAD LAD LAD LAD LAD LAD LAD FAD LAD LAD LAD LAD LAD LAD LAD LAD FAD FAD FAD FAD FAD FAD LAD LAD LAD LAD FAD LAD LAD FAD FAD LAD LAD LAD LAD FAD Key zonal taxa B B B B B B B B B B B B B B B A B B B B B B B B B B B A B B B A B B B B B Spreading parameter Number of sites Age (Ma) 9 12 21 15 30 27 267 31 310 19 58 26 26 22 33 24 uncertain 172 uncertain 3 314 22 16 255 26 315 0 7 21 283 42 uncertain 319 22 0 17 29 39 14 29 5 321 38 55 36 13 52 36 37 44 23 44 uncertain 320 321 17 36 15 uncertain 8 19 37 66 uncertain 3 64 23 39 34 326 2 2 7 2 3 8 3 4 9 2 6 6 4 3 4 4 1 9 1 3 8 3 3 7 5 9 2 4 4 4 19 1 11 4 2 6 28 8 6 12 5 10 12 32 8 3 12 8 14 9 5 4 1 8 8 4 12 25 1 3 3 9 30 1 2 19 8 6 12 11 51.35 51.35 51.39 51.46 51.46 51.46 51.47 51.49 51.49 51.49 51.49 51.51 51.72 51.72 51.72 51.72 51.72 51.72 51.72 52.49 52.66 52.75 52.75 52.75 52.75 52.75 54.00 54.00 54.01 54.09 54.09 54.11 55.61 55.63 55.63 55.70 55.70 55.70 55.70 55.70 55.70 55.72 55.72 55.72 55.74 55.74 55.74 55.76 55.76 55.78 55.80 55.80 55.80 55.80 55.80 55.80 56.05 56.07 56.07 56.07 56.07 56.07 56.07 56.07 56.07 56.10 56.17 56.21 56.23 56.50 Zone 4b 4a 3b (continued) 57 Palynology Table 2. (Continued). Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Striatopollis? tenuistriatus Bombacacidites nacimientoensis Brevitricolpites microechinatus Foveomonoporites variabilis Bombacacidites protofoveoreticulatus Colombipollis tropicalis Psilastephanocolporites fissilis Poloretitricolpites absolutus Horniella lunarensis Areoligera spp. Polypodiisporites echinatus Retitrescolpites baculatus Retitrescolpites saturum Araucariacites australis Alterbidinium spp. Retitrescolpites peculiaris Tricolpites antonii Aglaoreidia? foveolata Striatricolporites digitatus Retistephanocolpites angeli Palaeocystodinium golzowense Gemmamonocolpites macrogemmatus Momipites africanus Foveotricolpites perforatus Mauritiidites franciscoi minutus Proxapertites sulcatus Crototricolpites protoannemariae Zonotricolpites variabilis Stephanocolpites costatus Cricotriporites minutiporus Spinizonocolpites breviechinatus Diporopollis assamica Echitriporites suescae Echinatisporis brevispinosus Bombacacidites protofoveoreticulatus Ladakhipollenites simplex Tricolpites protoclarensis Bombacacidites annae Ischyosporites problematicus Tetracolporopollenites spongiosus Proxapertites magnus Laevigatosporites granulatus Longapertites sp. 1 Diporoconia cf. iszkaszentgyoergyi Periretisyncolpites giganteus Monocolpopollenites ovatus Zlivisporis blanensis Palaeocystodinium australinum Spinizonocolpites baculatus Cerodinium spp. Monocolpopollenites spheroidites Andalusiella polymorpha Andalusiella spp. Monocolpopollenites spheroidites Trithyrodinium spp. Periretisyncolpites magnosagenatus Syndemicolpites typicus Gemmamonocolpites macrogemmatus Heterocolpites palaeocenica Mauritiidites crassibaculatus Echitriletes intercolensis Hamulatisporis caperatus Ctenolophonidites lisamae M. franciscoi pachyexinatus Mauritiidites franciscoi franciscoi P. operculatus acme lower Cuervos Psilabrevitricolporites simpliformis Tercissus sp. Senegalinim laevigatum Proteacidites dehaani Composite unit Event 18317.6 18335.1 18346.0 18347.1 18349.7 18397.6 18404.27 18441.7 18498.1 18546.2 18586.0 18586.0 18595.5 18607.5 18649.0 18751.3 18799.1 18859.2 18895.7 18900.4 18907.8 18916.0 18916.7 18917.8 18917.8 19007.0 19013.8 19013.8 19023.0 19028.5 19028.5 19080.8 19087.4 19092.7 19095.1 19095.1 19095.1 19126.0 19129.5 19129.5 19148.7 19177.8 19177.8 19177.8 19179.6 19198.6 19321.6 19326.1 19360.7 19372.6 19379.0 19379.0 19379.0 19379.0 19380.5 19403.8 19421.1 19432.6 19441.9 19441.9 19453.4 19453.4 19475.3 19482.1 19482.1 19482.1 19546.9 19657.3 19722.8 19732.2 FAD FAD FAD LAD LAD LAD FAD FAD FAD LAD FAD FAD FAD LAD LAD FAD FAD FAD FAD FAD LAD LAD FAD FAD FAD LAD FAD LAD LAD FAD FAD FAD LAD FAD FAD FAD FAD FAD FAD FAD FAD FAD FAD LAD LAD FAD LAD LAD LAD LAD FAD LAD LAD LAD LAD FAD LAD FAD FAD FAD LAD LAD FAD FAD FAD FAD FAD LAD LAD LAD Key zonal taxa B B B B B B B B A B B B B B B B A B B B B B A B B B B B B B B B B Spreading parameter Number of sites Age (Ma) 273 284 44 uncertain 7 30 198 37 53 48 18 54 51 68 47 uncertain 41 9 26 27 31 9 72 15 339 17 19 18 19 47 3 10 47 63 8 299 12 20 15 24 57 343 48 13 21 25 31 30 16 41 uncertain 32 41 41 21 11 9 0 6 306 34 44 7 310 348 14 21 8 25 36 6 5 5 1 3 16 7 2 6 14 3 4 6 26 9 1 4 4 3 5 11 3 3 10 12 4 4 11 9 3 3 3 19 4 3 8 3 11 5 4 8 7 3 2 13 7 17 12 23 23 1 19 23 5 8 2 11 2 2 2 8 14 2 11 16 5 5 4 11 13 56.77 56.85 56.89 56.89 56.90 57.10 57.20 57.28 57.51 57.70 57.86 57.86 57.90 57.95 58.12 58.53 58.73 58.97 59.12 59.14 59.17 59.20 59.20 59.21 59.21 59.57 59.60 59.60 59.63 59.65 59.65 59.87 59.89 59.91 59.92 59.92 59.92 60.09 60.12 60.12 60.26 60.48 60.48 60.48 60.50 60.64 61.57 61.60 61.87 61.95 62.00 62.00 62.00 62.00 62.01 62.19 62.32 62.41 62.48 62.48 62.57 62.57 62.73 62.78 62.78 62.78 63.27 64.11 64.60 64.67 Zone 3a 2 1 (continued) 58 Table 2. C.A. Jaramillo et al. (Continued). Composite unit Event Senegalinium spp. Bacumorphomonocolpites tausae Racemonocolpites facilis Polypodiaceoisporites? fossulatus Phelodinium tricuspe Proxapertites cursus Duplotriporites ariani Andalusiella mauthei Senegalinium bicavatum Ariadnaesporites spinosus Cerodinium diebelii Gabonisporites vigourouxii Buttinia andreevi Echimonocolpites protofranciscoi 19739.1 19755.2 19755.3 19755.7 19755.7 19788.1 19790.1 19803.1 19813.1 19821.3 19833.1 19836.0 19842.0 19842.0 LAD LAD FAD FAD LAD FAD LAD LAD LAD LAD LAD LAD LAD LAD Gabonisporis spp. Glaphyrocysta perforata Scabratriletes granularis Andalusiella gabonensis Dinogymnium spp. Spinizonocolpites pachyexinatus Disphaerogena carposphaeropsis Yolkinigymnium lanceolatum Ephedripites ‘afropollensis’ Crusafontites grandiosus Senegalinium obscurum Areoligera senonensis 19842.0 19842.0 19842.0 19843.2 19848.1 19853.0 19855.5 19855.5 19857.5 19858.9 19860.8 19862.0 LAD LAD LAD LAD LAD FAD LAD LAD LAD LAD LAD LAD Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Taxa Zone T-02 Monocolpopollenites ovatus. Top: FAD of Bombacacidites annae. Base: LAD of Spinizonocolpites baculatus. Age: middle Paleocene (61.9 to 60 Ma). Comments: this zone comprises the LAD of Periretisyncolpites giganteus and Zlivisporis blanensis and the FAD of Ischyosporites problematicus, Proxapertites magnus and Monocolpopollenites ovatus. Zone T-03A Bombacacidites annae. Top: FAD of Foveotricolpites perforatus. Base: FAD of Bombacacidites annae. Age: middle Paleocene (60 to 59 Ma). Comments: this zone comprises the LAD of Echitriporites suescae, Proxapertites sulcatus, Stephanocolpites costatus, Zonotricolpites variabilis and the FAD of Mauritiidites franciscoi minutus, Crototricolpites protoannemariae and Diporopollis assamica. This zone corresponds to the uppermost zone Cu-01 of Jaramillo et al. (2005). Zone T-03B Foveotricolpites perforatus. Top: LAD of Foveotricolpites perforatus. Base: FAD of Foveotricolpites perforatus. Age: middle to late Paleocene (59 to 56.1 Ma). Comments: this zone comprises the LAD of Curvimonocolpites inornatus, Periretisyncolpites magnosagenatus, Tetradites umirensis, Bombacacidites Key zonal taxa B B B B B 35 B B B B B A B B B B B B B Spreading parameter Number of sites 34 6 70 24 3 25 20 20 31 19 20 16 9 8 23 13 5 5 64.85 2 64.85 9 15 65.21 17 8 8 17 14 20 64.72 64.84 64.85 16 1 12 13 35 43 1 8 0 7 12 11 4 2 6 12 25 3 3 5 2 13 3 5 65.50 65.50 65.50 65.52 65.60 65.68 65.71 65.71 65.75 65.77 65.80 65.82 Age (Ma) Zone 65.09 65.11 65.28 65.34 65.43 65.45 65.50 65.50 Top Cretaceous protofoveoreticulatus, Colombipollis tropicalis, and Foveotriletes margaritae, and the FAD of Polypodiisporites pachyexinatus, Brevitricolpites microechinatus, Horniella lunarensis, Retitrescolpites saturum, Aglaoreidia? foveolata, Striatricolporites digitatus and Retistephanocolpites angeli. This zone corresponds to the zone Cu-02 of Jaramillo et al. (2005). Zone T-04A Sterile. Top: FAD of Cyclusphaera scabrata. Base: LAD of Foveotricolpites perforatus. Age: latest Paleocene (56.1 to 55.8 Ma). Comments: the LAD of Gemmamonocolpites gemmatus and the FAD of Rhoipites hispidus occur within this zone. This zone is characterized by a low recovery of organic matter and a paucity of palynomorphs. This zone corresponds to the zone Cu-03 of Jaramillo et al. (2005). Zone T-04B PETM interval. Top: LAD of Bombacacidites annae. Base: FAD of Cyclusphaera scabrata. Age: earliest Eocene (55.8 to 55.7 Ma). Comments: this level corresponds to the negative carbon isotope spike of the Paleocene–Eocene boundary, also known as the Paleocene–Eocene Thermal Maximum, or PETM (Zachos et al. 2001). This zone comprises the LAD of Aglaoreidia? foveolata, Palynology 59 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Zone T-05 Striatopollis catatumbus. Top: FAD of Cicatricosisporites dorogensis. Base: LAD of Bombacacidites annae. Age: early Eocene (55.7 to 48.6 Ma). Comments: this level corresponds to the negative carbon isotopic spike of the early Eocene, also known as the Early Eocene Climatic Optimum or EECO (Zachos et al. 2001). There are numerous FADs within this zone, probably associated with the radiation of the lower Eocene (Jaramillo et al. 2006), including the FAD of Striatopollis catatumbus, Spirosyncolpites spiralis, Perfotricolpites digitatus, Bombacacidites foveoreticulatus, Retitrescolpites magnus, Pseudostephanocolpites perfectus, Bombacacidites soleaformis, Retibrevitricolpites triangulatus, Retitrescolpites? irregularis, Lanagiopollis crassa, Echitriporites trianguliformis orbicularis, Foveotriporites hammenii, Retistephanoporites minutiporus, Retistephanocolporites festivus, Tetracolporopollenites maculosus, Psilabrevitricolporites triangularis, Margocolporites vanwijhei, and Retibrevitricolporites grandis. The LADs of Tetracolporopollenites spongiosus, Proxapertites minutihumbertoides and Spathiphyllum vanegensis also occur within this zone. This zone corresponds to the zones Cu-04 and Cu-05 of Jaramillo et al. (2005), Zone T-06 Spinizonocolpites grandis. Top: LAD of Spinizonocolpites grandis. Base: FAD of Cicatricosisporites dorogensis. Age: middle Eocene (48.6 to 38 Ma). Comments: this zone comprises the LAD of Retibrevitricolporites speciosus, and the FAD of Ranunculacidites operculatus, Retistephanoporites crassiannulatus, Jandufouria minor, Jandufouria seamrogiformis, Rhoipites guianensis, Perisyncolporites pokornyi and the acme of dinoflagellate cysts of the middle shale of the Mirador Formation in the central Llanos Foothills. Figure 2. Comparison of the graphic correlation sequence with the constrained optimization sequence. Both sequences are similar. (a) Comparison of the 203 key events, including biozone markers and inter-events (Kendall Tau ¼ 0.91). (b) Comparison limited to the 21 biozone markers (Kendall Tau ¼ 0.98). Diporopollis assamica, Psilabrevitricolporites simpliformis, Polypodiisporites pachyexinatus, Ctenolophonidites lisamae, Retidiporites magdalenensis, Syncolporites lisamae, Magnotetradites magnus, Psilamonocolpites operculatus, Proxapertites verrucatus, the end of the acme of P. operculatus and the FAD of Bombacacidites brevis. This zone corresponds to the zone Cu-03 of Jaramillo et al. (2005). Zone T-07 Echitriporites trianguliformis orbicularis. Top: LAD of Echitriporites trianguliformis orbicularis. Base: LAD of Spinizonocolpites grandis. Age: late Eocene (38 to 33.9 Ma). Comments: this zone comprises the LAD of Bombacacidites simplireticulatus, Echitetracolpites? tenuiexinatus, Retisyncolporites angularis, Syncolporites marginatus, Luminidites colombianensis, Proxapertites magnus, Racemonocolpites facilis, Echitriporites variabilis, Racemonocolpites racematus, Retistephanocolpites angeli, Gemmastephanoporites breviculus and the FAD of Striatriletes saccolomoides and Verrucatosporites usmensis. Zone T-08 Nothofagidites huertasii. Top: LAD of Nothofagidites huertasii. Base: LAD of Echitriporites trianguliformis orbicularis. Age: earliest Oligocene (33.9 to 32.1 Ma). C.A. Jaramillo et al. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 60 Figure 3. Zonation proposed for the Cenozoic of the Llanos and Llanos Foothills including 18 zones and four subzones. FAD ¼ First Appearance Datum, LAD ¼ Last Appearance Datum. Comments: this zone comprises the LAD of Bombacacidites soleaformis, Psilastephanocolpites verrucosus, Cricotriporites guianensis, Retitrescolpites baculatus, Foveotriporites hammenii, Ulmoideipites krempii, Pseudostephanocolpites perfectus, Retistephanocolporites festivus, Retibrevitricolpites triangulatus, Bombacacidites echinatus, Bombacacidites foveoreticulatus and the FAD of Crassiectoapertites columbianus, Magnastriatites grandiosus and Concavissimisporites fossulatus. Many Eocene taxa become extinct at the end of this zone, probably reflecting the onset of glaciation in the Southern Hemisphere (Jaramillo et al. 2006). Zone T-09 Foveotricolporites etayoi. Palynology Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Table 3. Calibration points for the composite section. Ages follow Gradstein et al. (2005). (A) Dating of the top boundaries of formations in the Urumaco region (Venezuela), used as a first-order calibration of the pollen record studied here, using the two sections studied from the Urumaco region (Urumaco East and Urumaco West). Formation age assignments are based on foraminifera (Renz 1948; Bermudez and Bolli 1969; Blow 1969; Dı́az de Gamero 1977a, 1977b, 1985a, 1985b, 1989, 1996; Wozniak and Wozniak 1987; Dı́az de Gamero et al. 1988; Guerra and Mederos 1988; Dı́az de Gamero and Linares 1989; Rey 1990; Bolli et al. 1994) and vertebrates (Linares 2004; SánchezVillagra 2006; Sanchez-Villagra and Aguilera 2006). (B) Carbon Isotopic Record calibrated against the global record of Zachos et al. (2001). EETM ¼ Early Eocene Thermal Maximum, PETM ¼ Paleocene–Eocene Thermal Maximum. C. Magnetostratigraphy of the Urumaco Formation, after Herrera (2008). A. Formation Top Boundary Present Codore Algodones Codore Chiguaje Codore Jebe Urumaco Socorro Querales Cerro Pelado Agua Clara La Vela Caujarao Tara B. Isotopic Record (see Figure 2) Cicatricosisporites dorogensis LAD E. trianguliformis orbicularis LAD ETM spike LAD PETM spike LAD PETM spike FAD Bombacacidites annae FAD Echimonocolpites protofranciscoi LAD C. Magnetostratigraphy Top C4 Ar2r Composite unit Age (Ma) 0 1332 1942 1991 2471 3964 4492.4538 5017.4226 8884.7747 1332 2087 0 1.81 3.6 5.33 6.8 12.4 14.5 16 17.5 1.81 5.6 14377 16068 17372 17941.7 18077.1 19113.75 19842 23.03 33.9 48.6 55.63 55.8 60 65.5 3178.6 8.1 Top: FAD of combined acme of Magnastriatites grandiosus, Mauritiidites franciscoi, and Jandufouria seamrogiformis. Base: LAD of Nothofagidites huertasii. Age: early Oligocene (32.1 to 31.5 Ma). Comments: this zone comprises the LAD of Spinizonocolpites echinatus and L. proxapertitoides proxapertitoides, and the FAD of Retitriletes sommeri and Foveotricolporites etayoi. It is common to have high abundances of C. dorogensis and very often some levels of brackish influence. Zone T-10 Combined acme. Top: LAD of combined acme of Magnastriatites grandiosus, Mauritiidites franciscoi, and Jandufouria seamrogiformis. 61 Base: FAD of combined acme of Magnastriatites grandiosus, Mauritiidites franciscoi, and Jandufouria seamrogiformis. Age: early to late Oligocene (31.5 to 26.8 Ma). Comments: this zone comprises the LAD of Wilsonipites margocolpatus, Brevitricolpites microechinatus, Corsinipollenites undulatus, Retitrescolpites magnus and the FAD of Psilatricolporites pachydermatus, and Rhoipites planipolaris. Zone T-11 Cicatricosisporites dorogensis. Top: LAD of Cicatricosisporites dorogensis. Base: LAD of combined acme of Magnastriatites grandiosus, Mauritiidites franciscoi, and Jandufouria seamrogiformis. Age: late Oligocene (26.8 to 23 Ma). Comments: this zone comprises the LAD of Multiporopollenites pauciporatus, Retistephanoporites angelicus, Monocolpopollenites ovatus, Venezuelites? distinctus, Retibrevitricolporites grandis, Gemmastephanoporites polymorphus, Retitricolpites maturus, and the FAD of Bombacacidites muinaneorum. Sometimes, levels with brackish influence are present. Zone T-12 Horniella lunarensis. Top: FAD of Echitricolporites maristellae. Base: LAD of Cicatricosisporites dorogensis. Age: early part of the early Miocene (23 to 17.7 Ma). Comments: this zone comprises the LAD of Horniella lunarensis, Foveotricolporites etayoi and the FAD of Tuberculodinium vancampoae, Nijssenosporites fossulatus, Rugutricolporites intensus, and Clavainaperturites microclavatus. Zone T-13 Echitricolporites maristellae. Top: FAD of Grimsdalea magnaclavata. Base: FAD of Echitricolporites maristellae. Age: late part of the early Miocene (17.7 to 16.1 Ma). Comments: this zone comprises the LAD of Bombacacidites zuatensis, Rugutricolporites intensus, Cribroperidinium tenuitabulatum and the end of the acme of dinoflagellates of the member C2 of the Carbonera Formation. Also occurring within this zone are the FADs of Retitricolporites ‘beccus’, Echitriporites cricotriporatiformis, Bombacacidites baculatus and Echitricolporites spinosus, and the LAD of Cyclusphaera scabrata, and Retistephanoporites minutiporus. Zone T-14 Grimsdalea magnaclavata. Top: FAD of Crassoretitriletes vanraadshooveni. Base: FAD of Grimsdalea magnaclavata. Age: latest part of the early Miocene to middle Miocene (16.1 to 14.2 Ma). Comments: this zone comprises the FAD of Rhoipites ‘gigantiporus’, Striatricolporites ‘poloreticulatus’, 62 C.A. Jaramillo et al. Echiperiporites scabrannulatus, Multimarginites vanderhammenii and Trichotomosulcites ‘psilatus’. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Zone T-15 Crassoretitriletes vanraadshooveni. Top: FAD of Fenestrites spinosus. Base: FAD of Crassoretitriletes vanraadshooveni. Age: middle Miocene (14.2 to 12.7 Ma). Comments: this zone comprises the LAD of Cicatricosisporites baculatus, Echitriletes ‘acanthotriletoides’ and Rhoipites planipolaris. Also, the FAD of Retipollenites crotonicolumellatus and Psilastephanoporites tesseroporus. Zone T-16 Fenestrites spinosus. Top: FAD of Cyatheacidites annulatus. Base: FAD of Fenestrites spinosus. Age: late part of the middle Miocene to late Miocene (12.7 to 7.1 Ma). Comments: this zone comprises the LAD of Psilatricolporites caribbiensis and the FAD of Fenestrites longispinosus, Psilatricolporites caribbiensis, Stephanocolpites evansii and Palaeosantalaceaepites cingulatus. Zone T-17 Cyatheacidites annulatus. Top: LAD of Lanagiopollis crassa. Base: FAD of Cyatheacidites annulatus. Age: late Miocene to earliest Pliocene (7.1 to 4.8 Ma). Comments: the LAD of Rhoipites ‘gigantiporus’, Psilastephanoporites tesseroporus and Stephanocolpites evansii occur within this zone. Zone T-18 Bombacacidites baculatus. Top: modern. Base: LAD of Lanagiopollis crassa. Age: Pliocene to Pleistocene (4.8 to 0 Ma). Comments: many LADs occur within this zone, but a large number of them are due to a sampling artifact called the border effect (Foote 2000), which artificially increases the number of LADs near the youngest part of a section. We would need several Quaternary cores to test the LADs of many of these taxa. LADs that could be genuine include Retitricolporites ‘beccus’, Crassoretitriletes vanraadshooveni, Grimsdalea magnaclavata, Striatricolporites ‘poloreticulatus’, Retipollenites crotonicolumellatus, Palaeosantalaceaepites cingulatus, Echitriporites cricotriporatiformis, Trichotomosulcites ‘psilatus’, Echiperiporites scabrannulatus, Bombacacidites baculatus, Multimarginites vanderhammenii and Echitricolporites maristellae. The FAD of Echitricolporites mcneillyi occurs within this zone. 4.2. Calibration 4.2.1. Foraminifera The foraminiferal record of the Urumaco region was studied by Dı́az de Gamero and collaborators, and correlated to Bolli’s biostratigraphic schemes from Trinidad (Renz 1948; Bermudez and Bolli 1969; Blow 1969; Dı́az de Gamero 1977a, 1977b, 1985a, 1985b, 1989, 1996; Wozniak and Wozniak 1987; Dı́az de Gamero et al. 1988; Guerra and Mederos 1988; Dı́az de Gamero and Linares 1989; Rey 1990; Bolli et al. 1994). Vertebrates of the Urumaco Formation also support the foraminiferal ages (Linares 2004; SánchezVillagra 2006; Sanchez-Villagra and Aguilera 2006). Therefore, the top of the formations in the Urumaco region are well dated and were used as a source of firstorder calibration for our pollen record, because two of the studied sections are (Urumaco East and Urumaco west) located in the Urumaco region. Dating of the tops of the formations is summarized in Table 3. 4.2.2. Carbon isotopes The dynamics associated with the carbon cycle and the linkage between the oceans, atmosphere and land plants can be used to correlate marine and terrestrial sequences using stable carbon isotopes (d13C) (Carvajal-Ortiz et al. 2009). The methods and analytical techniques used in these analyses were described by Carvajal-Ortiz et al. (2009). We used carbon isotope ratios of bulk sedimentary organic matter derived from land plants (d13Cbulk) from 10 sections and 729 samples: Diablito (De la Parra et al. 2007), Cerrejón (Jaramillo et al. 2007), Rio Loro, Gonzales 1, Gonzales outcrop, Gibraltar 2, Mucurera 3, Piñalerita, Gacenera Sur and Guadualera (all isotopic data on Annex S4 of the supplementary material). Isotopic results were compared with the composite Paleocene–Eocene marine carbon-isotope record (d13Ccarbonate) from Zachos et al. (2001) (Figure 4). The isotope data from each section were extrapolated to the composite section using its corresponding equation for the line of correlation (supplementary material, Table S4). A 20-point running average was also calculated to detect trends better (Figure 4). The correlation of the composite isotopic curve with the Zachos curve (Figure 4) allowed the calibration of the points summarized in Table 3. 4.2.3. Magnetostratigraphy Herrera (2008) studied the magnetostratigraphy of the Urumaco Formation at the same locality where we carried out our studies in Urumaco (Urumaco West section). Herrera identified the top of Chron C4 Ar2r in the upper part of the middle Urumaco Formation (1052 m in our section, which corresponds to 3178.6 composite units using the line of correlation for Urumaco West) (Table 3). 63 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Figure 4. Comparison of the bulk d13C record of 10 sites with the Zachos et al. (2001) record of global d13C derived from foraminifera. Dots in red correspond to a 20-point moving average. All sites were fused together using the Lines of Correlation. The correlation during the Paleogene is good; however, the correlation after the Eocene/Oligocene boundary is unclear. 4.2.4. Age model 4.3. Comparison with previous zonations All calibration points (Table 3) were joined together to produce an age model for the composite section (Figure 5). This model was extrapolated to the entire composite section, assuming linearity among adjacent dots in the correlation line. This transference was done using computer code written for R (R-DevelopmentCore-Team 2005), shown in Table S3 of the supplementary material. The composite section was compared with the zonation of Germeraad et al. (1968) (Figure 6), and the correlation was excellent (linear correlation, r2: 0.9512, p-value 5 0.0001). There are some key zonal events, however, that are slightly displaced in both zonations. The FAD of C. dorogensis is several Ma older in our zonation than in the Germeraad zonation (Figure 6). The FADs of C. vanraadshooveni and G. magnaclavata 64 C.A. Jaramillo et al. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 are several Ma younger in our zonation than in the Germeraad zonation, and are also in reverse order. We have the sequence, from older to younger, as the G. magnaclavata FAD, the C. vanraadshooveni FAD, whereas Germeraad has the opposite (Figure 6). Lastly, the LAD of L. crassa is older in our zonation. The composite also was compared with the zonation of Muller et al. (1987), which was derived from the Germeraad zonation, and this correlation was also excellent (linear correlation, r2: 0.9629, p-value 5 0.0001) (Figure 7). Some key zonal events are displaced in the two zonations. For example, the FAD of C. dorogensis is several Ma older in our zonation, and the FADs of both G. magnaclavata and F. spinosus are also several Ma older in our zonation. The good correspondence between the Muller and Germeraad zonations, which were largely based on pollen data from Venezuela, and our zonation, which used material mostly from Colombia, is a clear indication of the excellent biostratigraphic signal of the palynomorph data from tropical Cenozoic sequences. Our zonation, however, uses more taxa, many of them new, with quantitative data (pollen counts) that are stratigraphically controlled, making the zonation testable as new sections are added in the future. The Germeraad and Muller zonations, in contrast, are static, because their zonations did not provide the raw data used to build the zonation, and the zonations themselves did not use a clearly defined biostratigraphic technique. Van der Hammen et al. (1973) and Wijninga (1996) proposed a zonation for the Pliocene of the Andes mountains. However, it has very few species in common with the lowlands, where all our data come from. Therefore, they are difficult to compare to the zonation proposed here. Figure 5. Age model for the composite section. Calibration points are given in Table 3. Figure 6. Comparison of the events in this zonation with the zonation of Germeraad et al. (1968). Note the good degree of correlation (r2 ¼ 0.95, p 5 0.0001) between both zonations. Key zonal events are represented by black-filled circles. Figure 7. Comparison of the events in this zonation with the zonation of Muller et al. (1987). Note the good degree of correlation (r2 ¼ 0.96, p 5 0.0001) between both zonations. Key zonal events are represented by black-filled circles. Palynology Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 5. Systematic paleontology The descriptive morphological terminology used here closely follows that of Jaramillo and Dilcher (2001) for exine architecture and tectal sculpture. The rules of the International Code of Botanical Nomenclature (McNeill et al. 2006) are followed. Specimens are located with the England Finder system (EF). All type and figured specimens in Plates 1–13 are stored in the palynological collection of the National Core Library (Litoteca Nacional) Bernardo Taborda, Colombian Petroleum Institute, Km 7 via Piedecuesta, Piedecuesta, Santander, Colombia. The National Core Library of Colombia, a government institute and a public center of information and research in geological sciences, is officially responsible for managing and preserving the rock and microfossil collections of Colombia. The Library promotes its use by scientists and consultants interested in global geological processes and resource exploration. The inventory includes public and confidential collections of cores, cuttings, outcrops, petrological samples, and micropaleontological collections. Holotypes and paratypes can be consulted upon written request to the Library manager. Pteridophyte and Bryophyte spores Echitriletes intercolensis sp. nov. Plate 11, figures 11–14 Holotype. Plate 11, figures 11–13, sample DK–10-64150 100 -slide 89, EF M53/3. Paratype. Plate 11, figure 14, Sample DK–10, 64160 300 slide-76, EF S55/3-4. Etymology. Named after Intercol, the local branch of Exxon in Colombia, which did extensive palynological work in Colombia. Type locality: DK-10 core, Guaduala Formation, Maastrichtian, 3.0938N, 75.298W. Diagnosis. Trilete, intermediate in size (35–36 mm), cingulated, distal face verrucate or gemmate, proximal face laevigate, ornamentation highly irregular in shape and size. Description. Spores single, symmetry radial, pyramidal, amb triangular-obtuse-concave; trilete, margo 0.5 mm wide, well defined and thin, curvature perfect, radii long, reaching equator, commissure straight; sporoderm single-layered, intexine 1–1.5 mm thick; cingulate, cingulum 3–5 mm wide, well developed; sculpture verrucate-gemmate-echinate, proximal face laevigate, distal face verrucate, verrucae highly irregular in shape and size, circular, fusiform, gemma-like, to highly irregular shape in plain view, 0.5–8 mm wide, 50.5– 6 mm high, 0.5–7 mm apart; echinate along the cingulum, spines highly irregular in shape and size, 65 very few, 1–3 mm long, 0.5–1 mm wide, cylindrical to conical, ends pointed or capitated, 2–12 mm apart. Dimensions. Equatorial diameter 35(35.5) 36 mm, length/width ratio 1.1; measured 4, observed 95. Comparisons. ‘Echitriletes tuberosus’ Jaramillo et al. 2007, lacks a well-developed cingulum; Apiculatasporites? cingulatus Jaramillo & Dilcher, 2001 lacks verrucae; Pteridacidites sp. 1 Jaramillo & Dilcher, 2001 has larger verrucae (5–8 per grain); Cingulatisporites verrucatus Regali et al. 1974 has a thicker cingulum (6–10 mm thick) and lacks spines. Scabratriletes granularis sp. nov. Plate 12, figures 5–8 Holotype. Plate 12, figures 5–6, sample Guariquies-1, 1930-1960-slide 628, EF P25. Paratype. Plate 12, figures 7–8, Sample Guariquies-1, 1930-1960-slide 628, EF X25/4. Etymology. Named after the granular ornamentation of the exine. Type locality: Guariquies-1, Umir Formation, Maastrichtian, 6.98N, 73.518W Diagnosis. Scabratrilete, intermediate to large in size (43–58 mm), intexine thin, scabrae densely distributed over entire grain, laesurae slightly raised. Description. Spores single, symmetry radial, pyramidal, amb triangular-obtuse-convex; trilete, margo absent, curvature absent, radii long, reaching equator, commissure slightly undulating, slightly raised, often the grain has longitudinal folds that can be confused with the laesura; sporoderm single-layered, intexine 1–1.5 mm thick; sculpture scabrate, scabrae 0.5–1 mm long and wide, 0.5 mm apart, densely and evenly distributed over the entire grain, both in proximal and distal face. Dimensions. Equatorial diameter 43(50.6)58 mm, length/width ratio 1.2; measured 5, observed 99. Comparisons. Scabratriletes globulatus Sarmiento 1992 is smaller (20 mm) and circular. Striatriletes saccolomoides sp. nov. Plate 12, figures 9–12 Holotype. Plate 12, figures 9–10, sample Orito Sur-1, 3500-3510-slide 302, EF H51/1-2 Paratype. Plate 12, figures 11–12, sample Zulia Profundo-1, 4910-4920-slide 848, EF H9/4. Etymology. Named after the similarity to Saccoloma, a genus of fern in the family Dennstaedtiaceae. Type locality: Gibraltar-1, lower Carbonera Formation, Oligocene, 7.0438N, 72.178W. Diagnosis. Striatrilete, intermediate in size (32–42 mm), striae forming a complex anastomosing pattern. Description. Spores single, symmetry radial, pyramidal, amb triangular-obtuse-convex; trilete, margo 0.5 mm Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 66 C.A. Jaramillo et al. wide, indistinct, curvature absent, radii long, reaching equator, commissure slightly undulating; sporoderm single-layered, intexine 1–2 mm thick; sculpture striate, striae 0.5 mm wide, 0.5 mm high, 1–2 mm apart, anastomosing in a complex and irregular pattern, on both proximal and distal faces, striae on proximal face runs parallel to amb of grain in interradial zone. Dimensions. Equatorial diameter 32(36.5)42 mm, length/width ratio 1.2; measured 4, observed 172. Comparisons. Cicatricosisporites microstriatus Jardiné & Magloire 1963 is larger (70–80 mm) and the trilete mark does not reach equator; Striatriletes elegantis Jaramillo et al. 2007 has muri branching from a single stria that circles the grain from the proximal to the distal face. Natural affinities. Very similar to Saccoloma, a genus of fern in the family Dennstaedtiaceae, which has 12 pantropical species (but not in tropical Africa). Angiosperm pollen Bombacacidites echinatus sp. nov. Plate 1, figures 13–14 Holotype. Plate 1, figure 13, sample Gibraltar-1, 57705780-slide 139, EF P27/2. Paratype. Plate 1, figure 14, sample La Gloria-2, 12636’3-slide 623, EF U8/3. Etymology. After the echinate ornamentation. Type locality: Gibraltar-1, lowermost Carbonera Formation, Eocene, 7.0438N, 72.178W. Diagnosis. Bombacacidites -type pollen, intermediate in size (33–36 mm), echinate, triangular-obtuse-straight to concave. Description. Monad pollen grains, radial, isopolar, triangular-obtuse-straight to triangular-obtuse-concave; tricolporate, ectocolpi short, costate, borders straight, ends pointed, costae well developed, 3 mm wide, 2 mm thick, horseshoe shaped; endopores simple, circular, 2 mm wide; tectate, exine 1–1.5 mm, columellae sometimes indistinct, nexine 0.5 mm thick, columellae 0.5 mm thick, tectum 0.5 mm thick, nexine increasing to 2 mm near colpi; sculpture echinate, spines 1–2 mm high, 1–1.5 mm wide, 2–4 mm apart, subconical, ends rounded, sparsely and evenly distributed over entire grain, surface among spines slightly micropitted. Dimensions. Equatorial diameter 33(34.7)36 mm; measured 3, observed 7. Comparisons. All other Bombacacidites species lack spines. The overall morphology strongly suggests a placement in Bombacacidites, although the ornamentation is not reticulate as in most Bombacacidites. At this point, it does not seem justifiable to create a new genus to accommodate Bombacacidites-like pollen with an echinate ornamentation, unless more species with similar characteristics are found. Echiperiporites scabrannulatus sp. nov. Plate 2, figures 23–24 Holotype. Plate 2, figures 23–24, sample Tocoragua-1, 14260R-slide 861, EF N25. Etymology. After the scabrate and annulate ornamentation. Type locality: Tocoragua-1, Leon Formation, Miocene, 6.278N, 71.808W. Diagnosis. Pantoporate pollen grains, large in size (67 mm), echinate and scabrate, 13–15 pores, intectate. Description. Monad pollen grains, radial, isopolar, spherical, amb circular; pantoporate, pores 13–15, circular, 5 mm wide, annulate, annuli 2–4 mm wide, 1 mm thick, conspicuous; intectate, exine 0.5 mm thick, very thin; sculpture echinate, spines 6–7 mm long, 3 mm wide, conical, ends rounded, 6–10 mm apart, sparsely distributed over entire grain, surface interspines scabrate, scabrae 1 mm high, 0.5 mm apart, densely and evenly distributed over entire grain. Dimensions. Equatorial diameter 67 mm; measured 1, observed 13. Comparisons. Echiperiporites estelae Germeraad et al. 1968 is tectate and tectum thickens at base of spines; Echiperiporites sp. 1 Jaramillo & Dilcher 2001 is tectate, and spines are shorter (3–4 mm long). Echitriporites cricotriporatiformis sp. nov. Plate 3, figures 8–10 Holotype. Plate 3, figures 8–9, sample Gibraltar-2, 920940-slide 185, EF Q24–2. Paratype. Plate 3, figure 10, sample Gibraltar-2, 760790-slide 267, EF L20/1. Etymology. After close resemblance to Cricotriporatetype grains. Type locality: Gibraltar-2, upper Carbonera Formation, Miocene, 7.0438N, 72.178W. Diagnosis. Triporate pollen grains, intermediate in size (35–38 mm), echinate, intectate, annulate. Description. Monad pollen grains, radial, isopolar, spherical, amb circular, grain is often folded; triporate, pores circular, 3–5 mm wide, annulate, annuli 1.5–2 mm wide, 1 mm thick, conspicuous; intectate, exine 0.5 mm thick, very thin; sculpture echinate, spines 1.5 mm high, 2 mm wide, 5–7 mm apart, circular in plain view, subconical with a thin pointed tip, often very dark, distributed sparsely and evenly over entire grain, surface interspines scabrate to psilate. Dimensions. Equatorial diameter 35(36.7)38 mm; measured 3, observed 15. 67 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Plate 1. In all plates, the sample number (e.g. WRV 04774, 94.41) is followed by the England Finder (EF) coordinate. Figures 1, 2. Aglaoreidia? foveolata Jaramillo & Dilcher 2001, Zulia profundo-1, 7970–7980, EF W11-2. Figures 3, 4. Bacumorphomonocolpites tausae Sole de Porta 1971, Guariquies-1, 5290–5300, EF V5/4. Figures 5, 6, 7. Bombacacidites annae (Van der Hammen 1954) Leidelmeyer 1966, Mucurera-3, 2961–2970, EF T15-2. Figures 8, 9, 10. Bombacacidites baculatus Muller et al. 1987, SA-6, 1860–1870, EF 20/1. Figures 11, 12. Bombacacidites brevis (Dueñas 1980) Muller et al. 1987, Gibraltar-1, 4420– 4430, EF J27/1. Figure 13. Bombacacidites echinatus sp. nov., Holotype, Gibraltar-1, 5770–5780-slide 139, EF P27/2. Figure 14. Bombacacidites echinatus sp. nov., Paratype, La Gloria-2, 126363-slide 623, EF U8/3. Figures 15, 16. Bombacacidites foveoreticulatus Muller et al. 1987, Gibraltar-1, 5320–5330, EF O43. Figures 17, 18. Bombacacidites muinaneorum, Hoorn 1993, Ocelote-1, 3210–3240, EF E17. Figures 19–22. Bombacacidites protofoveoreticulatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 7, EF S47-3. Figures 23, 24. Bombacacidites soleaformis Muller et al. 1987, Gibraltar -1, 5320–5330, EF N48-3. Figures 25, 26. Bombacacidites simplireticulatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 37, EF O50/4. Figures 27, 28. Brevitricolpites microechinatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 15, EF F11/2. 68 C.A. Jaramillo et al. 1965 is triangular-obtuse-convex and has denser spines. Foveotricolporites etayoi sp. nov. Plate 3, figures 23–25 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Comparisons. Very similar to Cricotriporites Leidelmeyer 1966 but the genus does not have echinate grains; Echitriporites nuriae Dueñas 1980 is tectate and spines higher (6 mm), Proteacidites longispinosus Jardine and Magloire Plate 2. Figures 1, 2. Buttinia andreevi Boltenhagen 1967, Cerro Gordo-3, 1780–1790, EF N8 1/2. Figures 3, 4. Clavainaperturites microclavatus Hoorn 1994b, Aruchara-1, 1490–1500, EF W41/1. Figures 5, 6. Clavatricolpites densiclavatus Jaramillo & Dilcher 2001, Relámpago-1, 6510–6520, EF L21/1. Figures 7, 8. Colombipollis tropicalis Sarmiento 1992, Cerro Gordo-3, 120–130, EF K20. Figures 9, 10. Crassiectoapertites columbianus (Dueñas 1980) Lorente 1986, Gibraltar-2, 5790–5800, EF T31. Figures 11, 12. Cricotriporites guianensis Leidelmeyer 1966, Regadera Section, Re 112 97.5 m, EF D17/4. Figures 13, 14. Cricotriporites minutiporus (Muller 1968) Jaramillo & Dilcher 2001, Llanos Foothills, UFP41, EF U63/2. Figures 15, 16, 17. Crototricolpites protoannemariae Jaramillo & Dilcher 2001, Lisama Este-1, 2750–2760, EF M18-1. Figures 18, 19. Ctenolophonidites lisamae (Van der Hammen & Garcia 1966) Germeraad et al. 1968, Cerrejón WRV 04774, 36.55m, EF T16. Figure 20. Cyclusphaera scabrata Jaramillo & Dilcher 2001, Arauca-2, 17703’8’ Core, EF T52. Figures 21, 22. Duplotriporites ariani Sarmiento 1992, Arauca-2, 19450–19460, EF H10. Figures 23, 24. Echiperiporites scabrannulatus sp. nov., Holotype, Tocoragua-1, 14260R-slide 861, EF N25. Figures 25, 26. Echitetracolpites? tenuiexinatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 43, EF W51. 69 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Plate 3. Figures 1, 2. Echitricolporites maristellae Muller et al. 1987, Arauca-2, 15430–15440, EF W23-2. Figures 3, 4. Echitricolporites mcneillyi Germeraad et al. 1968, Montoyas A1, 2400–2430, EF J44-1. Figures 5, 6, 7. Echitricolporites spinosus Van der Hammen 1956, Montoyas A1, 2400–2430, EF K36/1-2. Figures 8, 9. Echitriporites cricotriporatiformis sp. nov., Holotype, Gibraltar-2, 920–940-slide 185, EF Q24-2. Figure 10. Echitriporites cricotriporatiformis sp. nov., Paratype, Gibraltar-2, 760–790-slide 267, EF L20/1. Figures 11, 12. Echitriporites trianguliformis var. orbicularis Jaramillo & Dilcher 2001, Coronado-1, 6380, EF H15. Figures 13, 14, 15. Echitriporites variabilis Jaramillo & Dilcher 2001, Llanos Foothills, UFP 42, EF V58/2. Figures 16, 17, 18. Fenestrites longispinosus Lorente 1986, AM27-19, EF G41 4. Figures 19, 20. Fenestrites spinosus Van der Hammen 1956, Montoyas A1, 2850–2880, EF H30. Figures 21, 22. Foveotricolpites perforatus Van der Hammen & Garcia 1966, Rı́o Zulia14, 6680, EF K46. Figures 23, 24, 25. Foveotricolporites etayoi, sp. nov., Holotype, Arauca-2, 17510–17520-slide 1, EF M18. Figures 26, 27. Foveotriporites hammenii Gonzalez 1967, Gibraltar-1, 6430–6440 R, EF S14. Figures 28, 29, 30. Gemmamonocolpites gemmatus (Van der Hammen 1954) Van der Hammen & Garcia 1966, Llanos Foothills, UFP 8, EF F59/3. C.A. Jaramillo et al. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 70 Plate 4. Figures 1, 2, 3. Grimsdalea magnaclavata Germeraad et al. 1968, Arauca-2, 14040–14050, EF N51. Figures 4, 5. Horniella lunarensis Jaramillo et al. 2007, Pinalerita creek, UFP 21, EF U62-4. Figures 6, 7. Jandufouria minor Jaramillo & Dilcher 2001, Niscota E1, 1210–1240, EF W34. Figures 8, 9. Jandufouria seamrogiformis Germeraad et al. 1968, Niscota-E1, 1960–1990, EF S25/3. Figures 10, 11. Lanagiopollis crassa (Van der Hammen & Wymstra 1964) Frederiksen 1988, Llanos Foothills, UFP 34, EF O62/3. Figures 12, 13, 14. Longapertites proxapertitoides var. proxapertitoides Van der Hammen & Garcia 1966, Llanos Foothills, UFP 27, EF N52/2–4. Figures 15, 16. Luminidites colombianensis Jaramillo & Dilcher 2001, Orito Sur-1, 4280–4290, EF N 13. Figures 17, 18. Magnastriatites grandiosus (Kedves & Sole de Porta 1963) Dueñas 1980, Arauca-2, 15590– 15600, EF E11. Figures 19, 20, 21. Margocolporites vanwijhei Germeraad et al. 1968, Arauca-2, 15510–15520, EF M30/3. Holotype. Plate 3, figures 23–25, sample Arauca-2, 17510-17520-slide 1, EF M18. Paratype. Sample Gibraltar-1, 4630-4640-slide 119, EF J29/3. Etymology. After Fernando Etayo, a prominent Colombian geologist and paleontologist. Type locality: Arauca-2, Carbonera Formation, Oligocene, 6.958N, 71.848W. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Diagnosis. Tricolporate pollen, intermediate in size (26-28 mm), exine thick, colpi marginate, fossulate at apocolpia, reticulate at mesocolpia. Description. Monad pollen grains, radial, isopolar, spherical, amb circular; tricolporate, ectocolpi marginate, margo 2 mm wide, formed by thinning of exine, colpi long, ends pointed, 23 mm long, endopore simple, indistinct, lalongate, 3 mm long, 6 mm wide; tectate, exine 3 mm thick, spongy-like, columellae distinct, nexine 0.5 mm thick, columellae 2 um thick, very long, 0.5 mm wide, 1 mm apart, decreasing near colpi to 0.5 mm, tectum 0.5 mm thick; sculpture foveoreticulate, fossulate at apocolpia gradually changing to reticulate at mesocolpia, simplicolumellate, lumina 1 mm wide, muri 0.5 mm wide, densely and evenly distributed over entire grain. Dimensions. Equatorial diameter 26–27 mm; measured 2, observed 267. Comparisons. Foveotricolporites sp. 1 of Jaramillo & Dilcher 2001 has fastigiate endopores, and foveolae that diminish in width towards the equator, Retitricolporites quadrosi Regali et al. 1974 has costate ectocolpi and lumina decrease near colpi, Retitricolporites finitus Gonzales 1967 is homobrochate, Retitricolporites profundus Gonzales 1967 has lumen that decrease near colpi, Foveotricolporites voluminosus Gonzales 1967 has costate pores, Foveotricolporites rugulatus Jaramillo & Dilcher, 2001 have fossulae that fuse, forming a rugula-like pattern, Foveotricolporites fossulatus Jaramillo & Dilcher 2001 has lumina that decrease near colpi, Foveotricolporites sp. 2 Jaramillo & Dilcher 2001 is fossulate at mesocolpia. Paleosantalaceaepites cingulatus sp. nov. Plate 5 figures 13–15 Holotype. Plate 5, figures 13–15, sample Montoyas A1, 1620-1650-slide 680, EF T41/2. Paratype. Sample Montoyas A-1, 2430-2460-slide 741, EF H21. Etymology. After the presence of a cingulum. Type locality: Montoyas A-1, Real Formation, Miocene, 6.838N, 74.048W. Diagnosis. Tricolporate, intermediate in size (32– 40 mm), tectate, foveolate, ectocolpi operculate, endosulculus costate. Description. Monad pollen grains, radial, isopolar, prolate, circular; tricolporate, ectocolpi operculate, long, ends pointed, almost reaching apocolpia, 25– 36 mm long, operculum 2 mm wide, endosulculus 3– 5 mm wide, costate, costae 1 mm wide, 1 mm thick, distinct; tectate, exine 2 mm thick, columellae distinct, nexine 0.5 mm thick, columellae 1 mm thick, 0.5 mm wide, 0.5–1 mm apart, tectum 0.5 mm thick, nexine thickens to 1.5 mm near endosulculus; sculpture 71 foveolate, lumina 0.5–1 mm wide, 0.5–1 mm apart, densely and evenly distributed over entire grain. Dimensions. Equatorial diameter 20(23)25 mm; polar diameter 32(37)40 mm; polar/equatorial diameter 1.6, measured 3, observed 24. Comparisons. Paleosantalaceaepites distinctus Jaramillo & Dilcher 2001 is reticulate and heterobrochate, Retitricolporites microreticulatus Herngreen 1975 has costate ectocolpi, Stephanocolpites costatus Van der Hammen 1954 is spherical, 5–6 colpate, and colpi are shorter, Paleosantalaceaepites reticulatus Samant & Phadtare 1997 is smaller (24–25 mm), and has a thicker exine (1.5 mm), Zonocostites ramonae Germeraad et al. 1968 is smaller (16–19 mm), spherical, and ectocolpi are costate. Proxapertites minutihumbertoides sp. nov. Plate 6, figures 8–9 Holotype. Plate 6, figures 8–9, sample Zulia Profundo1, 8260-8270-slide 851, EF Q14/34. Paratypes. Sample Mucurera-3, 2690-2700-slide 397, EF W54/4; Sample Zulia Profundo-1, 8020-8030-slide 1013, EF R11/2. Etymology. After smaller size but close resemblance to P. humbertoides. Type locality: Zulia Profundo-1, Cuervos Formation, Paleocene, 8.218N, 72.468W. Diagnosis. Zonasulculate, intermediate to large in size (58–72 mm), tectate, fossulate. Description. Monad pollen grains, radial, anisopolar, amb elliptic, sulculus dividing grain in two slightly unequal parts; zonasulculate, sulculus simple; tectate, exine 5 mm thick, columellae distinct, nexine 2 mm thick, columellae 2 mm thick, 1 mm wide, 1 mm apart, tectum 1 mm thick; sculpture fossulate, lumina 1 mm wide, 3–8 mm long, 2–3 mm apart, evenly and densely distributed over entire grain, shaped unevenly, circular to elongated to star-shaped within same grain, sometimes fossulae tend to be shorter and narrower toward apocolpia. Dimensions. Equatorial diameter length 58(65)72 mm; equatorial diameter width 48(55.1)70 mm; equatorial diameter length/width 1.2, measured 10, observed 324. Comparisons. Proxapertites humbertoides (Van der Hammen 1954) Sarmiento 1992 is very similar but much longer (73–121 mm), Proxapertites tertiaria van der Hammen & Garcia 1966 is larger (130 mm), and Proxapertites magnus Muller et al. 1987 is foveolate. Proxapertites sulcatus sp. nov. Plate 6, figures 12–13 Holotype. Plate 6, figure 12, sample Guariquies-1, 5290-5300-slide 635, EF C16. 72 C.A. Jaramillo et al. Diagnosis. Zonasulculate, intermediate in size (39– 40 mm), exine thin, psilate, with a sulcus on the apocolpia. Description. Monad pollen grains, bilateral, anisopolar, amb elliptic, sulculus dividing grain in two slightly Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Paratype. Plate 6, figure 13, sample Guariquies-1, 5320-5330-slide 634, EF W8. Etymology. After the sulcate aperture. Type locality: Guariquies-1, Umir Formation, Maastrichtian, 6.98N, 73.518W. Plate 5. Figures 1, 2, 3. Mauritiidites franciscoi var minutus Van der Hammen & Garcia 1966, Gibraltar-1, 4420–4430, EF Q17/ 1. Figures 4, 5. Monocolpopollenites ovatus Jaramillo & Dilcher 2001, Mucurera-3, 1200–1210, EF Intercepto J14/4-J15/3. Figures 6, 7, 8. Multimarginites vanderhammenii Germeraad et al. 1968, Totumo E, EF U21. Figures 9, 10. Multiporopollenites pauciporatus Jaramillo & Dilcher 2001, Mucurera-3, 890–900, EF M16-3. Figures 11, 12. Nothofagidites huertasii Jaramillo & Dilcher 2001, Llanos Foothills, UFP 46, EF Q51. Figures 13, 14, 15. Paleosantalaceaepites cingulatus sp. nov., Holotype, Montoyas A1, 1620–1650-slide 680, EF T41/2. Figures 16, 17, 18. Perfotricolpites digitatus Gonzalez 1967, Arauca-2, 15310– 15320, EF X24. Figure 19. Periretisyncolpites giganteus Kieser & Jan du Chene 1979, Guariquı́es-2, 4820–4830, EF R13/3. Figures 20, 21, 22. Perisyncolporites pokornyi Germeraad et al. 1968, Arauca-2, 15510–15520, EF D33/1. Figures 23, 24. Proteacidites dehaani Germeraad et al. 1968, Guariquı́es-1, 1930–1960, EF S20/1. Palynology long, ends rounded, marginated, margo 1 mm wide, 0.5 mm thick, distinct, often invaginate; tectate, exine 1 mm thick, columellae absent, nexine 0.5 mm thick, tectum 0.5 mm thick; sculpture psilate. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 unequal parts; zonasulculate, sulculus margin ragged, marginate, margo 1 mm wide, produced by a slightly scabrate ornamentation, there is an additional sulcus on the polar side of the larger half of the grain, 29 mm 73 Plate 6. Figures 1, 2. Proteacidites triangulatus Lorente 1986, Montoyas A1, 5760–5790, EF W14/4. Figures 3, 4, 5. Proxapertites cursus Van Hoeken Klinkenberg 1966, Cerrejón WRV 04774, 38.63 m, EF J52. Figures 6, 7. Proxapertites magnus Muller et al. 1987, Cerrejón WRV-4774, 301.88 m, EF H39/3. Figures 8, 9. Proxapertites minutihumbertoides sp. nov., Holotype, Zulia Profundo-1, 8260–8270-slide 851, EF Q14/3–4. Figures 10, 11. Proxapertites operculatus (Van der Hammen 1954) Van der Hammen 1956, Cerrejón WRV 04774, 36.55 m, EF M14/1. Figure 12. Proxapertites sulcatus, sp. nov., Holotype, Guariquı́es-1, 5290–5300-slide 635, EF C16. Figure 13. Proxapertites sulcatus, sp. nov., Paratype, Guariquı́es-1, 5320–5330-slide 634, EF W8. Figures 14, 15. Pseudostephanocolpites perfectus Gonzalez 1967, Coronado-1, 6560, EF K13/1. Figures 16, 17. Psilabrevitricolporites simpliformis Van der Kaars 1983, Cerrejón WRV- 04774, 38.63m, EF T57/1. 74 C.A. Jaramillo et al. Comparisons. No other Proxapertites species has a sulcus on the apocolpia. Retipollenites crotonicolumellatus sp. nov. Plate 9, figures 1–3 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Dimensions. Equatorial diameter length 39(39.5) 40 mm; equatorial diameter width 29(31.5) 34 mm; equatorial diameter length/width 1.3, measured 2, observed 14. Plate 7. Figures 1, 2. Psilabrevitricolporites triangularis (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Coronado–1, 5020, EF F22/4. Figures 3, 4, 5. Psilaperiporites robustus Regali et al.1974, slide T-035, Petrobras Pollen Collection, EF M34. Figure 6. Psilatricolporites caribbiensis Muller et al. 1987, sample AM27–1, EF S26/4. Figure 7. Psilastephanoporites tesseroporus Regali et al. 1974, Socorro Formation, 260, EF Q26-27/R26–27. Figures 8, 9. Psilatricolporites pachydermatus Lorente 1986, Niscota-E1, 3430-3460, EF P57/2. Figures 10, 11,12. Racemonocolpites facilis Gonzalez 1967, Lisama 10, 9910, EF V15/4. Figures 13, 14. Racemonocolpites racematus (Van der Hammen 1954) Gonzalez 1967, Cerro Gordo–3, 1170-1180, EF P7. Figures 15, 16. Ranunculacidites operculatus (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Arauca–2, 1543015440, EF Q12–2. Figures 17, 18. Retibrevitricolpites triangulatus Van Hoeken Klinkenberg 1966, Guavio-1, 7030, EF V49. Figures 19, 20. Retibrevitricolporites grandis Jaramillo & Dilcher 2001, Gibraltar–1, 6340-6350, EF V26. Figures 21, 22. Retibrevitricolporites speciosus Jaramillo & Dilcher 2001, Coronado–1, 6680, EF H49/2. Figures 23, 24. Retidiporites magdalenensis Van der Hammen & Garcia 1966, Lisama N 1P ST, 10820-10830, EF D20–4. Figures 25, 26, 27. Retistephanocolpites angeli Leidelmeyer 1966, Llanos Foothills, UFP 7, F44. Palynology Diagnosis. Inaperturate pollen, intermediate in size (23–26 mm), spherical, exine thick, reticulate, lumina large, curvimurate, simplicolumellate. Description. Monad pollen grains, radial, isopolar, spherical, amb circular; inaperturate; semitectate, exine 4 mm thick, columellae distinct, nexine 1 mm thick, columellae 2 mm thick, 1 mm wide, 2–3 mm apart, Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Holotype. Plate 9, figures 1–3, sample Montoyas A-1, 2790-2820-slide 746, EF K47/1. Paratype. Sample Montoyas A-1, 2460-2490-slide 742, EF G52. Etymology. After the croton-alike pattern of the columellae. Type locality: Montoyas A-1, Real Formation, Miocene, 6.838N, 74.048W. 75 Plate 8. Figures 1, 2, 3. Retistephanocolporites festivus Gonzalez 1967, Gibraltar-1, 6010–6020, EF V52-4. Figures 4, 5. Retistephanoporites angelicus Gonzalez 1967, Rio Zulia W–2, 7360-7370, EF U61. Figures 6, 7. Retistephanoporites crassiannulatus Lorente 1986, Arauca–2, 15430-15440, EF E19. Figures 8, 9, 10. Retistephanoporites minutiporus Jaramillo & Dilcher 2001, Arauca–2, 17703’8’, EF C21/2. Figures 11, 12, 13. Retitrescolpites baculatus Jaramillo & Dilcher 2001, Gibraltar-1, 5650–5660, EF L45/2. Figures 14, 15, 16. Retitrescolpites? irregularis (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Arauca-2, 15430–15440, EF Q34-1. Figures 17, 18, 19. Retitrescolpites magnus (Gonzalez 1967) Jaramillo & Dilcher 2001, Coronado–1, 6680, EF J7. C.A. Jaramillo et al. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 76 Plate 9. Figures 1, 2, 3. Retipollenites crotonicolumellatus, sp. nov., Holotype, Montoyas A1, 2790-2820-slide 746, EF K47/1. Figures 4, 5. Rhoipites guianensis (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Lisama 10, 9680, EF F23/1. Figures 6, 7. Rhoipites hispidus (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Orito Sur–1, 3500-3510, EF L38– 1. Figures 8, 9. Rhoipites planipolaris, sp. nov., Holotype, Gibraltar-1, 4750–4760-slide 170, EF H45/1-3. Figure 10. Rhoipites planipolaris, sp. nov., Paratype, Coronado–1, 5020-slide 493, EF N24/2. Figures 11, 12. Rugotricolporites intensus, sp. nov., Holotype, Gibraltar-2, 1280–1290-slide 187, EF J54/4. Figure 13. Rugotricolporites intensus, sp. nov., Paratype, Gibraltar-2, 2000–2010-slide 360, EF D21. Figures 14, 15. Spathiphyllum vanegensis (Van der Hammen & Garcia, 1966) Hesse & Zetter 2007, Mucurera-3, 3110–3120, EF R6/4. Figures 16, 17. Spinizonocolpites baculatus Muller 1968, Lisama Este-1, 5920–5950, EF O33. Figures 18, 19. Spinizonocolpites echinatus Muller 1968, Cerro Gordo-3, 1840–1850, EF P20 2/4. Figures 20, 21. Spinizonocolpites grandis Jaramillo & Dilcher 2001, Mucurera-3, 1880–1890, EF N41-1. Figures 22, 23. Spirosyncolpites spiralis Gonzalez 1967, Gonzalez–1, Cuervos porteria 2, EF F43-3. Figures 24, 25. Stephanocolpites costatus Van der Hammen 1954, Cerro Gordo–3, 1570-1580, EF K10/4. Figures 26, 27, 28. Stephanocolpites evansii Muller et al. 1987, Montoyas A1, 2010–2040, EF P6/3. Palynology Comparisons. Retipollenites confusus Gonzalez 1967 is larger (48 mm) and reticulum is not inserted in nexine, Inaperturopollenites curvimuratus Regali et al. 1974 is heterobrochate, Inaperturopollenites cursis Sarmiento 1992 has smaller lumina (50.5 mm). Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 tectum 1 mm thick; sculpture reticulate, homobrochate, lumina 3–5 mm wide, curvimurate, muri 1 mm wide, simplicolumellate, columellae arranged in a pseudocroton pattern. Dimensions. Equatorial diameter 23–26 mm; measured 2, observed 18. 77 Plate 10. Figures 1, 2, 3. Striatopollis catatumbus (Gonzalez 1967) Takahashi & Jux 1989, SA-14, 2840–2850, EF C38/1. Figures 4, 5. Syncolporites marginatus Van Hoeken Klinkenberg 1964, Regadera Section, Re 72 37.5 m, EF R15. Figures 6, 7. Syndemicolpites typicus Van Hoeken-Klinkenberg 1964, Cerro Gordo-3, 2140–2150, EF E43/1. Figures 8, 9. Tetracolporopollenites maculosus (Regali et al. 1974) Jaramillo & Dilcher 2001, Llanos Foothills, UFP 48, EF F59. Figures 10, 11. Tetracolporopollenites transversalis (Dueñas 1980) Jaramillo & Dilcher 2001, Niscota E1, EF T58-4. Figures 12, 13. Tetradites umirensis Van der Hammen 1954, Cerro Gordo–3, 2680-2690, EF E37/2-E38/1. Figures 14, 15. Ulmoideipites krempii (Anderson 1960) Elsik 1968, Regadera Section, Re 72 37.5 m, EF L56–2. Figures 16, 17. Wilsonipites margocolpatus Muller et al. 1987, Llanos Foothills, UFP 57, EF U43. Figures 18, 19, 20. Zonotricolpites variabilis Sarmiento 1992, DK-12, 64739, EF K43/1. C.A. Jaramillo et al. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 78 Plate 11. Figures 1, 2, 3. Cicatricosisporites baculatus Regali et al. 1974, Volcanera–1, 4100, EF U22. Figures 4, 5. Cicatricosisporites dorogensis Potonie & Gelletich 1933, Rı́o Zulia West-2, 7460–7470, EF F23. Figures 6, 7. Crassoretitriletes vanraadshooveni Germeraad et al. 1968, Molino del viento-1, 3100–3130, EF L52/1. Figures 8, 9. Cyatheacidites annulatus Cookson 1967, Montoyas A1, 480-510, EF R36–4. Figure 10. Diporopollis assamica Dutta & Sah 1970, Arauca-2, 183476, EF D4/3. Figures 11, 12, 13. Echitriletes intercolensis sp. nov., Holotype, DK–10, 64151-slide 89, EF M53/3. Figure 14. Echitriletes intercolensis sp. nov., Paratype, DK-10, 64163-slide 76, EF S55/3–4. Figures 15, 16. Foveotriletes margaritae (Van der Hammen 1954) Germeraad et al. 1968, Arauca-2, 19450–19460, EF G19. Figures 17, 18. Gabonisporites vigourouxii Boltenhagen 1967, Cerro Gordo-3, 1600–1610, EF N38-1. Figures 19, 20. Ischyosporites problematicus Jaramillo & Dilcher 2001, Cerrejón WRV– 04774, 118,25 m, EF R60. 79 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Plate 12. Figures 1, 2. Polypodiisporites pachyexinatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 21, EF S54/3. Figures 3, 4. Retitriletes sommeri Regali et al. 1974, Montoyas A1, 1740–1770, EF K40. Figures 5, 6. Scabratriletes granularis, sp. nov., Holotype, Guariquı́es-1, 1930–1960-slide 628, EF P25. Figures 7, 8. Scabratriletes granularis, sp. nov., Paratype, Guariquı́es-1, 1930-1960-slide, 628 EF X25/4. Figures 9, 10. Striatriletes saccolomoides, sp. nov., Holotype, Orito Sur-1, 3500–3510-slide 302, EF H51/1-2. Figures 11, 12. Striatriletes saccolomoides, sp. nov., Paratype, Zulia Profundo–1, 4910-4920-slide 848, EF H9/4. Figures 13, 14. Verrucatosporites usmensis (Van der Hammen 1956a) Germeraad et al. 1968, Arauca–4, 1773610, EF H29/2. Figures 15, 16. Zlivisporis blanensis Pacltova 1961, Arauca-2, 19010–19020, EF P18-4. 80 C.A. Jaramillo et al. Rhoipites planipolaris sp. nov. Plate 9, figures 8–10 Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Holotype. Plate 9, figures 8–9, sample Gibraltar-1, 4750-4760-slide 170, EF H45/1-3. Paratype. Plate 9, figure 10, sample Coronado-1, 5020slide 493, EF N24/2. Etymology. After the flat apocolpia. Type locality: Gibraltar-1, Carbonera Formation, Miocene, 7.0438N, 72.178W. Plate 13. Figures 1, 2. Andalusiella gabonensis (Stover & Evitt 1978) Wrenn & Hart 1988, Cerro Gordo–3, 1900-1910, EF G49. Figure 3. Cerodinium diebelii (Alberti 1959b) Lentin & Williams 1987, Rio Molino, Sample 446. slide 5B, EF G44. Figures 4, 5. Cribroperidinium tenuitabulatum (Gerlach 1961) Helenes 1984, emend. Sarjeant 1984, Bahamas Core78r Slide2d, EF Q52/3. Figures 6, 7. Dinogymnium acuminatum Evitt et al. 1967, Niscota-E1, 14170–14200, EF V7/2 Figure 8. Senegaliniun bicavatum Jain & Millepied 1973, ING-AC-64, EF K58. Figure 9. Senegaliniun laevigatum (Malloy 1972) Bujak & Davies 1983, ING-AC– 95, EF K66. Figures 10, 11. Tuberculodinium vancampoae (Rossignol 1962) Wall 1967, Q. Bellavista, Be-100.7 m, EF T25/3. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Diagnosis. Tricolporate pollen, intermediate in size (26–33 mm), reticulate at apocolpia, foveolate to psilate at mesocolpia, colpi costate, apocolpia almost flat. Description. Monad pollen grains, radial, isopolar, prolate, amb circular, apocolpia 10 mm wide, rounded, the overall shape in equatorial view approaches a rectangle with rounded vertices; tricolporate, ectocolpi costate, costae 2 mm wide at mesocolpia tapering to 0.5 mm near colpus end, 2 mm thick, colpi long, ends pointed, 20 mm long, endopore simple, lalongate, 2–3 mm long, 5 mm wide; semitectate, exine 1.2 mm thick, columellae barely distinct, nexine 0.5 mm thick, columellae 0.2 mm thick, tectum 0.5 mm thick; sculpture reticulate at apocolpia gradually changing to foveolate to psilate at mesocolpia, lumina 0.5 mm wide, muri 1 mm wide, slightly raised, pluricolumellate, lumina of foveolae at mesocolpia 0.5 mm wide, 3–5 mm apart. Dimensions. Equatorial diameter 26(28.8)33 mm; polar diameter 18(19.8)21 mm; polar/equatorial diameter 1.5; measured 4, observed 123. Comparisons. Rhopites hispidus (Van der Hammen and Wymstra 1964) Jaramillo & Dilcher 2001 has costate pores and it is homobrochate, Rhoipites squarrosus (Van der Hammen and Wymstra 1964) Jaramillo & Dilcher 2001 is homobrochate, Retitricolporites ellipticus Van Hoeken-Klinkenberg 1966 is homobrochate, Retitricolporites wijmstrae Hoorn 1994 is homobrochate. Rugutricolporites intensus sp. nov. Plate 9, figures 11–13 Holotype. Plate 9, figures 11–12, sample Gibraltar-2, 1280-1290-slide 187, EF J54/4. Paratype. Plate 9, figure 13, sample Gibraltar-2, 20002010-slide 360, EF D21. Etymology. After the remarkable rugulae at mesocolpia. Type locality: Gibraltar-2, Carbonera Formation, Miocene, 7.0438N, 72.178W. Diagnosis. Tricolporate pollen, intermediate in size (38–40 mm), rugulae at mesocolpia between colpi, pores conspicuosly costate and fastigiate, colpi simple. Description. Monad pollen grains, radial, isopolar, amb triangular-obtuse-convex; tricolporate, ectocolpi simple, long, almost reaching apocolpia, 29 mm long, ends rounded, apocolpia area 7 mm wide, pore indistinct, lalongate, 4 mm long, 10 mm wide, fastigiate, fastigium 7 mm wide, 4 mm thick, pore surrounded by a darkening of the exine that resembles a costae, 10– 12 mm wide; atectate, exine 1.5 mm thick, nexine 1 mm thick near colpi, increasing gradually to 2 mm midway between colpi at mesolcolpia, there is also a thickening of the exine around the endopores forming a darkened large circular area 10–12 mm wide that extend into the 81 apocolpia; sculpture rugulate and foveolate, rugulae short, two or three ridges, present only in the area between colpi at mesocolpia, 3 mm wide, 1 mm apart, 5–7 mm long, parallel to the colpi, sometimes rugulae are larger extending into the apocolpia; surface foveolate, foveolae 0.5 mm wide, 1 mm apart, distributed densely over entire grain, even over the rugulae. Dimensions. Equatorial diameter 38(38.7)40 mm; measured 3, observed 9. Comparisons. Rugutricolporites felix Gonzalez 1967 has rugulae over entire grain, Horniella lunarensis Jaramillo et al. 2007 is tectate and reticulate. Acknowledgements This project was supported by the Colombian Petroleum Institute and the Smithsonian Paleobiology Endowment Fund. Thanks to Guy Harrington and an anonymous reviewer for their helpful comments. The biostratigraphy teams both at the Colombian Petroleum Institute and the Smithsonian Tropical Research Institute including Giovanny Bedoya, Millerlandy Romero, Diana Ochoa, Carlos Sanchez, Guillermo Rodriguez, Carlos Cuartas, Felipe De La Parra, Lineth Contreras, Paula Mejia, Pilar Lopera, Silane Da Silva, Carlos Santos, Carolina Vargas, Argelis Ruiz, Leopoldo Leon, Catalina Pimiento, Luz Oviedo, Mauricio Parra, Andres Mora, Francy Carvajal, Fatima Leite, and several external collaborators including Germán Mora, Humberto Gonzales, Pi Willumsen, Andrés Pardo, and Patrice Brenac that helped with logistic support, fieldwork, and palynological analyses. Carlos Cuartas developed and ran the code for the CONOP analysis. Natasha Atkins improved the readiblity of the manuscript. Special thanks go to M.I. Barreto and Lucia Ardila for their continuous support and ideas. Author biographies CARLOS JARAMILLO is a staff scientist with the Smithsonian Tropical Research Institute in Panama. His research investigates the causes, patterns, and processes of tropical biodiversity at diverse scales of time and space. He is also interested in Cretaceous– Cenozoic biostratigraphy of low latitudes, developing methods for high-resolution biostratigraphy and the paleobiogeography of Tethys. MILTON RUEDA is a consultant geologist in Colombia, with 25 years of experience in the palynostratigraphy of Cenozoic and Cretaceous sequences, taxonomy and on-site well biostratigraphy. VLADIMIR TORRES was the head of the biostratigraphy team of ECOPETROL S.A., the State Oil 82 C.A. Jaramillo et al. Company of Colombia, from 2005 to 2009. His research has mainly focused on the Pliocene and Pleistocene of the northern Andes. He is also interested in the Cenozoic palynostratigraphy of tropical areas as well as application of palynology to sequence stratigraphy. At present he is one of the staff palynologists of ExxonMobil Exploration Company in Houston where he is currently working on various projects from basins around the world. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 References Bayona G., Cortés M., Jaramillo C., Ojeda G., Aristizabal J., Reyes-Harker A. 2008. An integrated analysis of an orogen–sedimentary basin pair: Latest Cretaceous–Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geological Society of America Bulletin, 120: 1171–1197. Bermudez P.J., Bolli H.M. 1969. Consideraciones sobre los sedimentos del Mioceno medio al Reciente de las costas central y oriental de Venezuela. Tercera parte: Los foraminı́feros planctónicos. Boletin de Geologia, Ministerio De Minas e Hidrocarburos, 10(20): 137–223. Blow W.H. 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In: Brönnimann P., Renz H.H., editors. Proceedings of the First International Conference on Planktonic Microfossils, Geneva, 1967. 2 Vols. Leiden: E.J. Brill, Vol. 1, p. 199–421. Bolli H.M., Beckmann J.-P., Saunders J.B. 1994. Benthic foraminiferal biostratigraphy of the south Caribbean region. London: Cambridge University Press. 408 p. Carney J.L., Pierce R.W. 1995. Graphic correlation and composite standard databases as tools for the exploration biostratigrapher. In: Mann K.O., Lane H.R., editors. Graphic correlation. Tulsa (OK): SEPM (SEPM Special Publication No. 53). p. 23–43. Carvajal-Ortiz H., Mora G., Jaramillo C. 2009. Molecular biomarker evaluation of a terrestrial carbon isotope record as a chronostratigraphic tool for the Paleocene– Eocene of tropical sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 277: 173–183. De la Parra F., Jaramillo C., Dilcher D. 2007. Paleoecological changes of spore producing plants through the Cretaceous–Paleocene boundary in Colombia. Palynology, 32: 258–259. Dı́az de Gamero L. 1977a. Estratigrafı́a y micropaleontologı́a del Oligoceno y Mioceno inferior del centro de la cuenca de Falcón, Venezuela. GEOS, 22: 2–50. Dı́az de Gamero L. 1977b. Revisión de las unidades litoestratigráficas en Falcón central en base a su contenido de foraminı́feros planctónicos. In: Espejo A., editor. V Congreso Geologico de Venezuela Memorias. Vol. 1. Caracas: Sociedad Venezolana de Géologos. p. 81–86. Dı́az de Gamero M.L. 1996. The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 123: 385–402. Dı́az de Gamero M.L. 1985a. Estratigrafı́a de Falcón nororiental. VI Congreso Geológico Venezolano. Vol. 1. Caracas: Sociedad Venezolana de Géologos. p. 454–502. Dı́az de Gamero M.L. 1985b. Micropaleontologı́a de la formacion Agua Salada, Falcon Nororiental. Memorias VI Congreso Geológico Venezolano. Vol. 1. Caracas: Sociedad Venezolana de Géologos. p. 384–453. Dı́az de Gamero M.L. 1989. El Mioceno Temprano y Medio de Falcón septentrional. GEOS, 29: 25–35. Dı́az de Gamero L., Linares O.J. 1989. Estratigrafı́a y paleontologı́a de la Formación Urumaco, del Mioceno tardı́o de Falcón noroccidental. VII Congreso Geologico Venezuela. Vol. 1. Caracas: Sociedad Venezolana de Géologos. p. 419–439. Dı́az de Gamero L. Mitacchione V., Ruiz M. 1988. La Formación Querales en su área tipo, Falcón noroccidental, Venezuela. Boletin Sociedad Venezolana de Geologia, 34: 34–46. Edwards L.E. 1984. Insights on why graphic correlation (Shaw’s method) works. Journal of Geology, 92: 583– 597. Edwards L.E. 1989. Supplemented graphic correlation: a powerful tool for paleontologists and nonpaleontologists. PALAIOS, 4: 127–143. Foote M. 2000. Origination and extinction components of taxonomic diversity: general problems. In: Erwin D.H., Wing S.L., editors. Deep time: paleobiology’s perspective. Chicago: University of Chicago Press for The Paleontological Society (Supplement to Paleobiology, Vol. 26, Part 4). p. 74–102. Germeraad J.H., Hopping C.A., Muller J. 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6: 189–348. Gonzalez A.E. 1967. A palynologic study on the upper Los Cuervos and Mirador formations (lower and middle Eocene), Tibú Area, Colombia. Leiden: E.J. Brill. Gradstein F.M., Ogg J.G., Smith A. 2005. A geologic time scale 2004. New York: Cambridge University Press. Guerra A. Mederos S. 1988. Estudio sedimentológico y bioestratigráfico de una zona ubicada entre las poblaciones de Urumaco y Sabaneta, estado Falcón [undergraduate Senior thesis]. [Caracas]: Universidad Central de Venezuela. Herrera C. 2008. Estratigrafı́a de la Formación Urumaco y geologı́a estructural entre el Domo de Agua Blanca y Hato Viejo (Edo. Falcón) [Ms thesis]. [Caracas]: Universidad Simón Bolivar. Hood K.C. 1998. GraphCor Interactive Graphic Correlation Software. Houston: Hood, K.C. Jaramillo C., Muñoz F., Cogollo M., Parra F. 2005. Quantitative biostratigraphy for the Paleocene of the Llanos Foothills, Colombia: Improving palynological resolution for oil exploration. In: Powell A.J., Riding J., editors. Recent developments in applied biostratigraphy. Bath (UK): Geological Society Publishing House (The Micropaleontological Society Special Publication TMS001). p. 145–159. Jaramillo C., Pardo-Trujillo A., Rueda M., Harrington G., Bayona G., Torres V., Mora G. 2007. Palynology of the Upper Paleocene Cerrejon Formation, northern Colombia. Palynology, 31: 153–189. Jaramillo C., Rueda M. 2004. Impact of biostratigraphy on oil exploration. III Convención Técnica Asociación Colombiana de Geólogos y Geofı́sicos del Petroleo (ACGGP) (La inversión en el conocimiento geológico). Bogotá: ACGGP. Vol. P4, CD ROM. Jaramillo C., Rueda M. 2008. A morphological electronic database of Cretaceous–Tertiary fossil pollen and spores from Northern South America. Bucaramanga: Colombian Petroleum Institute & Washington (DC): Smithsonian Tropical Research Institute. Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 Palynology Jaramillo C., Rueda M., Bayona G., Santos C., Florez P., Parra F. 2009. Biostratigraphy breaking paradigms: dating the Mirador Formation in the Llanos Basin of Colombia, In: Demchuk T., Waszczak R., editors. Geological problem solving with microfossils: a volume in honor of Garry D. Jones. Tulsa (OK): SEPM (SEPM Special Publication No. 93). p. 29–40. Jaramillo C., Rueda M., Mora G. 2006. Cenozoic plant diversity in the Neotropics. Science, 311: 1893–1896. Jaramillo C.A., Dilcher D.L. 2001. Middle Paleogene palynology of central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica B, 258: 87–213. Kemple W.G., Sadler P.M., Strauss D.J. 1995. Extending graphic correlation to many dimensions: stratigraphic correlation as constrained optimization, In: Mann K.O., Lane H.R., editors. Graphic correlation. Tulsa (OK): SEPM (SEPM Special Publication No. 53). p. 65–82. Kovach W.L., Batten D.J. 1994. Association of palynomorphs and palynodebris with depositional environments: quatitative approaches, In: Traverse A., editor. Sedimentation of organic matter. Cambridge: Cambridge University Press. p. 391–408. Kuhry P., Helmens K.F. 1990. Neogene–Quaternary biostratigraphy and paleoenvironments. Dissertationes Botanicae, 163: 89–132. J. Cramer, Stuttgart. (Also published as El Cuaternario de Colombia [The Quaternay of Colombia] 17). Legendre P., Legendre L. 1998. Numerical ecology. Amsterdam: Elsevier. 853 p. Leidelmeyer P. 1966. The Paleogene and Lower Eocene pollen flora of Guyana. Leidse Geologische Mededelingen, 38: 49–70. Linares O. 2004. Bioestratigrafı́a de las faunas de mamı́feros de las formaciones Socorro, Urumaco y Codore (Mioceno Medio-Plioceno Temprano, de la región de Urumaco, Falcon, Venezuela). Paleobiologı´a Neotropical, 1: 1–26. Lorente M. 1986. Palynology and palynofacies of the Upper Tertiary in Venezuela. Berlin: J. Cramer. 222 p. Mann K.O., Lane H.R. 1995. Graphic correlation: a powerful stratigraphic technique comes of age. In: Mann K.O., Lane H.R., editors. Graphic correlation. Tulsa (OK): SEPM (SEPM Special Publication No. 53). p. 3–13. McNeill J., Barrie F.R., Burdet H.M., Demoulin V.Hawksworth D.L.. Marhold K. Nicolson D.H., Prado J. Silva P.C. Skog J.E., Wiersema J.H. 2006. International Code of Botanical Nomenclature (Vienna Code) 2006. Ruggell, Liechtenstein: A.R.G. Gantner Verlag KG. 568 p. Moore P.D., Webb J.A., Collinson M.E. 1991. Pollen analysis. London: Blackwell Scientific Publications. 216 p. Muller J., Di Giacomo E., Van Erve A. 1987. A palynologic zonation for the Cretaceous, Tertiary and Quaternary of Northern South America. American Association of Stratigraphic Palynologists Contribution Series, 19: 7–76. Porta J.d., Sole de Porta N. 1962. Discusión sobre las edades de las formaciones Hoyón, Gualanday y la Cira en la región de Honda-San Juan de Rio Seco. Boletı´n de Geologı´a UIS, 9: 69–85. R-Development-Core-Team. 2005, R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Regali M., Uesugui N., Santos A. 1974. Palinologia dos sedimentos Meso-Cenozoicos do Brasil. Boletim Tecnico da Petrobras, 17: 177–191. 83 Renz H.H. 1948. Stratigraphy and Fauna of the Agua Salada Group, State of Falcón, Venezuela. Boulder (CO): Geologic Society of America. p. 1–219. Reyo O. 1990, Análisis comparativo y correlación de las formaciones Codore y La Vela, estado Falcón [M.Sc. thesis]. [Caracas]: Universidad Central de Venezuela. Sadler P.M. 2003. Constrained optimization approaches to the paleobiologic correlation and seriation problems: a user’s guide and reference manual to the CONOP program family, Version 6.5. Riverside: University of California. Sanchez-Villagra M., Aguilera O. 2006. Neogene vertebrates from Urumaco, Falcon State, Venezuela: diversity and significance, Journal of Systematic Palaeontology, 4: 213– 220. Sánchez-Villagra M.R. 2006. Vertebrate fossils from the Neogene of Falcon State, Venezuela: contributions on Neotropical Palaeontology. Journal of Systematic Palaeontology, 4: 211. Shaw A.B. 1964. Time in stratigraphy. New York: McGrawHill. 365 p. Traverse A. 2007. Paleopalynology. 2nd ed. Dordrecht: Springer. 813 p. Van der Hammen T. 1954. The development of Colombian flora throughout geologic periods: I, Maestrichtian to Lower Tertiary. Boletı´n Geológico (Bogotá), 2: 49–106. Van der Hammen T. 1956a. Description of some genera and species of fossil pollen and spores. Boletı´n Geológico (Bogotá), 4: 103–109. Van der Hammen T. 1956b. A palynological systematic nomenclature. Boletı´n Geológico (Bogotá), 4: 63–101. Van der Hammen T. 1957a. Climatic periodicity and evolution of South American Maestrichtian and Tertiary Floras: a study based on pollen analysis in Colombia. Boletı´n Geológico (Bogotá), 5: 49–91. Van der Hammen T. 1957b. Palynologic stratigraphy of the Sabana de Bogota (East Cordillera of Colombia). Boletı´n Geológico (Bogotá), 5: 187–203. Van der Hammen T. 1958. Estratigrafı́a del Terciario y Maestrichtiano continentales y Tectonogénesis de los Andes Colombianos. Boletı´n Geológico (Bogotá), 6: 67–128. Van der Hammen T., Burger D. 1966. Pollen flora and age of the Takutu formation (Guyana). Leidse Geologische Mededelingen, 35: 173–180. Van der Hammen T., Garcı́a C. 1966. The Paleocene pollen flora of Colombia. Leidse Geologische Mededelingen, 35: 105–114. Van der Hammen T., Werner J., Dommelen H. 1973. Palynologic record of the upheaval of the northern Andes: A study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high-Andean biota. Review of Palaeobotany and Palynology, 16: 1–122. Van der Hammen T., Wymstra T.A. 1964. A palynological study on the Tertiary and Upper Cretaceous of British Guayana. Leidse Geologische Mededelingen, 30: 183–241. Wijninga V.M. 1996. Paleobotany and palynology of Neogene sediments from the High Plain of Bogota (Colombia), Evolution of the Andean flora from a paleoecological perspective. Amsterdam: Ponsen and Looijen BV. 370 p. Wozniak J., Wozniak M.H. 1987. Bioestratigrafı́a de la región nor-central de la Serranı́a de Falcón, Venezuela noroccidental. Boletin de Geologı´a, Venezuela, 16: 101–139. Zachos J., Pagani M.H., Sloan L., Thomas E., Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693. 84 C.A. Jaramillo et al. Appendix 1. This appendix lists the supplementary material available at http://dx.doi.org/10.1080/01916122.2010.515069. . . . . . Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011 . . . . Supplementary Annex S1. R code for importing CONOP data Supplementary Annex S2. Graphic correlation session used by GraphCor Supplementary Annex S3. Constrained optimization session used by CONOP Supplementary Annex S4. Carbon isotope data for 10 sections Supplementary Figure S1. Comparison of our previous zonations (Jaramillo and Rueda 2004; Jaramillo et al. 2005, 2009) with the zonations proposed in this article Supplementary Table S1. List of all the species and synonymies used in this study Supplementary Table S2. Sequence of events in alphabetic order Supplementary Table S3. R code used for the time calibration of the sequence of events Supplementary Table S4. Lines of Correlation for every section used in the study. Each pair of points corresponds to the endpoints of a segment of the Line of Correlation. The first column corresponds to the individual section, and the second column corresponds to the composite section
© Copyright 2026 Paperzz