Palynology A palynological zonation for the Cenozoic of the Llanos

This article was downloaded by: [Smithsonian Institution Libraries]
On: 30 May 2011
Access details: Access Details: [subscription number 935277109]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK
Palynology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t913285617
A palynological zonation for the Cenozoic of the Llanos and Llanos
Foothills of Colombia
Carlos A. Jaramilloa; Milton Ruedab; Vladimir Torresc
a
Smithsonian Tropical Research Institute Balboa, Panama b Paleoflora Ltd., Bucaramanga, Colombia c
Colombian Petroleum Institute, Bucaramanga, Colombia
Online publication date: 23 May 2011
To cite this Article Jaramillo, Carlos A. , Rueda, Milton and Torres, Vladimir(2011) 'A palynological zonation for the
Cenozoic of the Llanos and Llanos Foothills of Colombia', Palynology, 35: 1, 46 — 84
To link to this Article: DOI: 10.1080/01916122.2010.515069
URL: http://dx.doi.org/10.1080/01916122.2010.515069
PLEASE SCROLL DOWN FOR ARTICLE
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
Palynology
Vol. 35, No. 1, June 2011, 46–84
A palynological zonation for the Cenozoic of the Llanos and Llanos
Foothills of Colombia
Carlos A. Jaramilloa*, Milton Ruedab and Vladimir Torresc
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
a
Smithsonian Tropical Research Institute Balboa, Panama; bPaleoflora Ltd., Bucaramanga, Colombia; cColombian Petroleum
Institute, Bucaramanga, Colombia
Hydrocarbon exploration in the Llanos Foothills of Colombia has intensified during the past several decades.
Exploration in this region is problematic owing to structural complexities, rapid lateral facies changes, and the
difficulties of acquiring good seismic imaging. These elements increase the uncertainties about the prognosis and
subsequent drilling of exploratory wells. Under these conditions, biostratigraphy can play a significant role in the
exploratory process. In the Llanos Foothills, palynology is the most useful biostratigraphic tool because pollen is the
most abundant fossil group. In this study we analyze pollen information from 70 sections (624,744 palynomorph
grains from 6707 samples) to construct a biostratigraphic zonation for the Llanos Foothills and Llanos basins.
Using both graphic correlation and constrained optimization in our analysis, we propose 18 palynological zones for
the Cenozoic of the Llanos and Llanos Foothills. These zones are tied to the geological timescale using 18 calibration
points that include carbon isotopes, foraminifera, and magnetostratigraphy.
Keywords: Cenozoic; tropics; pollen; zonation; biostratigraphy; South America
1.
Introduction
The Llanos Foothills of Colombia are actively being
explored for hydrocarbons. The structural, stratigraphic and seismic complexity of this region increases
the uncertainty of geological models for exploration
(Bayona et al. 2008). In this type of environment,
biostratigraphy is a very useful tool, especially during
the drilling of exploratory wells and in determining
new prospects and target areas.
Palynomorphs are the most abundant and useful
fossil group in Cenozoic rocks of the Colombian
Foothills, and palynology has long been used by the oil
industry in Colombia (Jaramillo and Rueda 2004).
Nonetheless, there still is no published biostratigraphic
scheme for Colombian basins that accommodates the
needs of modern hydrocarbon exploration. Previous
zonations for northern South America (Van der
Hammen 1954; Germeraad et al. 1968; Van der
Hammen et al. 1973; Regali et al. 1974; Lorente
1986; Muller et al. 1987; Kuhry and Helmens 1990;
Wijninga 1996) lack data from Colombian basins and
are not easily applied in Colombia.
In this study, we analyzed the palynological
information of 70 sections that together encompass
the entire Cenozoic, to produce a biostratigraphic
zonation tailored to the Llanos and Llanos Foothills of
*Corresponding author. Email: [email protected]
ISSN 0191-6122 print/ISSN 1558-9188 online
Ó 2011 AASP – The Palynological Society
DOI: 10.1080/01916122.2010.515069
http://www.informaworld.com
Colombia. The zonation was calibrated with foraminifera, carbon isotopes and magnetostratigraphy.
2.
Previous zonations
Few palynological zonations have been proposed for
Colombia (Van der Hammen 1957a, 1957b; Gonzalez
1967; Germeraad et al. 1968; Muller et al. 1987;
Jaramillo and Rueda 2004; Jaramillo et al. 2005,
2009). Van der Hammen (1957a, 1957b, 1958) was the
pioneer of palynological studies of Tertiary strata in
northern South America. He and his students (e.g.
Gonzales, 1967) used pollen/spore fluctuations based on
coal samples from different areas in Colombia as
proxies for climatic cycles that presumably have a
chronostratigraphic value. In this method, proportions
of different elements, such as the Psilamonocolpites,
Mauritiidites and Psilatriletes groups, are then calculated and plotted along the stratigraphic sections.
Abundance peaks of specific groups, assumed to
represent vegetational changes due to regional climatic
changes and therefore to have a chronostratigraphic
value, can be used for correlation. The ages are then
positioned on the pollen diagram based on the changes
of relative proportions of certain groups, assuming that
climatic changes are correlated with key boundaries.
47
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Van der Hammen (1958) correlated the base of
each epoch to a sandstone, and this biostratigraphic
scheme has been used to date most of the Tertiary
continental formations of Colombia and Guyana (Van
der Hammen 1954, 1956a, 1956b, 1957a, 1957b, 1958;
Van der Hammen and Wymstra 1964; Leidelmeyer
1966; Van der Hammen and Burger 1966; Van der
Hammen and Garcı́a 1966; Gonzalez 1967). Many of
those dates are still deeply rooted in Colombian
stratigraphy and used for correlation and modelling
purposes. However, there are many problems associated with this approach. First, there is a statistical
artifact associated with Van der Hammen’s pollen
diagrams, known as the ‘closed sum’ (Moore et al.
1991; Kovach and Batten 1994). Percentages of each
sporomorph group were calculated by counting 200–
300 grains per sample and then normalizing the results.
This method, however, tends to produce artificial
negative correlations when the abundance of one
group in a sample significantly increases, causing an
automatic decrease in abundance in a second group
even though its real abundance did not change. Such
negative correlations among Van der Hammen’s
groups could be an artifact of normalization, and
peaks of certain groups could in fact be simply the
product of a decrease in other groups. It is also
unlikely, as this approach assumes, that pollen
production and dispersal is similar for all species and
that all taxa have a regional distribution (Porta and
Sole de Porta 1962). Furthermore, coals, the main
source of Van der Hammen’s samples, generally have a
unique and facies-restricted flora that is unsuitable for
biostratigraphic purposes (Traverse 2007). Porta and
Sole de Porta (1962) analyzed 24 samples in 12 m of a
Miocene section in Cundinamarca, and found that the
resultant pollen diagram could be easily correlated
with zones A and B of a general pollen diagram for the
Oligocene. Moreover, because this approach does not
use an independent dataset that can test the ages given
by pollen groups, circular reasoning is highly possible.
In conclusion, correlation of ‘climatic cycles’ deduced
from the pollen record probably reflects similar
ecological conditions rather than time lines, and
should not be used as a tool for dating Cenozoic rocks.
Germeraad et al. (1968) proposed a number of
palynological zones for tropical Tertiary sediments.
The zones were based mainly on material from
Nigeria, Venezuela, and Colombia. The zonation
proposed by Germeraad is still extensively used in
Colombia and has been the basis for using pollen as a
dating tool in Colombia over the past 40 years.
However, the level of resolution is not adequate for
modern exploration, and Germeraad’s zonation also
relies on some palynomorph species that are very
common in Venezuelan sediments but rare in
Colombia. Muller et al. (1987) expanded Germeraad’s
zonation to the Cretaceous and proposed many more
subdivisions for the Cenozoic. Most of the information
for this work, however, came from Venezuelan basins
rather than from Colombia. Jaramillo and Rueda
(2004), and Jaramillo et al. (2005, 2009) published a
zonation for the middle to late Paleocene and the
Eocene-Oligocene, respectively. The zonation presented here is a continuation of that work, but it
includes 50 new sites and is expanded to the entire
Cenozoic. A comparison of our previous zonations
with the proposed in this article is shown in the
supplementary online material, Figure S1.
3.
Methods
The research was developed following two phases, the
first phase constructed the zonation, and the second
calibrated the proposed zonation.
3.1.
Zonation
We analyzed the palynological information from 70
sites located along the Llanos and Llanos Foothills
and adjacent basins (Table 1, Figure 1). We also
include sites outside the region (e.g. Urumaco in
western Venezuela) that could contain both foraminifera and pollen for calibration purposes. Many sites
were either outcrops or cores, to minimize the effect of
contamination by caving when using ditch-cutting
samples (Table 1). Sites from the literature were also
added (Jaramillo and Dilcher 2001). Only sites that
had numerical counts were used. A master taxonomic
dictionary was developed to contain all species named
in all of the sites, along with their possible synonymies
(Supplementary material, Table S1). The dictionary
was built by comparing the taxa against a morphological electronic database that contains every taxon
described for the tropics of South America (Jaramillo
and Rueda 2008). Of the 6439 taxa in our dictionary,
372 taxa were then selected for use in the biostratigraphic analysis. These taxa had several characteristics
in common: they were present in more than one site,
morphologically distinct, relatively common, and had
ranges that were constrained stratigraphically. We did
not use all the taxa because most of them either were
rare or had long stratigraphic ranges (e.g. Psilatriletes
sp.). Informal species are denoted by quotation marks
(e.g. Retitricolporites ‘beccus’).
We used two biostratigraphic methods to analyze
the palynological information: graphic correlation and
constrained optimization. The goal in both techniques
is finding an optimal sequence of events. An event
refers to either a first appearance datum (FAD) or a
last appearance datum (LAD). Optimal refers to a
48
Table 1.
C.A. Jaramillo et al.
The locations of the 70 sites in this study.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Site
Aga-1
Ara-2
Ara-3
Ara-4
Buc-1
Bue-3Carb
Bue-3Cor
Bue-H15
Cas-1
Cerrejon
Cer-3
Chi-1
Colorado
Concentracion
Cop-1
Cor-1
Cus-5
Din-K12
Flo-C3
Gib
Gig-1
Gol-1
Gon-1
Gonzales-1
GonOut
Gua-1
Gua-2
Guac-1
Hig-1
Jor-1
Jub-1
LaHe-1
LaMar-1
La Sorda
Las-1
Lis-1
Man-31
Medina
Mol-1
Mon-1A
Muc-3
Nis-E1
Olini
Ori-1
Ort-12
Pac-1
Pal-1
Pau-C2FZ
Pij-1
Pum-1
Qui-1
Regadera
Reg-1
RieMacheRull
RioOro-14
RioLoro
RioMolino
RioCh-1
SanFel-1
SanJRS
SanJ-1
SanMar-1
Latitude Longitude
5.83
6.96
6.98
6.98
5.61
4.98
4.98
4.95
6.76
11.07
8.21
6.57
4.84
6.03
4.45
3.77
5.11
3.09
5.49
7.04
2.28
5.25
8.28
8.60
8.28
4.74
4.70
2.15
3.10
6.07
6.99
6.25
5.07
7.19
5.38
7.10
2.62
4.50
11.30
6.83
8.10
5.62
3.75
0.57
3.98
3.98
4.43
5.44
3.00
0.57
2.08
7.40
6.88
10.92
9.10
8.40
10.68
4.93
5.13
4.86
3.38
6.01
774.32
771.84
771.82
771.84
771.36
772.75
772.75
772.73
773.57
772.69
772.74
770.92
773.22
772.76
773.28
773.73
772.66
775.30
772.42
772.18
775.56
772.69
772.58
772.70
772.58
773.14
773.16
775.88
775.27
771.24
771.53
771.00
772.51
773.29
771.97
773.53
775.54
773.10
772.49
774.04
772.52
772.31
775.32
776.89
775.19
773.51
773.36
772.46
775.27
776.90
775.93
772.40
773.55
772.26
772.90
771.80
772.94
772.73
771.85
774.63
773.86
771.65
Table 1.
Type
# of
samples
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
core
core
ditch-cutting
core
ditch-cutting
ditch-cutting
outcrop
outcrop
ditch-cutting
ditch-cutting
core
core
ditch-cutting
outcrop
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
outcrop
core
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
outcrop
ditch-cutting
ditch-cutting
core
outcrop
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
outcrop
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
ditch-cutting
outcrop
ditch-cutting
outcrop
ditch-cutting
outcrop
outcrop
ditch-cutting
ditch-cutting
outcrop
ditch-cutting
ditch-cutting
214
137
61
52
19
76
144
30
122
278
90
19
62
37
33
100
111
48
61
251
22
63
199
26
39
13
110
146
59
30
29
25
128
60
17
41
39
678
87
207
79
141
79
88
26
18
216
21
46
185
64
100
205
21
77
57
20
184
28
49
105
52
(continued)
(Continued).
Site
Sutatatuza
Tam-2
Tib-182/187
Toc-1
Uribe
UrumacoEast
UrumacoWest
Zul-1
Latitude Longitude
5.13
6.57
8.59
6.28
7.25
11.47
11.18
8.21
773.50
771.76
772.67
771.80
773.37
769.55
770.26
772.47
Type
# of
samples
outcrop
ditch-cutting
ditch-cutting
ditch-cutting
outcrop
outcrop
outcrop
ditch-cutting
69
96
172
150
62
31
293
127
sequence that best agrees with the empirical sequence
of events found in a given site. Because a species
originates and goes extinct only once, there is only one
true sequence of events, and the work of a biostratigrapher is finding that true sequence. The sequences
generated by each method were then compared.
Graphic correlation (Shaw 1964; Edwards 1984,
1989) dismisses narrative-type scenarios and produces
alternative hypotheses that can be expressed in testable
forms (Mann and Lane 1995). Graphic correlation
does not make the a priori assumption that first and
last appearances in a section record speciation and
extinction events. By combining the information of
multiple sections, the method allows the true stratigraphic range of a taxon to be determined; therefore,
the use of an ‘index’ fossil is not necessary because the
whole assemblage is being compared. This approach
also produces a biostratigraphic framework that can
be challenged constantly as new information (more
sections) becomes available. Graphic correlation has
been successfully used by many authors including
Amoco/BP researchers for many years (Carney and
Pierce 1995).
The graphic correlation analysis was done using
GraphCor (Hood 1998). In sites with ditch-cutting
samples, the FADs were not used, in order to minimize
the effect introduced by caving. Three rounds of
correlation were performed until the ranges of every
taxon became stable. We chose the Medina section as
the reference section for three main reasons: it had the
largest number of samples (678), it is an outcrop
section that encompasses the whole Cenozoic sequence
(6660 m), and it is located in the central part of the
Llanos Foothills. To evaluate the degree of confidence
in the position of a datum in the composite section, we
used the spreading parameter (Jaramillo et al. 2005). A
low value of the spreading parameter indicates that the
event has a similar biostratigraphic position across all
sections, and is therefore a reliable biostratigraphic
marker. Only taxa occurring in two or more wells were
used to calculate this spreading parameter. For each
FAD, the spreading parameter ¼ (oldest FAD in
composite units – youngest FAD in composite units)/
49
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Figure 1.
The location of the 70 sites studied.
50. For each LAD, the spreading parameter ¼ (oldest
LAD in composite units – youngest LAD in composite
units)/50. A spreading value of 50 represents 50 feet in
the reference section. This number was chosen because
it represents the level of precision expected by drilling
engineers when trying to determine the top of a
Formation in the Llanos Foothills.
Our second technique for biostratigraphic analysis, constrained optimization (Kemple et al. 1995),
identifies a best-fit sequence of events that is optimal
in the sense that all the empirical data may be fit to
the sequence with a minimum of range extensions.
Acceptable sequences are constrained to include all
observed coexistences of pairs of taxa. The technique
allows many taxa to be used, and quantifies the
stability of the position of each event in the best
sequence of events. CONOP9 software (Sadler 2003)
was used to perform the constrained optimization. A
code written for R (R-Development-Core-Team
2005) was developed to export the biostratigraphic
data from R to CONOP9 (Annex S1 of supplementary material). Abundance matrices in ASCII files
were previously introduced in R using the command
‘read.table’. For the constrained analysis, only 53
sites were used; 21 were excluded because they had a
large edge effect (Foote 2000). All LAD and FAD
events were introduced in CONOP as unpaired
events, to allow a much better control on FADs
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
50
C.A. Jaramillo et al.
from ditch-cutting wells. Edge effects were further
reduced by excluding FAD events of the oldest two
samples of every site, and excluding the LAD events
of the youngest two samples of every site. FAD
events from ditch-cutting wells were also excluded.
Those taxa for which FAD and LAD were at the
same depth (a single occurrence) were discriminated
according to the depth in the site they were found:
(1) if the event was located at the top of the well/
section it was considered as a FAD; (2) if the event
was located at the base of the well/section is was
considered as a LAD; (3) if the event was located
neither in the top nor in the base of the well/section,
it was excluded to avoid ambiguity.
Once a sequence had been derived by both CONOP
and graphic correlation, the Kendall Tau rank
correlation coefficient was used to compare the
sequence order obtained by each method. A value of
one means positive and perfect concordance in the
comparison (Legendre and Legendre 1998).
3.2.
Calibration
The next phase consisted of calibrating the sequence
of events to the standard geological timescale
(Gradstein et al. 2005). Because epoch boundaries
within the Cenozoic are defined by foraminifera,
magnetostratigraphy, and isotopes, we used published data on foraminifera and magnetostratigraphy
(e.g. Herrera 2008), as well as carbon isotope
analyses, which have been shown to be a good
correlation tool for the Cenozoic (Carvajal-Ortiz
et al. 2009). Stable carbon isotope values of bulk
sediment (d13CTOM) were measured via flash-pyrolysis at 11008C in a Costech elemental analyser fitted
to a Thermo Finnigan Delta plusXL isotope ratio
mass spectrometer. Carbonate was removed from the
samples by HCl digestion. Analytical precision and
accuracy was determined on the basis of repeated
analyses of two internal lab standards calibrated
against the internationally accepted V-PDB standard.
Overall uncertainty was better than 0.08%. Organic
carbon content was determined on the basis of the
liberated CO2 in the elemental analyzer. Isotope
analyses were performed for 11 sites that encompassed most of the Cenozoic.
4.
4.1.
Results
Zonation
The graphic correlation of the 70 sections was
performed. The equation of the line of correlation of
each site versus the composite section is shown in the
supplementary material, Table S4. The entire session of
graphic correlation in GraphCor is included in the
Annex S2 of the supplementary material. The final
sequence of events in the composite section and the
spreading parameter for each event is presented in Table
2. A similar version of this table, but with the events
organized alphabetically by taxon is presented in the
supplementary material, Table S2. Annex S2 of the
supplementary material also includes the FAD and
LAD of each taxon in every section used in the analysis.
Annex S3 of the supplementary material includes the full
session of CONOP9 for the constrained optimization
analysis. The comparison between the results obtained
by graphic correlation and constrained optimization
shows a high degree of concordance (Kendall Tau
0.91 when all events are compared, Kendall Tau ¼ 0.98
when only the zonal biomarkers are used, Figure 2). The
only key difference is the FAD of Cyclusphaera scabrata
(Figure 2b), which is higher in the CONOP analysis than
in the sequence obtained through graphic correlation.
This is probably due to the rapid radiation at the
beginning of the Eocene, which placed many events close
together (Jaramillo et al. 2006). The oldest FAD of
Cyclusphaera is just below the LAD of Bombacacidites
annae. This particular sequence of events occurs only in
one site (outcrop section Gonzales), whereas at four
other sites, the sequence is the opposite. This pattern
explains the difference between the graphic correlation
and constrained optimization.
After examining the sequence of events and
determining which events had the lowest spreading
parameters and the greatest presence among sites
(Table 2), we selected 20 events as key zonal events
as a basis for our proposed zonation (Figure 3).
Zone T-01 Spinizonocolpites baculatus.
Top: LAD of Spinizonocolpites baculatus.
Base: LAD of Echimonocolpites protofranciscoi.
Age: early Paleocene (65.5 to 61.9 Ma).
Comments: the base of this zone is defined by the LAD
of several Cretaceous taxa including Glaphyrocysta
perforata, Scabratriletes granularis, Andalusiella gabonensis, Dinogymnium spp. and Buttinia andreevi. Within this zone, there is a large group of events that cluster
together at the base of the zone, including the LAD
of Gabonisporites vigourouxii, Cerodinium diebelii,
Senegalinium bicavatum, Senegalinium laevigatum,
Andalusiella gabonensis, Ariadnaesporites spinosus,
Duplotriporites ariani, Tercissus sp., Syndemicolpites
typicus, Proteacidites dehaani, Phelodinium tricuspe,
Echitriletes intercolensis and Bacumorphomonocolpites
tausae. There are also several FADs within this zone,
including Ctenolophonidites lisamae, Mauritiidites franciscoi franciscoi, M. franciscoi pachyexinatus, Psilabrevitricolporites simpliformis, Racemonocolpites facilis,
Proxapertites cursus and the FAD of the acme of
Proxapertites operculatus.
51
Palynology
Table 2. Biostratigraphic events for the Cenozoic of the Llanos and Llanos Foothill basins. In key zonal taxa ‘A’ represents an
event that defines a zone and ‘B’ represents an important event within a zone.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Foveotriletes ornatus
Polypodiisporites sp.
Verrucatosporites usmensis
Monoporopollenites annulatus
Cyatheacidites annulatus
Clavainaperturites microclavatus
Echiperiporites akanthos
Echitricolporites spinosus
Corsinipollenites sp.
Polypodiaceoisporites pseudopsilatus
Fenestrites spinosus
Magnastriatites grandiosus
Perisyncolporites pokornyi
Retitricolpites ‘finitus’
Bombacacidites brevis
Catostemma type
Retitricolpites simplex
Tricolpites clarensis
Mauritiidites franciscoi franciscoi
Mauritiidites franciscoi minutus
Crassiectoapertites columbianus
Psilaperiporites minimus
Proxapertites tertiaria
Retitrescolpites? irregularis
Striatriletes saccolomoides
Echitricolporites mcneillyi
Retitriletes sommeri
Echitricolporites maristellae
Bombacacidites muinaneorum
Laevigatosporites granulatus
Tetracolporopollenites transversalis
Psilatricolporites costatus
Nijssenosporites fossulatus
Multimarginites vanderhammenii
Striatopollis catatumbus
Verrutriletes ‘magnoviruelensis’
Verrutriletes virueloides
Bombacacidites baculatus
Echitriletes muelleri
Polysphaeridium subtile
Proxapertites operculatus
Retitricolporites ‘beccus’
Zonocostites ramonae
Fenestrites longispinosus
Striatopollis? tenuistriatus
Ranunculacidites operculatus
Perfotricolpites digitatus
Psilabrevitricolporites triangularis
Echitricolporites mcneillyi
Echiperiporites estelae
Polypodiisporites aff. specious
Rhoipites guianensis
Verrutricolporites rotundiporus
Retitricolpites lorentae
Scabratricolporites planetensis
Tetracolporopollenites maculosus
Jandufouria seamrogiformis
Margocolporites vanwijhei
Psilatricolporites devriesi
Spirosyncolpites spiralis
Rhoipites hispidus
Retimonocolpites retifossulatus
Retistephanoporites crassiannulatus
Crassoretitriletes vanraadshooveni
Grimsdalea magnaclavata
Striatricolporites ‘poloreticulatus’
Proteacidites triangulatus
Psilatricolporites pachydermatus
Composite
unit
Event
61.5
61.5
61.5
71.7
82.0
102.5
102.5
102.5
112.7
143.5
174.2
174.2
174.2
194.7
204.9
215.2
275.3
275.3
286.8
286.9
316.9
420.1
563.6
563.6
563.6
573.8
604.6
651.9
717.3
727.5
727.5
744.6
758.3
789.0
789.0
789.0
789.0
817.3
817.3
817.3
817.3
817.3
817.3
866.4
866.4
892.2
924.7
1021.2
1150.1
1161.1
1317.3
1317.3
1317.3
1330.7
1351.1
1351.1
1471.1
1471.1
1471.1
1471.1
1471.5
1471.8
1474.1
1874.4
1874.4
1874.4
1878.1
1878.1
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
Key zonal
taxa
B
B
B
B
Spreading
parameter
289
386
349
382
286
320
347
171
381
281
78
326
337
325
352
325
351
348
391
388
323
326
386
336
321
162
310
248
280
349
342
333
267
136
351
364
387
116
381
318
380
25
331
60
323
330
331
333
B
B
B
B
312
330
321
274
262
281
313
305
323
182
327
327
369
301
52
60
8
289
292
Number
of sites
Age (Ma)
Zone
10
49
39
44
5
14
32
9
41
6
4
34
43
11
38
30
43
12
57
34
28
13
31
43
22
2
12
16
11
22
42
29
9
11
37
5
29
10
33
11
43
2
27
3
20
34
37
35
0
29
10
45
11
4
11
31
36
29
8
47
35
23
17
13
10
2
16
10
0.08
0.08
0.08
0.10
0.11
0.14
0.14
0.14
0.15
0.19
0.24
0.24
0.24
0.26
0.28
0.29
0.37
0.37
0.39
0.39
0.43
0.57
0.77
0.77
0.77
0.78
0.82
0.89
0.97
0.99
0.99
1.01
1.03
1.07
1.07
1.07
1.07
1.11
1.11
1.11
1.11
1.11
1.11
1.18
1.18
1.21
1.26
1.39
1.56
1.58
1.79
1.79
1.79
1.81
1.87
1.87
2.22
2.22
2.22
2.22
2.22
2.22
2.23
3.40
3.40
3.40
3.41
3.41
18
(continued)
52
Table 2.
C.A. Jaramillo et al.
(Continued).
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Proxapertites humbertoides
Tuberculodinium vancampoae
Retipollenites crotonicolumellatus
L. proxapertitoides reticuloides
Palaeosantalaceaepites cingulatus
Echitriporites cricotriporatiformis
Laevigatosporites catanejensis
Psilastephanocolporites fissilis
Trichotomosulcites ‘psilatus’
Echiperiporites scabrannulatus
Lanagiopollis crassa
Retibrevitricolpites retibolus
Rhoipites ‘gigantiporus’
Psilastephanoporites tesseroporus
Stephanocolpites evansii
Selenopemphix nephroides
Cyatheacidites annulatus
Retitricolporites ‘fragilis’
Retitricolporites ‘heterobrochatus’
Syncolporites poricostatus
Lingulodinium machaerophorum
Fenestrites longispinosus
Psilatricolporites caribbiensis
Stephanocolpites evansii
Psilatricolporites caribbiensis
Tuberositriletes verrucatus
Bombacacidites baumfalki
Psilastephanoporites herngreenii
Mauritiidites crassibaculatus
Palaeosantalaceaepites cingulatus
Selenopemphix selenoides
Selenopemphix selenoides
Verrucatotriletes etayoi
Retitricolporites ‘fragilis’
Retibrevicolpites yavarensis
M. franciscoi pachyexinatus
Fenestrites spinosus
Ladakhipollenites simplex
Loranthacitoides ‘magnopolaris’
Retitricolpites wijningae
Scabraperiporites asymmetricus
Crototricolpites annemariae
Concavissimisporites fossulatus
Cicatricosisporites baculatus
Magnaperiporites spinosus
Rhoipites planipolaris
Bombacacidites nacimientoensis
Polypodiaceoisporites? fossulatus
Operculodinium centrocarpum
Cicatricosisporites baculatus
Retitriporites dubiosus
Retipollenites crotonicolumellatus
Psilastephanoporites tesseroporus
Echitriletes ‘acanthotriletoides’
Loranthacitoides ‘magnopolaris’
Jandufouria minor
Crassoretitriletes vanraadshooveni
Retitricolporites ‘heterobrochatus’
Rhoipites ‘gigantiporus’
Striatricolporites ‘poloreticulatus’
Echiperiporites scabrannulatus
Multimarginites vanderhammenii
Trichotomosulcites ‘psilatus’
Grimsdalea magnaclavata
Bombacacidites zuatensis
Retitricolpites ‘cacerolensis’
Retitricolporites ‘beccus’
Echinatisporis brevispinosus
Psilaperiporites ‘intensus’
Tricolpites antonii
Composite
unit
Event
1880.9
1894.3
1926.9
1945.5
1945.5
1951.5
1962.4
1962.4
1962.4
1968.2
1975.1
1975.1
1975.1
2045.2
2297.4
2522.1
2661.2
2699.0
2870.0
3187.1
3502.3
3537.0
3591.7
3591.7
3591.7
3655.3
3812.0
3852.0
3862.7
3905.4
3950.2
3950.2
3962.0
3963.8
3995.4
3995.9
4039.3
4082.0
4082.0
4082.5
4088.0
4093.5
4098.4
4104.2
4111.0
4126.0
4127.8
4157.0
4225.0
4228.0
4258.1
4352.1
4363.2
4385.3
4399.6
4399.6
4411.3
4647.0
4647.0
4647.0
4908.5
5001.3
5243.3
5243.4
5518.6
5692.8
5822.5
5984.7
6309.8
6585.6
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
FAD
FAD
FAD
LAD
LAD
LAD
LAD
LAD
FAD
FAD
LAD
LAD
FAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
FAD
FAD
LAD
FAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
LAD
FAD
LAD
LAD
LAD
Key zonal
taxa
B
B
B
B
B
A
B
B
B
A
B
B
B
B
B
A
B
B
B
B
B
A
B
B
B
B
B
A
B
B
Spreading
parameter
Number
of sites
Age (Ma)
366
275
0
358
0
51
369
327
2
54
312
360
17
40
uncertain
95
12
uncertain
uncertain
337
278
uncertain
uncertain
uncertain
26
283
214
253
295
37
uncertain
95
241
uncertain
218
308
39
281
uncertain
207
235
272
248
6
239
239
290
312
321
uncertain
261
45
46
203
uncertain
241
51
uncertain
53
54
57
59
63
65
90
215
75
233
203
243
30
6
2
14
2
4
23
28
2
3
35
15
2
2
1
2
2
1
1
5
5
1
1
1
3
5
9
15
5
2
1
3
15
1
6
50
2
11
1
2
2
5
17
3
26
10
14
9
3
1
12
2
2
7
1
12
3
1
2
2
2
3
2
3
5
3
2
5
7
7
3.42
3.46
3.56
3.72
3.72
3.94
4.32
4.32
4.32
4.53
4.77
4.77
4.77
5.48
6.26
6.89
7.15
7.22
7.53
8.15
9.87
10.06
10.36
10.36
10.36
10.71
11.57
11.79
11.85
12.08
12.32
12.32
12.39
12.40
12.52
12.53
12.70
12.87
12.87
12.87
12.89
12.91
12.93
12.96
12.98
13.04
13.05
13.17
13.44
13.45
13.57
13.94
13.99
14.07
14.13
14.13
14.18
14.94
14.94
14.94
15.69
15.95
16.09
16.09
16.19
16.26
16.31
16.38
16.50
16.61
Zone
17
16
15
14
13
(continued)
53
Palynology
Table 2.
(Continued).
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Echitriporites cricotriporatiformis
dinocyst acme C2
Cyclusphaera scabrata
Adnatosphaeridium multispinosum
Rugutricolporites intensus
Corsinipollenites psilatus
Retitrescolpites saturum
Rhoipites cienaguensis
Bombacacidites baculatus
Hystrichosphaeropsis obscura
Echitricolporites spinosus
Retistephanoporites minutiporus
Cribroperidinium tenuitabulatum
Echitricolporites maristellae
Psilastephanoporites herngreenii
Selenopemphix nephroides
Cribroperidinium spp.
Tuberculodinium vancampoae
dinocyst acme C2
Psilatricolporites devriesi
Horniella lunarensis
Nijssenosporites fossulatus
Clavatricolpites densiclavatus
Bombacacidites zuatensis
Verrustephanocolpites rugulatus
Foveotricolporites etayoi
Rugutricolporites intensus
Rhoipites guianensis ‘perbonus’
Bombacacidites gonzalezii
Clavainaperturites microclavatus
Foveotricolporites rugulatus
Cricotriporites macroporus
Polypodiaceoisporites pseudopsilatus
Cicatricosisporites dorogensis
Multiporopollenites pauciporatus
Retistephanoporites angelicus
Bombacacidites muinaneorum
Psilaperiporites robustus
Monocolpopollenites ovatus
Venezuelites? distinctus
Jandufouria ‘minutus’
Retibrevitricolporites grandis
Proteacidites triangulatus
Cribroperidinium edwardsii
Gemmastephanoporites polymorphus
Retitricolpites maturus
Echitriletes ‘acanthotriletoides’
Verrutricolporites rotundiporus
MgrandiosusMfranciscoiJseamrogiformis ACME
Wilsonipites margocolpatus
Brevitricolpites microechinatus
Corsinipollenites undulatus
Momipites africanus
Ctenolophonidites cruciatus
dinocyst acme lowermost C8
Psilatricolporites pachydermatus
Retibrevicolpites yavarensis
Foveotriletes ornatus
Retitrescolpites magnus
Annutriporites iversenii
Rhoipites planipolaris
MgrandiosusMfranciscoiJseamrogiformis ACME
Retitriletes sommeri
Spinizonocolpites echinatus
Jandufouria ‘minutus’
Scabratricolporites planetensis
Magnaperiporites spinosus
Foveotricolporites etayoi
Venezuelites globoannulatus
L. proxapertitoides proxapertitoides
Composite
unit
Event
7176.7
7184.0
7393.4
8170.4
8404.4
8440.8
8440.8
8440.8
8492.0
8606.6
8663.7
8769.1
8828.0
9091.9
9129.3
9212.8
9391.7
9411.4
9841.4
10181.6
10294.0
10419.3
10548.9
10647.3
10775.9
10819.2
10861.9
11136.0
11137.8
11226.7
11669.6
12096.5
14176.4
14377.0
14377.0
14377.1
14393.6
14424.2
14429.1
14429.1
14437.4
14476.3
14548.2
14576.0
14727.9
14727.9
14764.6
14964.0
14964.0
15010.5
15024.1
15285.0
15336.0
15377.0
15464.9
15521.1
15549.9
15599.7
15604.0
15627.6
15694.0
15694.6
15729.8
15745.6
15750.4
15759.5
15765.6
15780.9
15784.4
15785.1
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
FAD
LAD
LAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
LAD
FAD
LAD
FAD
LAD
LAD
FAD
LAD
LAD
FAD
LAD
LAD
FAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
FAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
FAD
FAD
LAD
LAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
FAD
LAD
LAD
Key zonal
taxa
Spreading
parameter
Number
of sites
Age (Ma)
B
B
B
105
38
211
173
35
216
194
162
129
uncertain
132
177
20
140
uncertain
uncertain
239
18
uncertain
174
158
115
160
uncertain
171
113
2
122
128
183
148
112
242
60
57
57
189
42
95
49
41
51
252
uncertain
42
45
202
270
0
51
67
45
71
28
23
273
uncertain
270
31
85
103
17
273
85
uncertain
13
27
0
6
78
3
6
36
3
3
13
12
3
4
1
3
33
4
4
1
1
13
2
1
3
16
2
20
1
4
27
2
10
11
4
13
4
4
43
15
12
4
10
10
6
4
13
4
1
4
4
3
3
5
4
13
8
5
2
3
4
1
4
16
18
2
3
4
22
1
2
4
2
2
13
16.84
16.84
16.92
17.22
17.31
17.33
17.33
17.33
17.35
17.39
17.41
17.46
17.48
17.71
17.75
17.83
18.01
18.03
18.46
18.81
18.92
19.05
19.18
19.27
19.40
19.45
19.49
19.77
19.77
19.86
20.30
20.73
22.83
23.03
23.03
23.03
23.14
23.31
23.36
23.36
23.42
23.67
24.13
24.31
25.29
25.29
25.52
26.80
26.80
27.10
27.19
28.87
29.19
29.46
30.02
30.38
30.57
30.89
30.92
31.07
31.50
31.50
31.73
31.83
31.86
31.92
31.96
32.05
32.08
32.08
B
B
B
B
B
A
B
B
B
B
B
B
A
B
B
B
B
B
B
B
B
A
B
B
B
B
B
B
A
B
B
B
B
Zone
12
11
10
9
(continued)
54
Table 2.
C.A. Jaramillo et al.
(Continued).
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Psilaperiporites ‘intensus’
Nothofagidites huertasii
Retibrevitricolpites triangulatus
Bombacacidites echinatus
Bombacacidites foveoreticulatus
Bombacacidites soleaformis
Foveotricolporites fossulatus
Striatricolporites digitatus
Psilastephanocolpites verrucosus
Cordosphaeridium inodes
Retitricolpites ‘finitus’
Cricotriporites guianensis
Retitrescolpites baculatus
Crassiectoapertites columbianus
Echitriporites ‘pseudotrianguliformis’
Longapertites sp. 1
Echitriporites ‘pseudotrianguliformis’
Foveotriporites hammenii
Ulmoideipites krempii
Longapertites microfoveolatus
Pseudostephanocolpites perfectus
Retistephanocolporites festivus
Verrutricolporites reticulatus
Magnastriatites grandiosus
Concavissimisporites fossulatus
Catostemma type
Bombacacidites fossureticulatus
Bombacacidites simplireticulatus
Echitetracolpites? tenuiexinatus
Echitriporites trianguliformis
Echitriporites trianguliformis orbicularis
Homotryblium floripes
Retisyncolporites angularis
Verrucatotriletes etayoi
Syncolporites marginatus
Apiculatasporites? cingulatus
Retistephanocolpites angeli
Arecipites regio
Striatriletes saccolomoides
Gemmastephanoporites breviculus
Luminidites colombianensis
Bombacacidites echinatus
Proxapertites magnus
Racemonocolpites facilis
Polotricolporites versabilis
Baculamonocolpites hammenii
Verrucatosporites usmensis
Echimorphomonocolpites solitarius
Ischyosporites problematicus
Echitriporites variabilis
Poloretitricolpites absolutus
Araucariacites spp.
Racemonocolpites racematus
Rugutricolporites felix
Spinizonocolpites grandis
Siltaria mariposa
Echiperiporites akanthos
Brevitricolpites macroexinatus
Cicatricososporites eocenicus
Echimonocolpites densus
Retitriporites poricostatus
Spinizonocolpites breviechinatus
Spinizonocolpites pachyexinatus
Grimsdalea polygonalis
Echimorphomonocolpites gracilis
Zonocostites minor
Echitriporites ‘scabrabaculomorphis’
Ladakhipollenites rubinii
Tetracolporites pachyexinatus
Crusafontites megagemmatus
Composite
unit
Event
15786.0
15786.0
15794.0
15807.7
15807.7
15807.7
15816.3
15816.3
15836.0
15851.1
15878.6
15878.6
15896.5
15916.2
15916.2
15917.0
15959.5
15964.7
15976.8
15999.2
15999.2
16002.9
16024.1
16032.8
16046.3
16068.0
16068.0
16068.0
16068.0
16068.0
16068.0
16068.0
16068.0
16073.3
16087.1
16100.1
16120.8
16131.0
16169.7
16175.1
16194.0
16265.8
16267.2
16278.5
16287.1
16300.2
16304.6
16348.2
16364.7
16383.0
16383.0
16407.3
16414.3
16414.3
16426.0
16426.5
16427.3
16442.3
16442.3
16450.0
16455.7
16455.7
16455.7
16474.6
16490.6
16528.2
16575.0
16594.8
16594.8
16609.9
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
FAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
FAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
Key zonal
taxa
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
B
B
B
B
B
B
B
B
B
B
B
A
Spreading
parameter
Number
of sites
14
32
87
9
25
35
24
47
47
87
276
79
31
279
uncertain
43
uncertain
30
78
97
26
32
19
279
33
281
15
35
18
80
31
15
16
233
77
30
56
77
240
27
7
7
68
67
17
26
284
24
41
24
41
112
71
12
7
28
287
23
3
83
1
34
68
5
23
21
uncertain
20
5
20
2
13
14
4
17
8
2
3
9
5
4
7
8
4
1
5
1
16
27
10
15
17
7
6
3
4
3
5
10
19
23
4
6
4
10
3
10
14
5
5
4
2
15
13
4
4
6
5
6
3
4
24
19
3
10
5
6
3
2
6
2
4
3
2 38.48
3
2
1
2
2
2
Age (Ma)
32.09
32.09
32.14
32.23
32.23
32.23
32.28
32.28
32.41
32.51
32.68
32.68
32.80
32.92
32.92
32.93
33.20
33.24
33.31
33.46
33.46
33.48
33.62
33.67
33.76
33.90
33.90
33.90
33.90
33.90
33.90
33.90
33.90
33.96
34.12
34.26
34.50
34.61
35.05
35.11
35.32
36.13
36.15
36.27
36.37
36.52
36.57
37.06
37.24
37.45
37.45
37.72
37.80
37.80
37.94
37.94
37.95
38.12
38.12
38.21
38.27
38.27
38.27
Zone
8
7
6
38.66
39.09
39.62
39.84
39.84
40.01
(continued)
55
Palynology
Table 2.
(Continued).
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Lingulodinium cf. sicula
Retibrevitricolporites speciosus
dinocyst acme lowermost C8
Retisyncolporites aureus
Cricotriporites minutiporus
Ranunculacidites operculatus
Lingulodinium cf. sicula
Rhoipites cienaguensis
Proxapertites cursus
Retistephanoporites crassiannulatus
Grimsdalea polygonalis
Longapertites proxapertitoides
Crototricolpites protoannemariae
S. spiralis acme upper Mirador
Bombacacidites fossureticulatus
Cicatricososporites eocenicus
Ctenolophonidites cruciatus
Foveotricolporites fossulatus
Luminidites colombianensis
Jandufouria minor
Retisyncolporites aureus
Jandufouria seamrogiformis
dinocyst acme middle shale Mirador
Adnatosphaeridium multispinosum
Laevigatosporites catanejensis
Lingulodinium machaerophorum
Gemmastephanoporites polymorphus
S. spiralis acme upper Mirador
Rhoipites guianensis ‘perbonus’
Echimorphomonocolpites gracilis
Homotryblium floripes
Psilaperiporites minimus
dinocyst acme middle shale Mirador
Multiporopollenites pauciporatus
Rhoipites guianensis
Echitetracolpites? tenuiexinatus
Polysphaeridium subtile
Retistephanoporites angelicus
Retisyncolporites angularis
Venezuelites? distinctus
Gemmastephanoporites breviculus
Perisyncolporites pokornyi
Rugutricolporites felix
Longapertites vaneendenburgi
Nothofagidites huertasii
Cicatricosisporites dorogensis
Psilatricolporites costatus
Zonocostites ramonae
Tetracolporopollenites spongiosus
Perfotricolpites digitatus
Verrustephanocolpites rugulatus
Retitriporites poricostatus
Echitriletes muelleri
Bombacacidites foveoreticulatus
Echimorphomonocolpites solitarius
Retitrescolpites magnus
Echimonocolpites densus
Psilastephanocolpites verrucosus
Spinizonocolpites grandis
Pseudostephanocolpites perfectus
Bombacacidites soleaformis
Wilsonipites margocolpatus
Polypodiisporites echinatus
Zonocostites minor
Retibrevitricolporites speciosus
Retibrevitricolpites triangulatus
Retitrescolpites? irregularis
Crusafontites megagemmatus
Lanagiopollis crassa
Tetracolporites pachyexinatus
Composite
unit
Event
16609.9
16609.9
16638.8
16639.5
16669.3
16685.0
16711.0
16711.0
16711.0
16711.0
16717.8
16720.0
16727.3
16730.2
16755.3
16755.3
16755.3
16755.3
16755.3
16778.9
16794.4
16808.2
16808.2
16823.1
16833.4
16835.3
16847.7
16847.7
16849.0
16849.4
16849.4
16849.4
16849.7
16849.7
16849.7
16867.7
16867.7
16867.7
16867.7
16867.7
16973.9
17038.0
17038.0
17038.0
17372.2
17372.7
17372.7
17372.7
17413.8
17454.6
17458.0
17458.6
17465.6
17480.8
17496.1
17497.0
17513.2
17513.2
17513.2
17538.9
17563.8
17563.8
17563.8
17584.3
17589.0
17589.3
17589.3
17590.7
17590.7
17593.9
LAD
LAD
FAD
LAD
LAD
FAD
FAD
FAD
LAD
FAD
FAD
LAD
LAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
Key zonal
taxa
B
B
B
B
B
B
B
B
A
B
B
B
B
8
B
B
B
B
B
Spreading
parameter
Number
of sites
uncertain
22
uncertain
2
47
293
uncertain
35
62
232
uncertain
53
41
2
3
3
28
uncertain
4
241
uncertain
294
1
uncertain
158
246
1
2
uncertain
uncertain
2
297
1
14
297
11
153
11
0
5
4
299
6
60
21
19
306
308
19
310
uncertain
14
308
24
13
30
2
13
22
25
22
34
20
19
13
17
310
20
312
17
1
4
1
2
3
6
1
2
25
4
1
9
7
2
2
2
2
1
3
4
1
6
3
1
4
2
2
2
1
1
2
4
2
2
8
5
4
3
2
2
2
9
2
19
4
7
6
5
5
9
1
2
7
7
2
5
50.34
2
4
6
4
2
3
2
2
4
12
2
10
2
Age (Ma)
40.01
40.01
40.33
40.34
40.68
40.86
41.15
41.15
41.15
41.15
41.23
41.25
41.33
41.36
41.65
41.65
41.65
41.65
41.65
41.91
42.09
42.24
42.24
42.41
42.53
42.55
42.69
42.69
42.70
42.71
42.71
42.71
42.71
42.71
42.71
42.92
42.92
42.92
42.92
42.92
44.11
44.83
44.83
44.83
48.60
48.61
48.61
48.61
49.12
49.62
49.66
49.67
49.76
49.94
50.13
50.14
Zone
5
50.34
50.34
50.66
50.97
50.97
50.97
51.22
51.28
51.28
51.28
51.30
51.30
51.34
(continued)
56
Table 2.
C.A. Jaramillo et al.
(Continued).
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Polotricolporites versabilis
Retitricolpites maturus
Echitriporites trianguliformis orbicularis
Echitriporites variabilis
Corsinipollenites undulatus
Foveotriporites hammenii
Retitriporites dubiosus
Bombacacidites gonzalezii
Echiperiporites estelae
Ladakhipollenites rubinii
Retistephanoporites minutiporus
Retistephanocolporites festivus
Baculamonocolpites hammenii
Brevitricolpites macroexinatus
Tricolpites clarensis
Verrutricolporites reticulatus
Retistephanocolpites williamsi
Tetracolporopollenites maculosus
Retistephanocolpites williamsi
Crototricolpites annemariae
Psilabrevitricolporites triangularis
Apiculatasporites? cingulatus
Cricotriporites macroporus
Margocolporites vanwijhei
Retibrevitricolporites grandis
Striatopollis catatumbus
Etm dc13spike
Proxapertites minutihumbertoides
Bombacacidites simplireticulatus
Tuberositriletes verrucatus
Spathiphyllum vanegensis
Etm dc13spike
Spirosyncolpites spiralis
Polypodiisporites aff. specious
Petm dc13spike
Aglaoreidia? foveolata
Bombacacidites annae
Diporopollis assamica
P. operculatus acme lower Cuervos
Psilabrevitricolporites simpliformis
Polypodiisporites pachyexinatus
Bombacacidites brevis
Ctenolophonidites lisamae
Retidiporites magdalenensis
Syncolporites lisamae
Heterocolpites palaeocenica
Magnotetradites magnus
Psilamonocolpites operculatus
Proxapertites verrucatus
Retidiporites elongatus
Cyclusphaera scabrata
Foveotricolporites rugulatus
Petm dc13spike
Retitricolpites simplex
Rhoipites hispidus
Siltaria mariposa
Gemmamonocolpites gemmatus
Foveotricolpites perforatus
Retitrescolpites peculiaris
Tricolpites protoclarensis
Longapertites proxapertitoides
Clavatisporites mutisii
Foveotriletes margaritae
Proxapertites minutihumbertoides
Polypodiisporites pachyexinatus
Palaeocystodinium spp.
Curvimonocolpites inornatus
Periretisyncolpites magnosagenatus
Tetradites umirensis
Tetracolporopollenites transversalis
Composite
unit
Event
17594.9
17594.9
17598.0
17603.8
17604.0
17604.0
17604.9
17606.1
17606.1
17606.1
17606.1
17608.2
17625.0
17625.1
17625.1
17625.1
17625.2
17625.2
17625.2
17687.5
17701.1
17708.6
17708.6
17708.6
17708.6
17708.7
17810.0
17810.0
17810.8
17817.3
17817.3
17818.7
17940.3
17941.7
17941.7
17995.0
17995.0
17995.0
17995.0
17995.0
17995.4
18009.4
18010.7
18010.7
18026.7
18031.9
18031.9
18042.2
18047.9
18058.0
18077.2
18077.2
18077.2
18077.2
18077.2
18077.2
18138.8
18143.0
18143.0
18143.0
18143.1
18143.2
18143.4
18143.6
18143.7
18151.2
18167.6
18178.0
18182.7
18249.3
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
LAD
FAD
FAD
LAD
FAD
FAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
FAD
FAD
LAD
LAD
LAD
LAD
FAD
Key zonal
taxa
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
B
B
B
B
B
B
B
B
B
B
B
A
B
B
B
A
B
B
B
B
B
Spreading
parameter
Number
of sites
Age (Ma)
9
12
21
15
30
27
267
31
310
19
58
26
26
22
33
24
uncertain
172
uncertain
3
314
22
16
255
26
315
0
7
21
283
42
uncertain
319
22
0
17
29
39
14
29
5
321
38
55
36
13
52
36
37
44
23
44
uncertain
320
321
17
36
15
uncertain
8
19
37
66
uncertain
3
64
23
39
34
326
2
2
7
2
3
8
3
4
9
2
6
6
4
3
4
4
1
9
1
3
8
3
3
7
5
9
2
4
4
4
19
1
11
4
2
6
28
8
6
12
5
10
12
32
8
3
12
8
14
9
5
4
1
8
8
4
12
25
1
3
3
9
30
1
2
19
8
6
12
11
51.35
51.35
51.39
51.46
51.46
51.46
51.47
51.49
51.49
51.49
51.49
51.51
51.72
51.72
51.72
51.72
51.72
51.72
51.72
52.49
52.66
52.75
52.75
52.75
52.75
52.75
54.00
54.00
54.01
54.09
54.09
54.11
55.61
55.63
55.63
55.70
55.70
55.70
55.70
55.70
55.70
55.72
55.72
55.72
55.74
55.74
55.74
55.76
55.76
55.78
55.80
55.80
55.80
55.80
55.80
55.80
56.05
56.07
56.07
56.07
56.07
56.07
56.07
56.07
56.07
56.10
56.17
56.21
56.23
56.50
Zone
4b
4a
3b
(continued)
57
Palynology
Table 2.
(Continued).
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Striatopollis? tenuistriatus
Bombacacidites nacimientoensis
Brevitricolpites microechinatus
Foveomonoporites variabilis
Bombacacidites protofoveoreticulatus
Colombipollis tropicalis
Psilastephanocolporites fissilis
Poloretitricolpites absolutus
Horniella lunarensis
Areoligera spp.
Polypodiisporites echinatus
Retitrescolpites baculatus
Retitrescolpites saturum
Araucariacites australis
Alterbidinium spp.
Retitrescolpites peculiaris
Tricolpites antonii
Aglaoreidia? foveolata
Striatricolporites digitatus
Retistephanocolpites angeli
Palaeocystodinium golzowense
Gemmamonocolpites macrogemmatus
Momipites africanus
Foveotricolpites perforatus
Mauritiidites franciscoi minutus
Proxapertites sulcatus
Crototricolpites protoannemariae
Zonotricolpites variabilis
Stephanocolpites costatus
Cricotriporites minutiporus
Spinizonocolpites breviechinatus
Diporopollis assamica
Echitriporites suescae
Echinatisporis brevispinosus
Bombacacidites protofoveoreticulatus
Ladakhipollenites simplex
Tricolpites protoclarensis
Bombacacidites annae
Ischyosporites problematicus
Tetracolporopollenites spongiosus
Proxapertites magnus
Laevigatosporites granulatus
Longapertites sp. 1
Diporoconia cf. iszkaszentgyoergyi
Periretisyncolpites giganteus
Monocolpopollenites ovatus
Zlivisporis blanensis
Palaeocystodinium australinum
Spinizonocolpites baculatus
Cerodinium spp.
Monocolpopollenites spheroidites
Andalusiella polymorpha
Andalusiella spp.
Monocolpopollenites spheroidites
Trithyrodinium spp.
Periretisyncolpites magnosagenatus
Syndemicolpites typicus
Gemmamonocolpites macrogemmatus
Heterocolpites palaeocenica
Mauritiidites crassibaculatus
Echitriletes intercolensis
Hamulatisporis caperatus
Ctenolophonidites lisamae
M. franciscoi pachyexinatus
Mauritiidites franciscoi franciscoi
P. operculatus acme lower Cuervos
Psilabrevitricolporites simpliformis
Tercissus sp.
Senegalinim laevigatum
Proteacidites dehaani
Composite
unit
Event
18317.6
18335.1
18346.0
18347.1
18349.7
18397.6
18404.27
18441.7
18498.1
18546.2
18586.0
18586.0
18595.5
18607.5
18649.0
18751.3
18799.1
18859.2
18895.7
18900.4
18907.8
18916.0
18916.7
18917.8
18917.8
19007.0
19013.8
19013.8
19023.0
19028.5
19028.5
19080.8
19087.4
19092.7
19095.1
19095.1
19095.1
19126.0
19129.5
19129.5
19148.7
19177.8
19177.8
19177.8
19179.6
19198.6
19321.6
19326.1
19360.7
19372.6
19379.0
19379.0
19379.0
19379.0
19380.5
19403.8
19421.1
19432.6
19441.9
19441.9
19453.4
19453.4
19475.3
19482.1
19482.1
19482.1
19546.9
19657.3
19722.8
19732.2
FAD
FAD
FAD
LAD
LAD
LAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
LAD
LAD
FAD
FAD
FAD
FAD
FAD
LAD
LAD
FAD
FAD
FAD
LAD
FAD
LAD
LAD
FAD
FAD
FAD
LAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
FAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
FAD
LAD
FAD
FAD
FAD
LAD
LAD
FAD
FAD
FAD
FAD
FAD
LAD
LAD
LAD
Key zonal
taxa
B
B
B
B
B
B
B
B
A
B
B
B
B
B
B
B
A
B
B
B
B
B
A
B
B
B
B
B
B
B
B
B
B
Spreading
parameter
Number
of sites
Age (Ma)
273
284
44
uncertain
7
30
198
37
53
48
18
54
51
68
47
uncertain
41
9
26
27
31
9
72
15
339
17
19
18
19
47
3
10
47
63
8
299
12
20
15
24
57
343
48
13
21
25
31
30
16
41
uncertain
32
41
41
21
11
9
0
6
306
34
44
7
310
348
14
21
8
25
36
6
5
5
1
3
16
7
2
6
14
3
4
6
26
9
1
4
4
3
5
11
3
3
10
12
4
4
11
9
3
3
3
19
4
3
8
3
11
5
4
8
7
3
2
13
7
17
12
23
23
1
19
23
5
8
2
11
2
2
2
8
14
2
11
16
5
5
4
11
13
56.77
56.85
56.89
56.89
56.90
57.10
57.20
57.28
57.51
57.70
57.86
57.86
57.90
57.95
58.12
58.53
58.73
58.97
59.12
59.14
59.17
59.20
59.20
59.21
59.21
59.57
59.60
59.60
59.63
59.65
59.65
59.87
59.89
59.91
59.92
59.92
59.92
60.09
60.12
60.12
60.26
60.48
60.48
60.48
60.50
60.64
61.57
61.60
61.87
61.95
62.00
62.00
62.00
62.00
62.01
62.19
62.32
62.41
62.48
62.48
62.57
62.57
62.73
62.78
62.78
62.78
63.27
64.11
64.60
64.67
Zone
3a
2
1
(continued)
58
Table 2.
C.A. Jaramillo et al.
(Continued).
Composite
unit
Event
Senegalinium spp.
Bacumorphomonocolpites tausae
Racemonocolpites facilis
Polypodiaceoisporites? fossulatus
Phelodinium tricuspe
Proxapertites cursus
Duplotriporites ariani
Andalusiella mauthei
Senegalinium bicavatum
Ariadnaesporites spinosus
Cerodinium diebelii
Gabonisporites vigourouxii
Buttinia andreevi
Echimonocolpites protofranciscoi
19739.1
19755.2
19755.3
19755.7
19755.7
19788.1
19790.1
19803.1
19813.1
19821.3
19833.1
19836.0
19842.0
19842.0
LAD
LAD
FAD
FAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
LAD
Gabonisporis spp.
Glaphyrocysta perforata
Scabratriletes granularis
Andalusiella gabonensis
Dinogymnium spp.
Spinizonocolpites pachyexinatus
Disphaerogena carposphaeropsis
Yolkinigymnium lanceolatum
Ephedripites ‘afropollensis’
Crusafontites grandiosus
Senegalinium obscurum
Areoligera senonensis
19842.0
19842.0
19842.0
19843.2
19848.1
19853.0
19855.5
19855.5
19857.5
19858.9
19860.8
19862.0
LAD
LAD
LAD
LAD
LAD
FAD
LAD
LAD
LAD
LAD
LAD
LAD
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Taxa
Zone T-02 Monocolpopollenites ovatus.
Top: FAD of Bombacacidites annae.
Base: LAD of Spinizonocolpites baculatus.
Age: middle Paleocene (61.9 to 60 Ma).
Comments: this zone comprises the LAD of Periretisyncolpites giganteus and Zlivisporis blanensis and the
FAD of Ischyosporites problematicus, Proxapertites
magnus and Monocolpopollenites ovatus.
Zone T-03A Bombacacidites annae.
Top: FAD of Foveotricolpites perforatus.
Base: FAD of Bombacacidites annae.
Age: middle Paleocene (60 to 59 Ma).
Comments: this zone comprises the LAD of Echitriporites suescae, Proxapertites sulcatus, Stephanocolpites
costatus, Zonotricolpites variabilis and the FAD of
Mauritiidites franciscoi minutus, Crototricolpites protoannemariae and Diporopollis assamica. This zone
corresponds to the uppermost zone Cu-01 of Jaramillo
et al. (2005).
Zone T-03B Foveotricolpites perforatus.
Top: LAD of Foveotricolpites perforatus.
Base: FAD of Foveotricolpites perforatus.
Age: middle to late Paleocene (59 to 56.1 Ma).
Comments: this zone comprises the LAD of
Curvimonocolpites
inornatus,
Periretisyncolpites
magnosagenatus, Tetradites umirensis, Bombacacidites
Key zonal
taxa
B
B
B
B
B
35
B
B
B
B
B
A
B
B
B
B
B
B
B
Spreading
parameter
Number
of sites
34
6
70
24
3
25
20
20
31
19
20
16
9
8
23
13
5
5 64.85
2 64.85
9
15
65.21
17
8
8
17
14
20
64.72
64.84
64.85
16
1
12
13
35
43
1
8
0
7
12
11
4
2
6
12
25
3
3
5
2
13
3
5
65.50
65.50
65.50
65.52
65.60
65.68
65.71
65.71
65.75
65.77
65.80
65.82
Age (Ma)
Zone
65.09
65.11
65.28
65.34
65.43
65.45
65.50
65.50
Top
Cretaceous
protofoveoreticulatus, Colombipollis tropicalis, and Foveotriletes margaritae, and the FAD of Polypodiisporites pachyexinatus, Brevitricolpites microechinatus,
Horniella lunarensis, Retitrescolpites saturum, Aglaoreidia? foveolata, Striatricolporites digitatus and Retistephanocolpites angeli. This zone corresponds to the
zone Cu-02 of Jaramillo et al. (2005).
Zone T-04A Sterile.
Top: FAD of Cyclusphaera scabrata.
Base: LAD of Foveotricolpites perforatus.
Age: latest Paleocene (56.1 to 55.8 Ma).
Comments: the LAD of Gemmamonocolpites gemmatus
and the FAD of Rhoipites hispidus occur within this
zone. This zone is characterized by a low recovery of
organic matter and a paucity of palynomorphs. This
zone corresponds to the zone Cu-03 of Jaramillo et al.
(2005).
Zone T-04B PETM interval.
Top: LAD of Bombacacidites annae.
Base: FAD of Cyclusphaera scabrata.
Age: earliest Eocene (55.8 to 55.7 Ma).
Comments: this level corresponds to the negative
carbon isotope spike of the Paleocene–Eocene boundary, also known as the Paleocene–Eocene Thermal
Maximum, or PETM (Zachos et al. 2001). This zone
comprises the LAD of Aglaoreidia? foveolata,
Palynology
59
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Zone T-05 Striatopollis catatumbus.
Top: FAD of Cicatricosisporites dorogensis.
Base: LAD of Bombacacidites annae.
Age: early Eocene (55.7 to 48.6 Ma).
Comments: this level corresponds to the negative
carbon isotopic spike of the early Eocene, also known
as the Early Eocene Climatic Optimum or EECO
(Zachos et al. 2001). There are numerous FADs within
this zone, probably associated with the radiation of the
lower Eocene (Jaramillo et al. 2006), including the
FAD of Striatopollis catatumbus, Spirosyncolpites
spiralis, Perfotricolpites digitatus, Bombacacidites foveoreticulatus, Retitrescolpites magnus, Pseudostephanocolpites perfectus, Bombacacidites soleaformis,
Retibrevitricolpites triangulatus, Retitrescolpites? irregularis, Lanagiopollis crassa, Echitriporites trianguliformis
orbicularis,
Foveotriporites
hammenii,
Retistephanoporites minutiporus, Retistephanocolporites
festivus, Tetracolporopollenites maculosus, Psilabrevitricolporites triangularis, Margocolporites vanwijhei,
and Retibrevitricolporites grandis. The LADs of Tetracolporopollenites spongiosus, Proxapertites minutihumbertoides and Spathiphyllum vanegensis also occur
within this zone. This zone corresponds to the zones
Cu-04 and Cu-05 of Jaramillo et al. (2005),
Zone T-06 Spinizonocolpites grandis.
Top: LAD of Spinizonocolpites grandis.
Base: FAD of Cicatricosisporites dorogensis.
Age: middle Eocene (48.6 to 38 Ma).
Comments: this zone comprises the LAD of Retibrevitricolporites speciosus, and the FAD of Ranunculacidites operculatus, Retistephanoporites crassiannulatus,
Jandufouria minor, Jandufouria seamrogiformis, Rhoipites guianensis, Perisyncolporites pokornyi and the
acme of dinoflagellate cysts of the middle shale of the
Mirador Formation in the central Llanos Foothills.
Figure 2. Comparison of the graphic correlation sequence
with the constrained optimization sequence. Both sequences
are similar. (a) Comparison of the 203 key events, including
biozone markers and inter-events (Kendall Tau ¼ 0.91). (b)
Comparison limited to the 21 biozone markers (Kendall
Tau ¼ 0.98).
Diporopollis assamica, Psilabrevitricolporites simpliformis, Polypodiisporites pachyexinatus, Ctenolophonidites
lisamae, Retidiporites magdalenensis, Syncolporites
lisamae, Magnotetradites magnus, Psilamonocolpites
operculatus, Proxapertites verrucatus, the end of the
acme of P. operculatus and the FAD of Bombacacidites
brevis. This zone corresponds to the zone Cu-03 of
Jaramillo et al. (2005).
Zone T-07 Echitriporites trianguliformis orbicularis.
Top: LAD of Echitriporites trianguliformis orbicularis.
Base: LAD of Spinizonocolpites grandis.
Age: late Eocene (38 to 33.9 Ma).
Comments: this zone comprises the LAD of Bombacacidites simplireticulatus, Echitetracolpites? tenuiexinatus,
Retisyncolporites angularis, Syncolporites marginatus,
Luminidites colombianensis, Proxapertites magnus,
Racemonocolpites facilis, Echitriporites variabilis, Racemonocolpites racematus, Retistephanocolpites angeli, Gemmastephanoporites breviculus and the FAD of Striatriletes
saccolomoides and Verrucatosporites usmensis.
Zone T-08 Nothofagidites huertasii.
Top: LAD of Nothofagidites huertasii.
Base: LAD of Echitriporites trianguliformis orbicularis.
Age: earliest Oligocene (33.9 to 32.1 Ma).
C.A. Jaramillo et al.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
60
Figure 3. Zonation proposed for the Cenozoic of the Llanos and Llanos Foothills including 18 zones and four subzones.
FAD ¼ First Appearance Datum, LAD ¼ Last Appearance Datum.
Comments: this zone comprises the LAD of Bombacacidites soleaformis, Psilastephanocolpites verrucosus,
Cricotriporites guianensis, Retitrescolpites baculatus,
Foveotriporites hammenii, Ulmoideipites krempii, Pseudostephanocolpites perfectus, Retistephanocolporites
festivus, Retibrevitricolpites triangulatus, Bombacacidites echinatus, Bombacacidites foveoreticulatus and the
FAD of Crassiectoapertites columbianus, Magnastriatites grandiosus and Concavissimisporites fossulatus.
Many Eocene taxa become extinct at the end of this
zone, probably reflecting the onset of glaciation in the
Southern Hemisphere (Jaramillo et al. 2006).
Zone T-09 Foveotricolporites etayoi.
Palynology
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Table 3. Calibration points for the composite section. Ages
follow Gradstein et al. (2005). (A) Dating of the top
boundaries of formations in the Urumaco region (Venezuela), used as a first-order calibration of the pollen record
studied here, using the two sections studied from the
Urumaco region (Urumaco East and Urumaco West).
Formation age assignments are based on foraminifera (Renz
1948; Bermudez and Bolli 1969; Blow 1969; Dı́az de Gamero
1977a, 1977b, 1985a, 1985b, 1989, 1996; Wozniak and
Wozniak 1987; Dı́az de Gamero et al. 1988; Guerra and
Mederos 1988; Dı́az de Gamero and Linares 1989; Rey 1990;
Bolli et al. 1994) and vertebrates (Linares 2004; SánchezVillagra 2006; Sanchez-Villagra and Aguilera 2006). (B)
Carbon Isotopic Record calibrated against the global record
of Zachos et al. (2001). EETM ¼ Early Eocene Thermal
Maximum, PETM ¼ Paleocene–Eocene Thermal Maximum.
C. Magnetostratigraphy of the Urumaco Formation, after
Herrera (2008).
A. Formation Top Boundary
Present
Codore Algodones
Codore Chiguaje
Codore Jebe
Urumaco
Socorro
Querales
Cerro Pelado
Agua Clara
La Vela
Caujarao Tara
B. Isotopic Record (see Figure 2)
Cicatricosisporites dorogensis LAD
E. trianguliformis orbicularis LAD
ETM spike LAD
PETM spike LAD
PETM spike FAD
Bombacacidites annae FAD
Echimonocolpites protofranciscoi LAD
C. Magnetostratigraphy
Top C4 Ar2r
Composite
unit
Age
(Ma)
0
1332
1942
1991
2471
3964
4492.4538
5017.4226
8884.7747
1332
2087
0
1.81
3.6
5.33
6.8
12.4
14.5
16
17.5
1.81
5.6
14377
16068
17372
17941.7
18077.1
19113.75
19842
23.03
33.9
48.6
55.63
55.8
60
65.5
3178.6
8.1
Top: FAD of combined acme of Magnastriatites
grandiosus, Mauritiidites franciscoi, and Jandufouria
seamrogiformis.
Base: LAD of Nothofagidites huertasii.
Age: early Oligocene (32.1 to 31.5 Ma).
Comments: this zone comprises the LAD of Spinizonocolpites echinatus and L. proxapertitoides proxapertitoides, and the FAD of Retitriletes sommeri and
Foveotricolporites etayoi. It is common to have high
abundances of C. dorogensis and very often some levels
of brackish influence.
Zone T-10 Combined acme.
Top: LAD of combined acme of Magnastriatites
grandiosus, Mauritiidites franciscoi, and Jandufouria
seamrogiformis.
61
Base: FAD of combined acme of Magnastriatites
grandiosus, Mauritiidites franciscoi, and Jandufouria
seamrogiformis.
Age: early to late Oligocene (31.5 to 26.8 Ma).
Comments: this zone comprises the LAD of Wilsonipites margocolpatus, Brevitricolpites microechinatus,
Corsinipollenites undulatus, Retitrescolpites magnus
and the FAD of Psilatricolporites pachydermatus, and
Rhoipites planipolaris.
Zone T-11 Cicatricosisporites dorogensis.
Top: LAD of Cicatricosisporites dorogensis.
Base: LAD of combined acme of Magnastriatites
grandiosus, Mauritiidites franciscoi, and Jandufouria
seamrogiformis.
Age: late Oligocene (26.8 to 23 Ma).
Comments: this zone comprises the LAD of Multiporopollenites pauciporatus, Retistephanoporites angelicus, Monocolpopollenites ovatus, Venezuelites? distinctus,
Retibrevitricolporites grandis, Gemmastephanoporites
polymorphus, Retitricolpites maturus, and the FAD of
Bombacacidites muinaneorum. Sometimes, levels with
brackish influence are present.
Zone T-12 Horniella lunarensis.
Top: FAD of Echitricolporites maristellae.
Base: LAD of Cicatricosisporites dorogensis.
Age: early part of the early Miocene (23 to 17.7 Ma).
Comments: this zone comprises the LAD of Horniella
lunarensis, Foveotricolporites etayoi and the FAD of
Tuberculodinium vancampoae, Nijssenosporites fossulatus, Rugutricolporites intensus, and Clavainaperturites
microclavatus.
Zone T-13 Echitricolporites maristellae.
Top: FAD of Grimsdalea magnaclavata.
Base: FAD of Echitricolporites maristellae.
Age: late part of the early Miocene (17.7 to 16.1 Ma).
Comments: this zone comprises the LAD of Bombacacidites zuatensis, Rugutricolporites intensus, Cribroperidinium tenuitabulatum and the end of the acme of
dinoflagellates of the member C2 of the Carbonera
Formation. Also occurring within this zone are the
FADs of Retitricolporites ‘beccus’, Echitriporites cricotriporatiformis, Bombacacidites baculatus and Echitricolporites spinosus, and the LAD of Cyclusphaera
scabrata, and Retistephanoporites minutiporus.
Zone T-14 Grimsdalea magnaclavata.
Top: FAD of Crassoretitriletes vanraadshooveni.
Base: FAD of Grimsdalea magnaclavata.
Age: latest part of the early Miocene to middle
Miocene (16.1 to 14.2 Ma).
Comments: this zone comprises the FAD of Rhoipites
‘gigantiporus’,
Striatricolporites
‘poloreticulatus’,
62
C.A. Jaramillo et al.
Echiperiporites scabrannulatus, Multimarginites vanderhammenii and Trichotomosulcites ‘psilatus’.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Zone T-15 Crassoretitriletes vanraadshooveni.
Top: FAD of Fenestrites spinosus.
Base: FAD of Crassoretitriletes vanraadshooveni.
Age: middle Miocene (14.2 to 12.7 Ma).
Comments: this zone comprises the LAD of Cicatricosisporites baculatus, Echitriletes ‘acanthotriletoides’ and
Rhoipites planipolaris. Also, the FAD of Retipollenites
crotonicolumellatus and Psilastephanoporites tesseroporus.
Zone T-16 Fenestrites spinosus.
Top: FAD of Cyatheacidites annulatus.
Base: FAD of Fenestrites spinosus.
Age: late part of the middle Miocene to late Miocene
(12.7 to 7.1 Ma).
Comments: this zone comprises the LAD of Psilatricolporites caribbiensis and the FAD of Fenestrites
longispinosus, Psilatricolporites caribbiensis, Stephanocolpites evansii and Palaeosantalaceaepites cingulatus.
Zone T-17 Cyatheacidites annulatus.
Top: LAD of Lanagiopollis crassa.
Base: FAD of Cyatheacidites annulatus.
Age: late Miocene to earliest Pliocene (7.1 to 4.8 Ma).
Comments: the LAD of Rhoipites ‘gigantiporus’,
Psilastephanoporites tesseroporus and Stephanocolpites
evansii occur within this zone.
Zone T-18 Bombacacidites baculatus.
Top: modern.
Base: LAD of Lanagiopollis crassa.
Age: Pliocene to Pleistocene (4.8 to 0 Ma).
Comments: many LADs occur within this zone, but a large
number of them are due to a sampling artifact called the
border effect (Foote 2000), which artificially increases the
number of LADs near the youngest part of a section. We
would need several Quaternary cores to test the LADs of
many of these taxa. LADs that could be genuine include
Retitricolporites ‘beccus’, Crassoretitriletes vanraadshooveni, Grimsdalea magnaclavata, Striatricolporites ‘poloreticulatus’, Retipollenites crotonicolumellatus, Palaeosantalaceaepites cingulatus, Echitriporites cricotriporatiformis,
Trichotomosulcites ‘psilatus’, Echiperiporites scabrannulatus, Bombacacidites baculatus, Multimarginites vanderhammenii and Echitricolporites maristellae. The FAD of
Echitricolporites mcneillyi occurs within this zone.
4.2.
Calibration
4.2.1. Foraminifera
The foraminiferal record of the Urumaco region was
studied by Dı́az de Gamero and collaborators, and
correlated to Bolli’s biostratigraphic schemes from
Trinidad (Renz 1948; Bermudez and Bolli 1969; Blow
1969; Dı́az de Gamero 1977a, 1977b, 1985a, 1985b,
1989, 1996; Wozniak and Wozniak 1987; Dı́az de
Gamero et al. 1988; Guerra and Mederos 1988; Dı́az
de Gamero and Linares 1989; Rey 1990; Bolli et al.
1994). Vertebrates of the Urumaco Formation also
support the foraminiferal ages (Linares 2004; SánchezVillagra 2006; Sanchez-Villagra and Aguilera 2006).
Therefore, the top of the formations in the Urumaco
region are well dated and were used as a source of firstorder calibration for our pollen record, because two of
the studied sections are (Urumaco East and Urumaco
west) located in the Urumaco region. Dating of the
tops of the formations is summarized in Table 3.
4.2.2.
Carbon isotopes
The dynamics associated with the carbon cycle
and the linkage between the oceans, atmosphere
and land plants can be used to correlate marine and
terrestrial sequences using stable carbon isotopes
(d13C) (Carvajal-Ortiz et al. 2009). The methods and
analytical techniques used in these analyses were
described by Carvajal-Ortiz et al. (2009). We used
carbon isotope ratios of bulk sedimentary organic
matter derived from land plants (d13Cbulk) from 10
sections and 729 samples: Diablito (De la Parra et al.
2007), Cerrejón (Jaramillo et al. 2007), Rio Loro,
Gonzales 1, Gonzales outcrop, Gibraltar 2, Mucurera 3, Piñalerita, Gacenera Sur and Guadualera (all
isotopic data on Annex S4 of the supplementary
material). Isotopic results were compared with the
composite Paleocene–Eocene marine carbon-isotope
record (d13Ccarbonate) from Zachos et al. (2001)
(Figure 4). The isotope data from each section
were extrapolated to the composite section using its
corresponding equation for the line of correlation
(supplementary material, Table S4). A 20-point
running average was also calculated to detect trends
better (Figure 4). The correlation of the composite
isotopic curve with the Zachos curve (Figure 4)
allowed the calibration of the points summarized in
Table 3.
4.2.3.
Magnetostratigraphy
Herrera (2008) studied the magnetostratigraphy of the
Urumaco Formation at the same locality where we
carried out our studies in Urumaco (Urumaco West
section). Herrera identified the top of Chron C4 Ar2r
in the upper part of the middle Urumaco Formation
(1052 m in our section, which corresponds to 3178.6
composite units using the line of correlation for
Urumaco West) (Table 3).
63
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Figure 4. Comparison of the bulk d13C record of 10 sites with the Zachos et al. (2001) record of global d13C derived from
foraminifera. Dots in red correspond to a 20-point moving average. All sites were fused together using the Lines of Correlation.
The correlation during the Paleogene is good; however, the correlation after the Eocene/Oligocene boundary is unclear.
4.2.4. Age model
4.3.
Comparison with previous zonations
All calibration points (Table 3) were joined together to
produce an age model for the composite section
(Figure 5). This model was extrapolated to the entire
composite section, assuming linearity among adjacent
dots in the correlation line. This transference was done
using computer code written for R (R-DevelopmentCore-Team 2005), shown in Table S3 of the supplementary material.
The composite section was compared with the zonation of Germeraad et al. (1968) (Figure 6), and the
correlation was excellent (linear correlation, r2: 0.9512,
p-value 5 0.0001). There are some key zonal events,
however, that are slightly displaced in both zonations.
The FAD of C. dorogensis is several Ma older in our
zonation than in the Germeraad zonation (Figure 6).
The FADs of C. vanraadshooveni and G. magnaclavata
64
C.A. Jaramillo et al.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
are several Ma younger in our zonation than in the
Germeraad zonation, and are also in reverse order. We
have the sequence, from older to younger, as the G.
magnaclavata FAD, the C. vanraadshooveni FAD,
whereas Germeraad has the opposite (Figure 6).
Lastly, the LAD of L. crassa is older in our zonation.
The composite also was compared with the zonation of
Muller et al. (1987), which was derived from the
Germeraad zonation, and this correlation was also
excellent (linear correlation, r2: 0.9629, p-value 5
0.0001) (Figure 7). Some key zonal events are displaced
in the two zonations. For example, the FAD of C.
dorogensis is several Ma older in our zonation, and the
FADs of both G. magnaclavata and F. spinosus are also
several Ma older in our zonation.
The good correspondence between the Muller and
Germeraad zonations, which were largely based on
pollen data from Venezuela, and our zonation, which
used material mostly from Colombia, is a clear
indication of the excellent biostratigraphic signal of
the palynomorph data from tropical Cenozoic
sequences.
Our zonation, however, uses more taxa, many of
them new, with quantitative data (pollen counts) that
are stratigraphically controlled, making the zonation
testable as new sections are added in the future. The
Germeraad and Muller zonations, in contrast, are
static, because their zonations did not provide the raw
data used to build the zonation, and the zonations
themselves did not use a clearly defined biostratigraphic technique.
Van der Hammen et al. (1973) and Wijninga (1996)
proposed a zonation for the Pliocene of the Andes
mountains. However, it has very few species in
common with the lowlands, where all our data come
from. Therefore, they are difficult to compare to the
zonation proposed here.
Figure 5. Age model for the composite section. Calibration
points are given in Table 3.
Figure 6. Comparison of the events in this zonation with
the zonation of Germeraad et al. (1968). Note the good
degree of correlation (r2 ¼ 0.95, p 5 0.0001) between both
zonations. Key zonal events are represented by black-filled
circles.
Figure 7. Comparison of the events in this zonation with
the zonation of Muller et al. (1987). Note the good degree of
correlation (r2 ¼ 0.96, p 5 0.0001) between both zonations.
Key zonal events are represented by black-filled circles.
Palynology
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
5.
Systematic paleontology
The descriptive morphological terminology used here
closely follows that of Jaramillo and Dilcher (2001) for
exine architecture and tectal sculpture. The rules of the
International Code of Botanical Nomenclature
(McNeill et al. 2006) are followed. Specimens are
located with the England Finder system (EF). All type
and figured specimens in Plates 1–13 are stored in the
palynological collection of the National Core Library
(Litoteca Nacional) Bernardo Taborda, Colombian
Petroleum Institute, Km 7 via Piedecuesta, Piedecuesta,
Santander, Colombia. The National Core Library of
Colombia, a government institute and a public center of
information and research in geological sciences, is
officially responsible for managing and preserving the
rock and microfossil collections of Colombia. The
Library promotes its use by scientists and consultants
interested in global geological processes and resource
exploration. The inventory includes public and confidential collections of cores, cuttings, outcrops, petrological samples, and micropaleontological collections.
Holotypes and paratypes can be consulted upon written
request to the Library manager.
Pteridophyte and Bryophyte spores
Echitriletes intercolensis sp. nov.
Plate 11, figures 11–14
Holotype. Plate 11, figures 11–13, sample DK–10-64150
100 -slide 89, EF M53/3.
Paratype. Plate 11, figure 14, Sample DK–10, 64160 300 slide-76, EF S55/3-4.
Etymology. Named after Intercol, the local branch of
Exxon in Colombia, which did extensive palynological
work in Colombia.
Type locality: DK-10 core, Guaduala Formation,
Maastrichtian, 3.0938N, 75.298W.
Diagnosis. Trilete, intermediate in size (35–36 mm),
cingulated, distal face verrucate or gemmate, proximal
face laevigate, ornamentation highly irregular in shape
and size.
Description. Spores single, symmetry radial, pyramidal,
amb triangular-obtuse-concave; trilete, margo 0.5 mm
wide, well defined and thin, curvature perfect, radii
long, reaching equator, commissure straight; sporoderm single-layered, intexine 1–1.5 mm thick; cingulate,
cingulum 3–5 mm wide, well developed; sculpture
verrucate-gemmate-echinate, proximal face laevigate,
distal face verrucate, verrucae highly irregular in shape
and size, circular, fusiform, gemma-like, to highly
irregular shape in plain view, 0.5–8 mm wide, 50.5–
6 mm high, 0.5–7 mm apart; echinate along the
cingulum, spines highly irregular in shape and size,
65
very few, 1–3 mm long, 0.5–1 mm wide, cylindrical to
conical, ends pointed or capitated, 2–12 mm apart.
Dimensions. Equatorial diameter 35(35.5) 36 mm,
length/width ratio 1.1; measured 4, observed 95.
Comparisons. ‘Echitriletes tuberosus’ Jaramillo et al.
2007, lacks a well-developed cingulum; Apiculatasporites? cingulatus Jaramillo & Dilcher, 2001 lacks
verrucae; Pteridacidites sp. 1 Jaramillo & Dilcher,
2001 has larger verrucae (5–8 per grain); Cingulatisporites verrucatus Regali et al. 1974 has a thicker
cingulum (6–10 mm thick) and lacks spines.
Scabratriletes granularis sp. nov.
Plate 12, figures 5–8
Holotype. Plate 12, figures 5–6, sample Guariquies-1,
1930-1960-slide 628, EF P25.
Paratype. Plate 12, figures 7–8, Sample Guariquies-1,
1930-1960-slide 628, EF X25/4.
Etymology. Named after the granular ornamentation
of the exine.
Type locality: Guariquies-1, Umir Formation, Maastrichtian, 6.98N, 73.518W
Diagnosis. Scabratrilete, intermediate to large in size
(43–58 mm), intexine thin, scabrae densely distributed
over entire grain, laesurae slightly raised.
Description. Spores single, symmetry radial, pyramidal,
amb triangular-obtuse-convex; trilete, margo absent,
curvature absent, radii long, reaching equator, commissure slightly undulating, slightly raised, often the
grain has longitudinal folds that can be confused with
the laesura; sporoderm single-layered, intexine 1–1.5 mm
thick; sculpture scabrate, scabrae 0.5–1 mm long and
wide, 0.5 mm apart, densely and evenly distributed over
the entire grain, both in proximal and distal face.
Dimensions. Equatorial diameter 43(50.6)58 mm,
length/width ratio 1.2; measured 5, observed 99.
Comparisons. Scabratriletes globulatus Sarmiento 1992
is smaller (20 mm) and circular.
Striatriletes saccolomoides sp. nov.
Plate 12, figures 9–12
Holotype. Plate 12, figures 9–10, sample Orito Sur-1,
3500-3510-slide 302, EF H51/1-2
Paratype. Plate 12, figures 11–12, sample Zulia
Profundo-1, 4910-4920-slide 848, EF H9/4.
Etymology. Named after the similarity to Saccoloma, a
genus of fern in the family Dennstaedtiaceae.
Type locality: Gibraltar-1, lower Carbonera Formation, Oligocene, 7.0438N, 72.178W.
Diagnosis. Striatrilete, intermediate in size (32–42 mm),
striae forming a complex anastomosing pattern.
Description. Spores single, symmetry radial, pyramidal,
amb triangular-obtuse-convex; trilete, margo 0.5 mm
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
66
C.A. Jaramillo et al.
wide, indistinct, curvature absent, radii long, reaching
equator, commissure slightly undulating; sporoderm
single-layered, intexine 1–2 mm thick; sculpture striate,
striae 0.5 mm wide, 0.5 mm high, 1–2 mm apart,
anastomosing in a complex and irregular pattern, on
both proximal and distal faces, striae on proximal face
runs parallel to amb of grain in interradial zone.
Dimensions. Equatorial diameter 32(36.5)42 mm,
length/width ratio 1.2; measured 4, observed 172.
Comparisons. Cicatricosisporites microstriatus Jardiné
& Magloire 1963 is larger (70–80 mm) and the trilete
mark does not reach equator; Striatriletes elegantis
Jaramillo et al. 2007 has muri branching from a single
stria that circles the grain from the proximal to the
distal face.
Natural affinities. Very similar to Saccoloma, a genus of
fern in the family Dennstaedtiaceae, which has 12
pantropical species (but not in tropical Africa).
Angiosperm pollen
Bombacacidites echinatus sp. nov.
Plate 1, figures 13–14
Holotype. Plate 1, figure 13, sample Gibraltar-1, 57705780-slide 139, EF P27/2.
Paratype. Plate 1, figure 14, sample La Gloria-2,
12636’3-slide 623, EF U8/3.
Etymology. After the echinate ornamentation.
Type locality: Gibraltar-1, lowermost Carbonera Formation, Eocene, 7.0438N, 72.178W.
Diagnosis. Bombacacidites -type pollen, intermediate in
size (33–36 mm), echinate, triangular-obtuse-straight to
concave.
Description. Monad pollen grains, radial, isopolar,
triangular-obtuse-straight to triangular-obtuse-concave; tricolporate, ectocolpi short, costate, borders
straight, ends pointed, costae well developed, 3 mm
wide, 2 mm thick, horseshoe shaped; endopores simple,
circular, 2 mm wide; tectate, exine 1–1.5 mm, columellae sometimes indistinct, nexine 0.5 mm thick, columellae 0.5 mm thick, tectum 0.5 mm thick, nexine
increasing to 2 mm near colpi; sculpture echinate,
spines 1–2 mm high, 1–1.5 mm wide, 2–4 mm apart,
subconical, ends rounded, sparsely and evenly distributed over entire grain, surface among spines
slightly micropitted.
Dimensions. Equatorial diameter 33(34.7)36 mm; measured 3, observed 7.
Comparisons. All other Bombacacidites species lack
spines. The overall morphology strongly suggests a
placement in Bombacacidites, although the ornamentation is not reticulate as in most Bombacacidites. At
this point, it does not seem justifiable to create a
new genus to accommodate Bombacacidites-like
pollen with an echinate ornamentation, unless more
species with similar characteristics are found.
Echiperiporites scabrannulatus sp. nov.
Plate 2, figures 23–24
Holotype. Plate 2, figures 23–24, sample Tocoragua-1,
14260R-slide 861, EF N25.
Etymology. After the scabrate and annulate
ornamentation.
Type locality: Tocoragua-1, Leon Formation, Miocene, 6.278N, 71.808W.
Diagnosis. Pantoporate pollen grains, large in size
(67 mm), echinate and scabrate, 13–15 pores,
intectate.
Description. Monad pollen grains, radial, isopolar,
spherical, amb circular; pantoporate, pores 13–15,
circular, 5 mm wide, annulate, annuli 2–4 mm wide,
1 mm thick, conspicuous; intectate, exine 0.5 mm thick,
very thin; sculpture echinate, spines 6–7 mm long, 3 mm
wide, conical, ends rounded, 6–10 mm apart, sparsely
distributed over entire grain, surface interspines scabrate, scabrae 1 mm high, 0.5 mm apart, densely and
evenly distributed over entire grain.
Dimensions. Equatorial diameter 67 mm; measured 1,
observed 13.
Comparisons. Echiperiporites estelae Germeraad
et al. 1968 is tectate and tectum thickens at base
of spines; Echiperiporites sp. 1 Jaramillo & Dilcher
2001 is tectate, and spines are shorter (3–4 mm long).
Echitriporites cricotriporatiformis sp. nov.
Plate 3, figures 8–10
Holotype. Plate 3, figures 8–9, sample Gibraltar-2, 920940-slide 185, EF Q24–2.
Paratype. Plate 3, figure 10, sample Gibraltar-2, 760790-slide 267, EF L20/1.
Etymology. After close resemblance to Cricotriporatetype grains.
Type locality: Gibraltar-2, upper Carbonera Formation, Miocene, 7.0438N, 72.178W.
Diagnosis. Triporate pollen grains, intermediate in size
(35–38 mm), echinate, intectate, annulate.
Description. Monad pollen grains, radial, isopolar,
spherical, amb circular, grain is often folded; triporate,
pores circular, 3–5 mm wide, annulate, annuli 1.5–2 mm
wide, 1 mm thick, conspicuous; intectate, exine 0.5 mm
thick, very thin; sculpture echinate, spines 1.5 mm high,
2 mm wide, 5–7 mm apart, circular in plain view,
subconical with a thin pointed tip, often very dark,
distributed sparsely and evenly over entire grain,
surface interspines scabrate to psilate.
Dimensions. Equatorial diameter 35(36.7)38 mm; measured 3, observed 15.
67
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Plate 1. In all plates, the sample number (e.g. WRV 04774, 94.41) is followed by the England Finder (EF) coordinate. Figures 1,
2. Aglaoreidia? foveolata Jaramillo & Dilcher 2001, Zulia profundo-1, 7970–7980, EF W11-2. Figures 3, 4.
Bacumorphomonocolpites tausae Sole de Porta 1971, Guariquies-1, 5290–5300, EF V5/4. Figures 5, 6, 7. Bombacacidites annae
(Van der Hammen 1954) Leidelmeyer 1966, Mucurera-3, 2961–2970, EF T15-2. Figures 8, 9, 10. Bombacacidites baculatus Muller
et al. 1987, SA-6, 1860–1870, EF 20/1. Figures 11, 12. Bombacacidites brevis (Dueñas 1980) Muller et al. 1987, Gibraltar-1, 4420–
4430, EF J27/1. Figure 13. Bombacacidites echinatus sp. nov., Holotype, Gibraltar-1, 5770–5780-slide 139, EF P27/2. Figure 14.
Bombacacidites echinatus sp. nov., Paratype, La Gloria-2, 126363-slide 623, EF U8/3. Figures 15, 16. Bombacacidites
foveoreticulatus Muller et al. 1987, Gibraltar-1, 5320–5330, EF O43. Figures 17, 18. Bombacacidites muinaneorum, Hoorn 1993,
Ocelote-1, 3210–3240, EF E17. Figures 19–22. Bombacacidites protofoveoreticulatus Jaramillo & Dilcher 2001, Llanos Foothills,
UFP 7, EF S47-3. Figures 23, 24. Bombacacidites soleaformis Muller et al. 1987, Gibraltar -1, 5320–5330, EF N48-3. Figures 25,
26. Bombacacidites simplireticulatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 37, EF O50/4. Figures 27, 28.
Brevitricolpites microechinatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 15, EF F11/2.
68
C.A. Jaramillo et al.
1965 is triangular-obtuse-convex and has denser
spines.
Foveotricolporites etayoi sp. nov.
Plate 3, figures 23–25
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Comparisons. Very similar to Cricotriporites
Leidelmeyer 1966 but the genus does not have
echinate grains; Echitriporites nuriae Dueñas 1980
is tectate and spines higher (6 mm), Proteacidites longispinosus Jardine and Magloire
Plate 2. Figures 1, 2. Buttinia andreevi Boltenhagen 1967, Cerro Gordo-3, 1780–1790, EF N8 1/2. Figures 3, 4. Clavainaperturites
microclavatus Hoorn 1994b, Aruchara-1, 1490–1500, EF W41/1. Figures 5, 6. Clavatricolpites densiclavatus Jaramillo & Dilcher
2001, Relámpago-1, 6510–6520, EF L21/1. Figures 7, 8. Colombipollis tropicalis Sarmiento 1992, Cerro Gordo-3, 120–130, EF K20.
Figures 9, 10. Crassiectoapertites columbianus (Dueñas 1980) Lorente 1986, Gibraltar-2, 5790–5800, EF T31. Figures 11, 12.
Cricotriporites guianensis Leidelmeyer 1966, Regadera Section, Re 112 97.5 m, EF D17/4. Figures 13, 14. Cricotriporites
minutiporus (Muller 1968) Jaramillo & Dilcher 2001, Llanos Foothills, UFP41, EF U63/2. Figures 15, 16, 17. Crototricolpites
protoannemariae Jaramillo & Dilcher 2001, Lisama Este-1, 2750–2760, EF M18-1. Figures 18, 19. Ctenolophonidites lisamae (Van
der Hammen & Garcia 1966) Germeraad et al. 1968, Cerrejón WRV 04774, 36.55m, EF T16. Figure 20. Cyclusphaera scabrata
Jaramillo & Dilcher 2001, Arauca-2, 17703’8’ Core, EF T52. Figures 21, 22. Duplotriporites ariani Sarmiento 1992, Arauca-2,
19450–19460, EF H10. Figures 23, 24. Echiperiporites scabrannulatus sp. nov., Holotype, Tocoragua-1, 14260R-slide 861, EF N25.
Figures 25, 26. Echitetracolpites? tenuiexinatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 43, EF W51.
69
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Plate 3. Figures 1, 2. Echitricolporites maristellae Muller et al. 1987, Arauca-2, 15430–15440, EF W23-2. Figures 3, 4.
Echitricolporites mcneillyi Germeraad et al. 1968, Montoyas A1, 2400–2430, EF J44-1. Figures 5, 6, 7. Echitricolporites spinosus
Van der Hammen 1956, Montoyas A1, 2400–2430, EF K36/1-2. Figures 8, 9. Echitriporites cricotriporatiformis sp. nov.,
Holotype, Gibraltar-2, 920–940-slide 185, EF Q24-2. Figure 10. Echitriporites cricotriporatiformis sp. nov., Paratype, Gibraltar-2,
760–790-slide 267, EF L20/1. Figures 11, 12. Echitriporites trianguliformis var. orbicularis Jaramillo & Dilcher 2001, Coronado-1,
6380, EF H15. Figures 13, 14, 15. Echitriporites variabilis Jaramillo & Dilcher 2001, Llanos Foothills, UFP 42, EF V58/2. Figures
16, 17, 18. Fenestrites longispinosus Lorente 1986, AM27-19, EF G41 4. Figures 19, 20. Fenestrites spinosus Van der Hammen
1956, Montoyas A1, 2850–2880, EF H30. Figures 21, 22. Foveotricolpites perforatus Van der Hammen & Garcia 1966, Rı́o Zulia14, 6680, EF K46. Figures 23, 24, 25. Foveotricolporites etayoi, sp. nov., Holotype, Arauca-2, 17510–17520-slide 1, EF M18.
Figures 26, 27. Foveotriporites hammenii Gonzalez 1967, Gibraltar-1, 6430–6440 R, EF S14. Figures 28, 29, 30.
Gemmamonocolpites gemmatus (Van der Hammen 1954) Van der Hammen & Garcia 1966, Llanos Foothills, UFP 8, EF F59/3.
C.A. Jaramillo et al.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
70
Plate 4. Figures 1, 2, 3. Grimsdalea magnaclavata Germeraad et al. 1968, Arauca-2, 14040–14050, EF N51. Figures 4, 5.
Horniella lunarensis Jaramillo et al. 2007, Pinalerita creek, UFP 21, EF U62-4. Figures 6, 7. Jandufouria minor Jaramillo &
Dilcher 2001, Niscota E1, 1210–1240, EF W34. Figures 8, 9. Jandufouria seamrogiformis Germeraad et al. 1968, Niscota-E1,
1960–1990, EF S25/3. Figures 10, 11. Lanagiopollis crassa (Van der Hammen & Wymstra 1964) Frederiksen 1988, Llanos
Foothills, UFP 34, EF O62/3. Figures 12, 13, 14. Longapertites proxapertitoides var. proxapertitoides Van der Hammen & Garcia
1966, Llanos Foothills, UFP 27, EF N52/2–4. Figures 15, 16. Luminidites colombianensis Jaramillo & Dilcher 2001, Orito Sur-1,
4280–4290, EF N 13. Figures 17, 18. Magnastriatites grandiosus (Kedves & Sole de Porta 1963) Dueñas 1980, Arauca-2, 15590–
15600, EF E11. Figures 19, 20, 21. Margocolporites vanwijhei Germeraad et al. 1968, Arauca-2, 15510–15520, EF M30/3.
Holotype. Plate 3, figures 23–25, sample Arauca-2,
17510-17520-slide 1, EF M18.
Paratype. Sample Gibraltar-1, 4630-4640-slide 119, EF
J29/3.
Etymology. After Fernando Etayo, a prominent
Colombian geologist and paleontologist.
Type locality: Arauca-2, Carbonera Formation, Oligocene, 6.958N, 71.848W.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Diagnosis. Tricolporate pollen, intermediate in size
(26-28 mm), exine thick, colpi marginate, fossulate at
apocolpia, reticulate at mesocolpia.
Description. Monad pollen grains, radial, isopolar,
spherical, amb circular; tricolporate, ectocolpi marginate, margo 2 mm wide, formed by thinning of exine, colpi
long, ends pointed, 23 mm long, endopore simple,
indistinct, lalongate, 3 mm long, 6 mm wide; tectate, exine
3 mm thick, spongy-like, columellae distinct, nexine
0.5 mm thick, columellae 2 um thick, very long, 0.5 mm
wide, 1 mm apart, decreasing near colpi to 0.5 mm, tectum
0.5 mm thick; sculpture foveoreticulate, fossulate at
apocolpia gradually changing to reticulate at mesocolpia,
simplicolumellate, lumina 1 mm wide, muri 0.5 mm wide,
densely and evenly distributed over entire grain.
Dimensions. Equatorial diameter 26–27 mm; measured
2, observed 267.
Comparisons. Foveotricolporites sp. 1 of Jaramillo &
Dilcher 2001 has fastigiate endopores, and foveolae
that diminish in width towards the equator, Retitricolporites quadrosi Regali et al. 1974 has costate
ectocolpi and lumina decrease near colpi, Retitricolporites finitus Gonzales 1967 is homobrochate,
Retitricolporites profundus Gonzales 1967 has lumen
that decrease near colpi, Foveotricolporites voluminosus Gonzales 1967 has costate pores, Foveotricolporites rugulatus Jaramillo & Dilcher, 2001 have
fossulae that fuse, forming a rugula-like pattern,
Foveotricolporites fossulatus Jaramillo & Dilcher 2001
has lumina that decrease near colpi, Foveotricolporites sp. 2 Jaramillo & Dilcher 2001 is fossulate at
mesocolpia.
Paleosantalaceaepites cingulatus sp. nov.
Plate 5 figures 13–15
Holotype. Plate 5, figures 13–15, sample Montoyas A1, 1620-1650-slide 680, EF T41/2.
Paratype. Sample Montoyas A-1, 2430-2460-slide 741,
EF H21.
Etymology. After the presence of a cingulum.
Type locality: Montoyas A-1, Real Formation, Miocene, 6.838N, 74.048W.
Diagnosis. Tricolporate, intermediate in size (32–
40 mm), tectate, foveolate, ectocolpi operculate, endosulculus costate.
Description. Monad pollen grains, radial, isopolar,
prolate, circular; tricolporate, ectocolpi operculate,
long, ends pointed, almost reaching apocolpia, 25–
36 mm long, operculum 2 mm wide, endosulculus 3–
5 mm wide, costate, costae 1 mm wide, 1 mm thick,
distinct; tectate, exine 2 mm thick, columellae distinct,
nexine 0.5 mm thick, columellae 1 mm thick, 0.5 mm
wide, 0.5–1 mm apart, tectum 0.5 mm thick, nexine
thickens to 1.5 mm near endosulculus; sculpture
71
foveolate, lumina 0.5–1 mm wide, 0.5–1 mm apart,
densely and evenly distributed over entire grain.
Dimensions. Equatorial diameter 20(23)25 mm; polar
diameter 32(37)40 mm; polar/equatorial diameter 1.6,
measured 3, observed 24.
Comparisons. Paleosantalaceaepites distinctus Jaramillo & Dilcher 2001 is reticulate and heterobrochate,
Retitricolporites microreticulatus Herngreen 1975 has
costate ectocolpi, Stephanocolpites costatus Van der
Hammen 1954 is spherical, 5–6 colpate, and colpi are
shorter, Paleosantalaceaepites reticulatus Samant &
Phadtare 1997 is smaller (24–25 mm), and has a thicker
exine (1.5 mm), Zonocostites ramonae Germeraad et al.
1968 is smaller (16–19 mm), spherical, and ectocolpi are
costate.
Proxapertites minutihumbertoides sp. nov.
Plate 6, figures 8–9
Holotype. Plate 6, figures 8–9, sample Zulia Profundo1, 8260-8270-slide 851, EF Q14/34.
Paratypes. Sample Mucurera-3, 2690-2700-slide 397,
EF W54/4; Sample Zulia Profundo-1, 8020-8030-slide
1013, EF R11/2.
Etymology. After smaller size but close resemblance to
P. humbertoides.
Type locality: Zulia Profundo-1, Cuervos Formation,
Paleocene, 8.218N, 72.468W.
Diagnosis. Zonasulculate, intermediate to large in size
(58–72 mm), tectate, fossulate.
Description. Monad pollen grains, radial, anisopolar,
amb elliptic, sulculus dividing grain in two slightly
unequal parts; zonasulculate, sulculus simple; tectate,
exine 5 mm thick, columellae distinct, nexine 2 mm
thick, columellae 2 mm thick, 1 mm wide, 1 mm apart,
tectum 1 mm thick; sculpture fossulate, lumina 1 mm
wide, 3–8 mm long, 2–3 mm apart, evenly and densely
distributed over entire grain, shaped unevenly, circular
to elongated to star-shaped within same grain, sometimes fossulae tend to be shorter and narrower toward
apocolpia.
Dimensions. Equatorial diameter length 58(65)72 mm;
equatorial diameter width 48(55.1)70 mm; equatorial
diameter length/width 1.2, measured 10, observed 324.
Comparisons. Proxapertites humbertoides (Van der
Hammen 1954) Sarmiento 1992 is very similar but
much longer (73–121 mm), Proxapertites tertiaria van
der Hammen & Garcia 1966 is larger (130 mm), and
Proxapertites magnus Muller et al. 1987 is foveolate.
Proxapertites sulcatus sp. nov.
Plate 6, figures 12–13
Holotype. Plate 6, figure 12, sample Guariquies-1,
5290-5300-slide 635, EF C16.
72
C.A. Jaramillo et al.
Diagnosis. Zonasulculate, intermediate in size (39–
40 mm), exine thin, psilate, with a sulcus on the
apocolpia.
Description. Monad pollen grains, bilateral, anisopolar, amb elliptic, sulculus dividing grain in two slightly
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Paratype. Plate 6, figure 13, sample Guariquies-1,
5320-5330-slide 634, EF W8.
Etymology. After the sulcate aperture.
Type locality: Guariquies-1, Umir Formation, Maastrichtian, 6.98N, 73.518W.
Plate 5. Figures 1, 2, 3. Mauritiidites franciscoi var minutus Van der Hammen & Garcia 1966, Gibraltar-1, 4420–4430, EF Q17/
1. Figures 4, 5. Monocolpopollenites ovatus Jaramillo & Dilcher 2001, Mucurera-3, 1200–1210, EF Intercepto J14/4-J15/3.
Figures 6, 7, 8. Multimarginites vanderhammenii Germeraad et al. 1968, Totumo E, EF U21. Figures 9, 10. Multiporopollenites
pauciporatus Jaramillo & Dilcher 2001, Mucurera-3, 890–900, EF M16-3. Figures 11, 12. Nothofagidites huertasii Jaramillo &
Dilcher 2001, Llanos Foothills, UFP 46, EF Q51. Figures 13, 14, 15. Paleosantalaceaepites cingulatus sp. nov., Holotype,
Montoyas A1, 1620–1650-slide 680, EF T41/2. Figures 16, 17, 18. Perfotricolpites digitatus Gonzalez 1967, Arauca-2, 15310–
15320, EF X24. Figure 19. Periretisyncolpites giganteus Kieser & Jan du Chene 1979, Guariquı́es-2, 4820–4830, EF R13/3.
Figures 20, 21, 22. Perisyncolporites pokornyi Germeraad et al. 1968, Arauca-2, 15510–15520, EF D33/1. Figures 23, 24.
Proteacidites dehaani Germeraad et al. 1968, Guariquı́es-1, 1930–1960, EF S20/1.
Palynology
long, ends rounded, marginated, margo 1 mm wide,
0.5 mm thick, distinct, often invaginate; tectate, exine
1 mm thick, columellae absent, nexine 0.5 mm thick,
tectum 0.5 mm thick; sculpture psilate.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
unequal parts; zonasulculate, sulculus margin ragged,
marginate, margo 1 mm wide, produced by a slightly
scabrate ornamentation, there is an additional sulcus
on the polar side of the larger half of the grain, 29 mm
73
Plate 6. Figures 1, 2. Proteacidites triangulatus Lorente 1986, Montoyas A1, 5760–5790, EF W14/4. Figures 3, 4, 5.
Proxapertites cursus Van Hoeken Klinkenberg 1966, Cerrejón WRV 04774, 38.63 m, EF J52. Figures 6, 7. Proxapertites magnus
Muller et al. 1987, Cerrejón WRV-4774, 301.88 m, EF H39/3. Figures 8, 9. Proxapertites minutihumbertoides sp. nov., Holotype,
Zulia Profundo-1, 8260–8270-slide 851, EF Q14/3–4. Figures 10, 11. Proxapertites operculatus (Van der Hammen 1954) Van der
Hammen 1956, Cerrejón WRV 04774, 36.55 m, EF M14/1. Figure 12. Proxapertites sulcatus, sp. nov., Holotype, Guariquı́es-1,
5290–5300-slide 635, EF C16. Figure 13. Proxapertites sulcatus, sp. nov., Paratype, Guariquı́es-1, 5320–5330-slide 634, EF W8.
Figures 14, 15. Pseudostephanocolpites perfectus Gonzalez 1967, Coronado-1, 6560, EF K13/1. Figures 16, 17.
Psilabrevitricolporites simpliformis Van der Kaars 1983, Cerrejón WRV- 04774, 38.63m, EF T57/1.
74
C.A. Jaramillo et al.
Comparisons. No other Proxapertites species has a
sulcus on the apocolpia.
Retipollenites crotonicolumellatus sp. nov.
Plate 9, figures 1–3
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Dimensions. Equatorial diameter length 39(39.5)
40 mm; equatorial diameter width 29(31.5) 34 mm;
equatorial diameter length/width 1.3, measured 2,
observed 14.
Plate 7. Figures 1, 2. Psilabrevitricolporites triangularis (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001,
Coronado–1, 5020, EF F22/4. Figures 3, 4, 5. Psilaperiporites robustus Regali et al.1974, slide T-035, Petrobras Pollen Collection,
EF M34. Figure 6. Psilatricolporites caribbiensis Muller et al. 1987, sample AM27–1, EF S26/4. Figure 7. Psilastephanoporites
tesseroporus Regali et al. 1974, Socorro Formation, 260, EF Q26-27/R26–27. Figures 8, 9. Psilatricolporites pachydermatus
Lorente 1986, Niscota-E1, 3430-3460, EF P57/2. Figures 10, 11,12. Racemonocolpites facilis Gonzalez 1967, Lisama 10, 9910, EF
V15/4. Figures 13, 14. Racemonocolpites racematus (Van der Hammen 1954) Gonzalez 1967, Cerro Gordo–3, 1170-1180, EF P7.
Figures 15, 16. Ranunculacidites operculatus (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Arauca–2, 1543015440, EF Q12–2. Figures 17, 18. Retibrevitricolpites triangulatus Van Hoeken Klinkenberg 1966, Guavio-1, 7030, EF V49.
Figures 19, 20. Retibrevitricolporites grandis Jaramillo & Dilcher 2001, Gibraltar–1, 6340-6350, EF V26. Figures 21, 22.
Retibrevitricolporites speciosus Jaramillo & Dilcher 2001, Coronado–1, 6680, EF H49/2. Figures 23, 24. Retidiporites
magdalenensis Van der Hammen & Garcia 1966, Lisama N 1P ST, 10820-10830, EF D20–4. Figures 25, 26, 27.
Retistephanocolpites angeli Leidelmeyer 1966, Llanos Foothills, UFP 7, F44.
Palynology
Diagnosis. Inaperturate pollen, intermediate in size
(23–26 mm), spherical, exine thick, reticulate, lumina
large, curvimurate, simplicolumellate.
Description. Monad pollen grains, radial, isopolar,
spherical, amb circular; inaperturate; semitectate, exine
4 mm thick, columellae distinct, nexine 1 mm thick,
columellae 2 mm thick, 1 mm wide, 2–3 mm apart,
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Holotype. Plate 9, figures 1–3, sample Montoyas A-1,
2790-2820-slide 746, EF K47/1.
Paratype. Sample Montoyas A-1, 2460-2490-slide 742,
EF G52.
Etymology. After the croton-alike pattern of the columellae.
Type locality: Montoyas A-1, Real Formation, Miocene, 6.838N, 74.048W.
75
Plate 8. Figures 1, 2, 3. Retistephanocolporites festivus Gonzalez 1967, Gibraltar-1, 6010–6020, EF V52-4. Figures 4, 5.
Retistephanoporites angelicus Gonzalez 1967, Rio Zulia W–2, 7360-7370, EF U61. Figures 6, 7. Retistephanoporites
crassiannulatus Lorente 1986, Arauca–2, 15430-15440, EF E19. Figures 8, 9, 10. Retistephanoporites minutiporus Jaramillo &
Dilcher 2001, Arauca–2, 17703’8’, EF C21/2. Figures 11, 12, 13. Retitrescolpites baculatus Jaramillo & Dilcher 2001, Gibraltar-1,
5650–5660, EF L45/2. Figures 14, 15, 16. Retitrescolpites? irregularis (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher
2001, Arauca-2, 15430–15440, EF Q34-1. Figures 17, 18, 19. Retitrescolpites magnus (Gonzalez 1967) Jaramillo & Dilcher 2001,
Coronado–1, 6680, EF J7.
C.A. Jaramillo et al.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
76
Plate 9. Figures 1, 2, 3. Retipollenites crotonicolumellatus, sp. nov., Holotype, Montoyas A1, 2790-2820-slide 746, EF K47/1.
Figures 4, 5. Rhoipites guianensis (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Lisama 10, 9680, EF F23/1.
Figures 6, 7. Rhoipites hispidus (Van der Hammen & Wymstra 1964) Jaramillo & Dilcher 2001, Orito Sur–1, 3500-3510, EF L38–
1. Figures 8, 9. Rhoipites planipolaris, sp. nov., Holotype, Gibraltar-1, 4750–4760-slide 170, EF H45/1-3. Figure 10. Rhoipites
planipolaris, sp. nov., Paratype, Coronado–1, 5020-slide 493, EF N24/2. Figures 11, 12. Rugotricolporites intensus, sp. nov.,
Holotype, Gibraltar-2, 1280–1290-slide 187, EF J54/4. Figure 13. Rugotricolporites intensus, sp. nov., Paratype, Gibraltar-2,
2000–2010-slide 360, EF D21. Figures 14, 15. Spathiphyllum vanegensis (Van der Hammen & Garcia, 1966) Hesse & Zetter 2007,
Mucurera-3, 3110–3120, EF R6/4. Figures 16, 17. Spinizonocolpites baculatus Muller 1968, Lisama Este-1, 5920–5950, EF O33.
Figures 18, 19. Spinizonocolpites echinatus Muller 1968, Cerro Gordo-3, 1840–1850, EF P20 2/4. Figures 20, 21. Spinizonocolpites
grandis Jaramillo & Dilcher 2001, Mucurera-3, 1880–1890, EF N41-1. Figures 22, 23. Spirosyncolpites spiralis Gonzalez 1967,
Gonzalez–1, Cuervos porteria 2, EF F43-3. Figures 24, 25. Stephanocolpites costatus Van der Hammen 1954, Cerro Gordo–3,
1570-1580, EF K10/4. Figures 26, 27, 28. Stephanocolpites evansii Muller et al. 1987, Montoyas A1, 2010–2040, EF P6/3.
Palynology
Comparisons. Retipollenites confusus Gonzalez 1967
is larger (48 mm) and reticulum is not inserted
in nexine, Inaperturopollenites curvimuratus Regali
et al. 1974 is heterobrochate, Inaperturopollenites cursis Sarmiento 1992 has smaller lumina
(50.5 mm).
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
tectum 1 mm thick; sculpture reticulate, homobrochate,
lumina 3–5 mm wide, curvimurate, muri 1 mm wide,
simplicolumellate, columellae arranged in a pseudocroton pattern.
Dimensions. Equatorial diameter 23–26 mm; measured
2, observed 18.
77
Plate 10. Figures 1, 2, 3. Striatopollis catatumbus (Gonzalez 1967) Takahashi & Jux 1989, SA-14, 2840–2850, EF C38/1. Figures
4, 5. Syncolporites marginatus Van Hoeken Klinkenberg 1964, Regadera Section, Re 72 37.5 m, EF R15. Figures 6, 7.
Syndemicolpites typicus Van Hoeken-Klinkenberg 1964, Cerro Gordo-3, 2140–2150, EF E43/1. Figures 8, 9.
Tetracolporopollenites maculosus (Regali et al. 1974) Jaramillo & Dilcher 2001, Llanos Foothills, UFP 48, EF F59. Figures
10, 11. Tetracolporopollenites transversalis (Dueñas 1980) Jaramillo & Dilcher 2001, Niscota E1, EF T58-4. Figures 12, 13.
Tetradites umirensis Van der Hammen 1954, Cerro Gordo–3, 2680-2690, EF E37/2-E38/1. Figures 14, 15. Ulmoideipites krempii
(Anderson 1960) Elsik 1968, Regadera Section, Re 72 37.5 m, EF L56–2. Figures 16, 17. Wilsonipites margocolpatus Muller et al.
1987, Llanos Foothills, UFP 57, EF U43. Figures 18, 19, 20. Zonotricolpites variabilis Sarmiento 1992, DK-12, 64739, EF K43/1.
C.A. Jaramillo et al.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
78
Plate 11. Figures 1, 2, 3. Cicatricosisporites baculatus Regali et al. 1974, Volcanera–1, 4100, EF U22. Figures 4, 5.
Cicatricosisporites dorogensis Potonie & Gelletich 1933, Rı́o Zulia West-2, 7460–7470, EF F23. Figures 6, 7. Crassoretitriletes
vanraadshooveni Germeraad et al. 1968, Molino del viento-1, 3100–3130, EF L52/1. Figures 8, 9. Cyatheacidites annulatus
Cookson 1967, Montoyas A1, 480-510, EF R36–4. Figure 10. Diporopollis assamica Dutta & Sah 1970, Arauca-2, 183476, EF
D4/3. Figures 11, 12, 13. Echitriletes intercolensis sp. nov., Holotype, DK–10, 64151-slide 89, EF M53/3. Figure 14. Echitriletes
intercolensis sp. nov., Paratype, DK-10, 64163-slide 76, EF S55/3–4. Figures 15, 16. Foveotriletes margaritae (Van der Hammen
1954) Germeraad et al. 1968, Arauca-2, 19450–19460, EF G19. Figures 17, 18. Gabonisporites vigourouxii Boltenhagen 1967,
Cerro Gordo-3, 1600–1610, EF N38-1. Figures 19, 20. Ischyosporites problematicus Jaramillo & Dilcher 2001, Cerrejón WRV–
04774, 118,25 m, EF R60.
79
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Plate 12. Figures 1, 2. Polypodiisporites pachyexinatus Jaramillo & Dilcher 2001, Llanos Foothills, UFP 21, EF S54/3. Figures
3, 4. Retitriletes sommeri Regali et al. 1974, Montoyas A1, 1740–1770, EF K40. Figures 5, 6. Scabratriletes granularis, sp. nov.,
Holotype, Guariquı́es-1, 1930–1960-slide 628, EF P25. Figures 7, 8. Scabratriletes granularis, sp. nov., Paratype, Guariquı́es-1,
1930-1960-slide, 628 EF X25/4. Figures 9, 10. Striatriletes saccolomoides, sp. nov., Holotype, Orito Sur-1, 3500–3510-slide 302,
EF H51/1-2. Figures 11, 12. Striatriletes saccolomoides, sp. nov., Paratype, Zulia Profundo–1, 4910-4920-slide 848, EF H9/4.
Figures 13, 14. Verrucatosporites usmensis (Van der Hammen 1956a) Germeraad et al. 1968, Arauca–4, 1773610, EF H29/2.
Figures 15, 16. Zlivisporis blanensis Pacltova 1961, Arauca-2, 19010–19020, EF P18-4.
80
C.A. Jaramillo et al.
Rhoipites planipolaris sp. nov.
Plate 9, figures 8–10
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Holotype. Plate 9, figures 8–9, sample Gibraltar-1,
4750-4760-slide 170, EF H45/1-3.
Paratype. Plate 9, figure 10, sample Coronado-1, 5020slide 493, EF N24/2.
Etymology. After the flat apocolpia.
Type locality: Gibraltar-1, Carbonera Formation,
Miocene, 7.0438N, 72.178W.
Plate 13. Figures 1, 2. Andalusiella gabonensis (Stover & Evitt 1978) Wrenn & Hart 1988, Cerro Gordo–3, 1900-1910, EF G49.
Figure 3. Cerodinium diebelii (Alberti 1959b) Lentin & Williams 1987, Rio Molino, Sample 446. slide 5B, EF G44. Figures 4, 5.
Cribroperidinium tenuitabulatum (Gerlach 1961) Helenes 1984, emend. Sarjeant 1984, Bahamas Core78r Slide2d, EF Q52/3.
Figures 6, 7. Dinogymnium acuminatum Evitt et al. 1967, Niscota-E1, 14170–14200, EF V7/2 Figure 8. Senegaliniun bicavatum
Jain & Millepied 1973, ING-AC-64, EF K58. Figure 9. Senegaliniun laevigatum (Malloy 1972) Bujak & Davies 1983, ING-AC–
95, EF K66. Figures 10, 11. Tuberculodinium vancampoae (Rossignol 1962) Wall 1967, Q. Bellavista, Be-100.7 m, EF T25/3.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Diagnosis. Tricolporate pollen, intermediate in size
(26–33 mm), reticulate at apocolpia, foveolate to psilate
at mesocolpia, colpi costate, apocolpia almost flat.
Description. Monad pollen grains, radial, isopolar,
prolate, amb circular, apocolpia 10 mm wide,
rounded, the overall shape in equatorial view
approaches a rectangle with rounded vertices; tricolporate, ectocolpi costate, costae 2 mm wide at
mesocolpia tapering to 0.5 mm near colpus end,
2 mm thick, colpi long, ends pointed, 20 mm long,
endopore simple, lalongate, 2–3 mm long, 5 mm wide;
semitectate, exine 1.2 mm thick, columellae barely
distinct, nexine 0.5 mm thick, columellae 0.2 mm
thick, tectum 0.5 mm thick; sculpture reticulate at
apocolpia gradually changing to foveolate to psilate
at mesocolpia, lumina 0.5 mm wide, muri 1 mm wide,
slightly raised, pluricolumellate, lumina of foveolae
at mesocolpia 0.5 mm wide, 3–5 mm apart.
Dimensions. Equatorial diameter 26(28.8)33 mm; polar
diameter 18(19.8)21 mm; polar/equatorial diameter 1.5;
measured 4, observed 123.
Comparisons. Rhopites hispidus (Van der Hammen and
Wymstra 1964) Jaramillo & Dilcher 2001 has costate
pores and it is homobrochate, Rhoipites squarrosus (Van
der Hammen and Wymstra 1964) Jaramillo & Dilcher
2001 is homobrochate, Retitricolporites ellipticus Van
Hoeken-Klinkenberg 1966 is homobrochate, Retitricolporites wijmstrae Hoorn 1994 is homobrochate.
Rugutricolporites intensus sp. nov.
Plate 9, figures 11–13
Holotype. Plate 9, figures 11–12, sample Gibraltar-2,
1280-1290-slide 187, EF J54/4.
Paratype. Plate 9, figure 13, sample Gibraltar-2, 20002010-slide 360, EF D21.
Etymology. After the remarkable rugulae at
mesocolpia.
Type locality: Gibraltar-2, Carbonera Formation,
Miocene, 7.0438N, 72.178W.
Diagnosis. Tricolporate pollen, intermediate in size
(38–40 mm), rugulae at mesocolpia between colpi,
pores conspicuosly costate and fastigiate, colpi simple.
Description. Monad pollen grains, radial, isopolar,
amb triangular-obtuse-convex; tricolporate, ectocolpi
simple, long, almost reaching apocolpia, 29 mm long,
ends rounded, apocolpia area 7 mm wide, pore indistinct, lalongate, 4 mm long, 10 mm wide, fastigiate,
fastigium 7 mm wide, 4 mm thick, pore surrounded by a
darkening of the exine that resembles a costae, 10–
12 mm wide; atectate, exine 1.5 mm thick, nexine 1 mm
thick near colpi, increasing gradually to 2 mm midway
between colpi at mesolcolpia, there is also a thickening
of the exine around the endopores forming a darkened
large circular area 10–12 mm wide that extend into the
81
apocolpia; sculpture rugulate and foveolate, rugulae
short, two or three ridges, present only in the area
between colpi at mesocolpia, 3 mm wide, 1 mm apart,
5–7 mm long, parallel to the colpi, sometimes rugulae
are larger extending into the apocolpia; surface
foveolate, foveolae 0.5 mm wide, 1 mm apart, distributed densely over entire grain, even over the rugulae.
Dimensions. Equatorial diameter 38(38.7)40 mm; measured 3, observed 9.
Comparisons. Rugutricolporites felix Gonzalez 1967
has rugulae over entire grain, Horniella lunarensis
Jaramillo et al. 2007 is tectate and reticulate.
Acknowledgements
This project was supported by the Colombian Petroleum
Institute and the Smithsonian Paleobiology Endowment
Fund. Thanks to Guy Harrington and an anonymous
reviewer for their helpful comments. The biostratigraphy
teams both at the Colombian Petroleum Institute and
the Smithsonian Tropical Research Institute including
Giovanny Bedoya, Millerlandy Romero, Diana Ochoa,
Carlos Sanchez, Guillermo Rodriguez, Carlos Cuartas,
Felipe De La Parra, Lineth Contreras, Paula Mejia,
Pilar Lopera, Silane Da Silva, Carlos Santos, Carolina
Vargas, Argelis Ruiz, Leopoldo Leon, Catalina Pimiento, Luz Oviedo, Mauricio Parra, Andres Mora, Francy
Carvajal, Fatima Leite, and several external collaborators including Germán Mora, Humberto Gonzales, Pi
Willumsen, Andrés Pardo, and Patrice Brenac that
helped with logistic support, fieldwork, and palynological analyses. Carlos Cuartas developed and ran the code
for the CONOP analysis. Natasha Atkins improved the
readiblity of the manuscript. Special thanks go to M.I.
Barreto and Lucia Ardila for their continuous support
and ideas.
Author biographies
CARLOS JARAMILLO is a staff scientist with the
Smithsonian Tropical Research Institute in Panama.
His research investigates the causes, patterns, and
processes of tropical biodiversity at diverse scales of
time and space. He is also interested in Cretaceous–
Cenozoic biostratigraphy of low latitudes, developing
methods for high-resolution biostratigraphy and the
paleobiogeography of Tethys.
MILTON RUEDA is a consultant geologist in
Colombia, with 25 years of experience in the palynostratigraphy of Cenozoic and Cretaceous sequences,
taxonomy and on-site well biostratigraphy.
VLADIMIR TORRES was the head of the biostratigraphy team of ECOPETROL S.A., the State Oil
82
C.A. Jaramillo et al.
Company of Colombia, from 2005 to 2009. His
research has mainly focused on the Pliocene and
Pleistocene of the northern Andes. He is also interested
in the Cenozoic palynostratigraphy of tropical areas as
well as application of palynology to sequence stratigraphy. At present he is one of the staff palynologists
of ExxonMobil Exploration Company in Houston
where he is currently working on various projects from
basins around the world.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
References
Bayona G., Cortés M., Jaramillo C., Ojeda G., Aristizabal J.,
Reyes-Harker A. 2008. An integrated analysis of an
orogen–sedimentary basin pair: Latest Cretaceous–Cenozoic evolution of the linked Eastern Cordillera orogen
and the Llanos foreland basin of Colombia. Geological
Society of America Bulletin, 120: 1171–1197.
Bermudez P.J., Bolli H.M. 1969. Consideraciones sobre los
sedimentos del Mioceno medio al Reciente de las costas
central y oriental de Venezuela. Tercera parte: Los
foraminı́feros planctónicos. Boletin de Geologia, Ministerio De Minas e Hidrocarburos, 10(20): 137–223.
Blow W.H. 1969. Late middle Eocene to Recent planktonic
foraminiferal biostratigraphy. In: Brönnimann P., Renz
H.H., editors. Proceedings of the First International
Conference on Planktonic Microfossils, Geneva, 1967. 2
Vols. Leiden: E.J. Brill, Vol. 1, p. 199–421.
Bolli H.M., Beckmann J.-P., Saunders J.B. 1994. Benthic
foraminiferal biostratigraphy of the south Caribbean
region. London: Cambridge University Press. 408 p.
Carney J.L., Pierce R.W. 1995. Graphic correlation and
composite standard databases as tools for the exploration biostratigrapher. In: Mann K.O., Lane H.R.,
editors. Graphic correlation. Tulsa (OK): SEPM
(SEPM Special Publication No. 53). p. 23–43.
Carvajal-Ortiz H., Mora G., Jaramillo C. 2009. Molecular
biomarker evaluation of a terrestrial carbon isotope
record as a chronostratigraphic tool for the Paleocene–
Eocene of tropical sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 277: 173–183.
De la Parra F., Jaramillo C., Dilcher D. 2007. Paleoecological changes of spore producing plants through the
Cretaceous–Paleocene boundary in Colombia. Palynology, 32: 258–259.
Dı́az de Gamero L. 1977a. Estratigrafı́a y micropaleontologı́a del Oligoceno y Mioceno inferior del centro de la
cuenca de Falcón, Venezuela. GEOS, 22: 2–50.
Dı́az de Gamero L. 1977b. Revisión de las unidades
litoestratigráficas en Falcón central en base a su contenido
de foraminı́feros planctónicos. In: Espejo A., editor. V
Congreso Geologico de Venezuela Memorias. Vol. 1.
Caracas: Sociedad Venezolana de Géologos. p. 81–86.
Dı́az de Gamero M.L. 1996. The changing course of
the Orinoco River during the Neogene: a review.
Palaeogeography, Palaeoclimatology, Palaeoecology,
123: 385–402.
Dı́az de Gamero M.L. 1985a. Estratigrafı́a de Falcón
nororiental. VI Congreso Geológico Venezolano. Vol. 1.
Caracas: Sociedad Venezolana de Géologos. p. 454–502.
Dı́az de Gamero M.L. 1985b. Micropaleontologı́a de la
formacion Agua Salada, Falcon Nororiental. Memorias
VI Congreso Geológico Venezolano. Vol. 1. Caracas:
Sociedad Venezolana de Géologos. p. 384–453.
Dı́az de Gamero M.L. 1989. El Mioceno Temprano y Medio
de Falcón septentrional. GEOS, 29: 25–35.
Dı́az de Gamero L., Linares O.J. 1989. Estratigrafı́a y
paleontologı́a de la Formación Urumaco, del Mioceno
tardı́o de Falcón noroccidental. VII Congreso Geologico
Venezuela. Vol. 1. Caracas: Sociedad Venezolana de
Géologos. p. 419–439.
Dı́az de Gamero L. Mitacchione V., Ruiz M. 1988. La
Formación Querales en su área tipo, Falcón noroccidental, Venezuela. Boletin Sociedad Venezolana de
Geologia, 34: 34–46.
Edwards L.E. 1984. Insights on why graphic correlation
(Shaw’s method) works. Journal of Geology, 92: 583–
597.
Edwards L.E. 1989. Supplemented graphic correlation: a
powerful tool for paleontologists and nonpaleontologists. PALAIOS, 4: 127–143.
Foote M. 2000. Origination and extinction components of
taxonomic diversity: general problems. In: Erwin D.H.,
Wing S.L., editors. Deep time: paleobiology’s perspective. Chicago: University of Chicago Press for The
Paleontological Society (Supplement to Paleobiology,
Vol. 26, Part 4). p. 74–102.
Germeraad J.H., Hopping C.A., Muller J. 1968. Palynology
of Tertiary sediments from tropical areas. Review of
Palaeobotany and Palynology, 6: 189–348.
Gonzalez A.E. 1967. A palynologic study on the upper
Los Cuervos and Mirador formations (lower
and middle Eocene), Tibú Area, Colombia. Leiden: E.J.
Brill.
Gradstein F.M., Ogg J.G., Smith A. 2005. A
geologic time scale 2004. New York: Cambridge
University Press.
Guerra A. Mederos S. 1988. Estudio sedimentológico y
bioestratigráfico de una zona ubicada entre las poblaciones de Urumaco y Sabaneta, estado Falcón [undergraduate Senior thesis]. [Caracas]: Universidad Central
de Venezuela.
Herrera C. 2008. Estratigrafı́a de la Formación Urumaco y
geologı́a estructural entre el Domo de Agua Blanca y
Hato Viejo (Edo. Falcón) [Ms thesis]. [Caracas]: Universidad Simón Bolivar.
Hood K.C. 1998. GraphCor Interactive Graphic Correlation
Software. Houston: Hood, K.C.
Jaramillo C., Muñoz F., Cogollo M., Parra F. 2005. Quantitative biostratigraphy for the Paleocene of the Llanos
Foothills, Colombia: Improving palynological resolution
for oil exploration. In: Powell A.J., Riding J., editors.
Recent developments in applied biostratigraphy. Bath
(UK): Geological Society Publishing House (The Micropaleontological Society Special Publication TMS001). p.
145–159.
Jaramillo C., Pardo-Trujillo A., Rueda M., Harrington G.,
Bayona G., Torres V., Mora G. 2007. Palynology of the
Upper Paleocene Cerrejon Formation, northern Colombia. Palynology, 31: 153–189.
Jaramillo C., Rueda M. 2004. Impact of biostratigraphy on
oil exploration. III Convención Técnica Asociación
Colombiana de Geólogos y Geofı́sicos del Petroleo
(ACGGP) (La inversión en el conocimiento geológico).
Bogotá: ACGGP. Vol. P4, CD ROM.
Jaramillo C., Rueda M. 2008. A morphological electronic
database of Cretaceous–Tertiary fossil pollen and spores
from Northern South America. Bucaramanga: Colombian Petroleum Institute & Washington (DC): Smithsonian Tropical Research Institute.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
Palynology
Jaramillo C., Rueda M., Bayona G., Santos C., Florez P.,
Parra F. 2009. Biostratigraphy breaking paradigms:
dating the Mirador Formation in the Llanos Basin of
Colombia, In: Demchuk T., Waszczak R., editors.
Geological problem solving with microfossils: a volume
in honor of Garry D. Jones. Tulsa (OK): SEPM (SEPM
Special Publication No. 93). p. 29–40.
Jaramillo C., Rueda M., Mora G. 2006. Cenozoic plant
diversity in the Neotropics. Science, 311: 1893–1896.
Jaramillo C.A., Dilcher D.L. 2001. Middle Paleogene
palynology of central Colombia, South America: a study
of pollen and spores from tropical latitudes. Palaeontographica B, 258: 87–213.
Kemple W.G., Sadler P.M., Strauss D.J. 1995. Extending
graphic correlation to many dimensions: stratigraphic
correlation as constrained optimization, In: Mann K.O.,
Lane H.R., editors. Graphic correlation. Tulsa (OK):
SEPM (SEPM Special Publication No. 53). p. 65–82.
Kovach W.L., Batten D.J. 1994. Association of palynomorphs and palynodebris with depositional environments: quatitative approaches, In: Traverse A.,
editor. Sedimentation of organic matter. Cambridge:
Cambridge University Press. p. 391–408.
Kuhry P., Helmens K.F. 1990. Neogene–Quaternary biostratigraphy and paleoenvironments. Dissertationes Botanicae, 163: 89–132. J. Cramer, Stuttgart. (Also published
as El Cuaternario de Colombia [The Quaternay of
Colombia] 17).
Legendre P., Legendre L. 1998. Numerical ecology. Amsterdam: Elsevier. 853 p.
Leidelmeyer P. 1966. The Paleogene and Lower Eocene
pollen flora of Guyana. Leidse Geologische Mededelingen,
38: 49–70.
Linares O. 2004. Bioestratigrafı́a de las faunas de mamı́feros
de las formaciones Socorro, Urumaco y Codore (Mioceno Medio-Plioceno Temprano, de la región de Urumaco, Falcon, Venezuela). Paleobiologı´a Neotropical, 1:
1–26.
Lorente M. 1986. Palynology and palynofacies of the Upper
Tertiary in Venezuela. Berlin: J. Cramer. 222 p.
Mann K.O., Lane H.R. 1995. Graphic correlation: a powerful stratigraphic technique comes of age. In: Mann K.O.,
Lane H.R., editors. Graphic correlation. Tulsa (OK):
SEPM (SEPM Special Publication No. 53). p. 3–13.
McNeill J., Barrie F.R., Burdet H.M., Demoulin V.Hawksworth D.L.. Marhold K. Nicolson D.H., Prado J. Silva
P.C. Skog J.E., Wiersema J.H. 2006. International Code
of Botanical Nomenclature (Vienna Code) 2006. Ruggell,
Liechtenstein: A.R.G. Gantner Verlag KG. 568 p.
Moore P.D., Webb J.A., Collinson M.E. 1991. Pollen
analysis. London: Blackwell Scientific Publications.
216 p.
Muller J., Di Giacomo E., Van Erve A. 1987. A palynologic
zonation for the Cretaceous, Tertiary and Quaternary of
Northern South America. American Association of
Stratigraphic Palynologists Contribution Series, 19: 7–76.
Porta J.d., Sole de Porta N. 1962. Discusión sobre las edades
de las formaciones Hoyón, Gualanday y la Cira en la
región de Honda-San Juan de Rio Seco. Boletı´n de
Geologı´a UIS, 9: 69–85.
R-Development-Core-Team. 2005, R: a language and
environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing.
Regali M., Uesugui N., Santos A. 1974. Palinologia dos
sedimentos Meso-Cenozoicos do Brasil. Boletim Tecnico
da Petrobras, 17: 177–191.
83
Renz H.H. 1948. Stratigraphy and Fauna of the Agua Salada
Group, State of Falcón, Venezuela. Boulder (CO):
Geologic Society of America. p. 1–219.
Reyo O. 1990, Análisis comparativo y correlación de las
formaciones Codore y La Vela, estado Falcón [M.Sc.
thesis]. [Caracas]: Universidad Central de Venezuela.
Sadler P.M. 2003. Constrained optimization approaches to the
paleobiologic correlation and seriation problems: a user’s
guide and reference manual to the CONOP program family,
Version 6.5. Riverside: University of California.
Sanchez-Villagra M., Aguilera O. 2006. Neogene vertebrates
from Urumaco, Falcon State, Venezuela: diversity and
significance, Journal of Systematic Palaeontology, 4: 213–
220.
Sánchez-Villagra M.R. 2006. Vertebrate fossils from the
Neogene of Falcon State, Venezuela: contributions on
Neotropical Palaeontology. Journal of Systematic Palaeontology, 4: 211.
Shaw A.B. 1964. Time in stratigraphy. New York: McGrawHill. 365 p.
Traverse A. 2007. Paleopalynology. 2nd ed. Dordrecht:
Springer. 813 p.
Van der Hammen T. 1954. The development of Colombian
flora throughout geologic periods: I, Maestrichtian to
Lower Tertiary. Boletı´n Geológico (Bogotá), 2: 49–106.
Van der Hammen T. 1956a. Description of some genera and
species of fossil pollen and spores. Boletı´n Geológico
(Bogotá), 4: 103–109.
Van der Hammen T. 1956b. A palynological systematic
nomenclature. Boletı´n Geológico (Bogotá), 4: 63–101.
Van der Hammen T. 1957a. Climatic periodicity and
evolution of South American Maestrichtian and Tertiary
Floras: a study based on pollen analysis in Colombia.
Boletı´n Geológico (Bogotá), 5: 49–91.
Van der Hammen T. 1957b. Palynologic stratigraphy of the
Sabana de Bogota (East Cordillera of Colombia). Boletı´n
Geológico (Bogotá), 5: 187–203.
Van der Hammen T. 1958. Estratigrafı́a del Terciario y
Maestrichtiano continentales y Tectonogénesis de los Andes
Colombianos. Boletı´n Geológico (Bogotá), 6: 67–128.
Van der Hammen T., Burger D. 1966. Pollen flora and age of
the Takutu formation (Guyana). Leidse Geologische
Mededelingen, 35: 173–180.
Van der Hammen T., Garcı́a C. 1966. The Paleocene pollen
flora of Colombia. Leidse Geologische Mededelingen, 35:
105–114.
Van der Hammen T., Werner J., Dommelen H. 1973.
Palynologic record of the upheaval of the northern
Andes: A study of the Pliocene and Lower Quaternary of
the Colombian Eastern Cordillera and the early evolution of its high-Andean biota. Review of Palaeobotany
and Palynology, 16: 1–122.
Van der Hammen T., Wymstra T.A. 1964. A palynological
study on the Tertiary and Upper Cretaceous of British
Guayana. Leidse Geologische Mededelingen, 30: 183–241.
Wijninga V.M. 1996. Paleobotany and palynology of
Neogene sediments from the High Plain of Bogota
(Colombia), Evolution of the Andean flora from a
paleoecological perspective. Amsterdam: Ponsen and
Looijen BV. 370 p.
Wozniak J., Wozniak M.H. 1987. Bioestratigrafı́a de la región
nor-central de la Serranı́a de Falcón, Venezuela noroccidental. Boletin de Geologı´a, Venezuela, 16: 101–139.
Zachos J., Pagani M.H., Sloan L., Thomas E., Billups K.
2001. Trends, rhythms, and aberrations in global climate
65 Ma to present. Science, 292: 686–693.
84
C.A. Jaramillo et al.
Appendix 1.
This appendix lists the supplementary material available at http://dx.doi.org/10.1080/01916122.2010.515069.
.
.
.
.
.
Downloaded By: [Smithsonian Institution Libraries] At: 14:37 30 May 2011
.
.
.
.
Supplementary Annex S1. R code for importing CONOP data
Supplementary Annex S2. Graphic correlation session used by GraphCor
Supplementary Annex S3. Constrained optimization session used by CONOP
Supplementary Annex S4. Carbon isotope data for 10 sections
Supplementary Figure S1. Comparison of our previous zonations (Jaramillo and Rueda 2004; Jaramillo et al. 2005, 2009)
with the zonations proposed in this article
Supplementary Table S1. List of all the species and synonymies used in this study
Supplementary Table S2. Sequence of events in alphabetic order
Supplementary Table S3. R code used for the time calibration of the sequence of events
Supplementary Table S4. Lines of Correlation for every section used in the study. Each pair of points corresponds to the
endpoints of a segment of the Line of Correlation. The first column corresponds to the individual section, and the second
column corresponds to the composite section