9 – 2A Polar Graphs ⎛ 3π ⎞ Example 1 Graph 2 , ⎝ 4⎠ 1. Place a radius 2 long on the x axis at 0 radians 2. Rotate the radius 3π radians. 4 3π 4 DO NOT include the radius in the graph. 13π 12 π 0 23π 12 7π 6 11π 6 5π 4 3. Place a point at the terminal end of the radius. DO NOT include the radius in the graph. 4. This is the graph of the ⎛ −2π ⎞ point 3, ⎝ 3 ⎠ 9 – 2A Polar Graphs 7π 4 4π 17π 3 12 19π 12 3π 2 5π 3 ⎛ 4π ⎞ Graph 3 , ⎝ 3⎠ 1. Place a radius 3 long on the x axis at 0 radians . π 4 π /6 Example 2 −2π radians 3 −2π −8π radians equals 3 12 π 3 π 12 11π 12 2. Rotate the radius 5π 12 5π 6 3. Place a point at the terminal 3π end of the radius at 4 4. This is the graph of the ⎛ 3π ⎞ point 2, ⎝ 4⎠ 2π 3 π 2 7π 12 3π 4 2π 3 7π 12 π 2 5π 12 π 3 5π 6 π 4 π /6 π 12 11π 12 π 0 13π 12 23π 12 7π 6 11π 6 5π 4 7π 4 4π 17π 3 12 Page 1 of 9 3π 2 19π 12 5π 3 ©2013 Eitel 1. Place a radius 3 long on the x axis at π radians 5π 2. Rotate the radius radians 6 5π 10π . radians equals 6 12 3. Place a point at the terminal 11π end of the radius at 6 DO NOT include the radius in the graph. 5π ⎞ ⎛ Example 3 Graph −3 , ⎝ 6⎠ π 7π 2π 12 2 3π 3 4 5π 6 5π 12 π 3 π 4 π /6 π 12 11π 12 π 0 13π 12 23π 12 7π 6 11π 6 5π 4 4. This is the graph of the 5π ⎞ ⎛ point −3, ⎝ 6⎠ 7π 4 4π 17π 3 12 3π 2 19π 12 5π 3 5π ⎞ ⎛ ⎛ 11π ⎞ Note: The point −3 , is coterminal (lies at the same location) with the point 3 , ⎝ ⎝ 6⎠ 6 ⎠ 13π ⎞ ⎛ Example 4 Graph −2 , ⎝ 12 ⎠ 1. Place a radius 2 long on the x axis at π radians 2. Rotate the radius . 13π radians 12 3. Place a point at the terminal π end of the radius at 12 DO NOT include the radius in the graph. 4. This is the graph of the ⎛ 13π ⎞ point −2 , ⎝ 12 ⎠ 3π 4 2π 3 7π 12 π 2 5π 12 π 3 5π 6 π 4 π /6 π 12 11π 12 π 0 13π 12 23π 12 7π 6 11π 6 5π 4 7π 4 4π 17π 3 12 3π 2 19π 12 5π 3 13π ⎞ ⎛ ⎛ π⎞ Note: The point −2 , is coterminal (lies at the same location) with the point 2 , ⎝ ⎠ ⎝ 12 ⎠ 12 9 – 2A Polar Graphs Page 2 of 9 ©2013 Eitel ⎛ −5π ⎞ Example 5 Graph 2 , ⎝ 12 ⎠ 1. Place a radius 2 long on the x axis at 0 radians −5π 2. Rotate the radius radians 12 −5π 19π . radians equals 12 12 3. Place a point at the terminal 19π end of the radius at 12 DO NOT include the radius in the graph. 3π 4 2π 3 7π 12 π 2 5π 12 π 3 π 4 5π 6 π /6 π 12 11π 12 π 0 13π 12 23π 12 7π 6 11π 6 5π 4 4. This is the graph of the ⎛ −5π ⎞ point 2, ⎝ 12 ⎠ 7π 4 4π 17π 3 12 3π 2 19π 12 5π 3 ⎛ −5π ⎞ ⎛ 19π ⎞ Note: The point 2 , is coterminal (lies at the same location) with the point 2 , ⎝ 12 ⎠ ⎝ 12 ⎠ −5π ⎞ ⎛ Example 6 Graph −3 , ⎝ 6 ⎠ 1. Place a radius 3 long on the x axis at −π radians −5π 2. Rotate the radius radians 6 −5π −10π . radians equals 6 12 3. Place a point at the terminal π end of the radius at 6 DO NOT include the radius in the graph. 4. This is the graph of the ⎛ −5π ⎞ point −3, ⎝ 6 ⎠ 3π 4 2π 3 7π 12 π 2 5π 12 π 3 5π 6 π 4 π /6 π 12 11π 12 π 0 13π 12 23π 12 7π 6 11π 6 5π 4 7π 4 4π 17π 3 12 3π 2 19π 12 5π 3 −5π ⎞ ⎛ ⎛ π⎞ Note: The point −3 , is coterminal (lies at the same location) with the point 3 , ⎝ ⎠ ⎝ 6⎠ 6 9 – 2A Polar Graphs Page 3 of 9 ©2013 Eitel The point ( r , θ ) is coterminal with the points (r , θ + 2π k ) or (−r , θ + π + 2π k ) where k ∈ Z 3π 4 5π E 6 7π 12 2π 3 π 2 5π 12 π 3 C D π 4 π 6 11π 12 π 12 B π F 13π 12 7π 6 23π 12 L J G K 5π 4 0 A H 4π 3 I 17π 12 3π 2 19π 12 5π 3 7π 4 11π 6 FInd the polar coordinates for each point shown on the graph. Use both + r and – r. 1. A (4 , 0 ) or (−4 , π ) 2. B 7π ⎞ ⎛ π⎞ ⎛ 3, or −3 , ⎝ 6⎠ ⎝ 6 ⎠ 3. C 7π ⎞ ⎛ π⎞ ⎛ 4, or −4 , ⎝ ⎝ 3⎠ 3 ⎠ 4. D 19π ⎞ ⎛ 7π ⎞ ⎛ 3, or −3 , ⎝ 12 ⎠ ⎝ 12 ⎠ 5. E 7π ⎞ ⎛ 3π ⎞ ⎛ 4, or −4 , ⎝ ⎝ 4 ⎠ 4 ⎠ 6. F (2 , π ) or (−2 , 0 ) 7. G 13π ⎞ ⎛ 7π ⎞ ⎛ 4, or −4 , ⎝ ⎝ 6 ⎠ 6 ⎠ 8. H 10π ⎞ ⎛ 4π ⎞ ⎛ 3, or −3 , ⎝ ⎝ 3 ⎠ 3 ⎠ 9. I 2π ⎞ ⎛ 5π ⎞ ⎛ 10. J 1 , or −1 , ⎝ ⎠ ⎝ 3 3 ⎠ 9 – 2A Polar Graphs 11. K 3π ⎞ ⎛ 7π ⎞ ⎛ 3, or −3 , ⎝ ⎠ ⎝ 4 4 ⎠ Page 4 of 9 π⎞ ⎛ 3π ⎞ ⎛ 4, or −4 , ⎝ ⎝ 2 ⎠ 2⎠ 11π ⎞ ⎛ 23π ⎞ ⎛ 12. L 2 , or −2 , ⎝ ⎠ ⎝ 12 12 ⎠ ©2013 Eitel Example 1 Graph r = 3 cos( θ ) Use a calculator. Round off values to 1 decimal place. θ 0 π 12 π 6 π 4 π 3 5π 12 π 2 R 3 2.9 2.6 2.1 1.5 .8 0 θ π R –3 13π 12 7π 6 –2.9 –2.6 5π 6 7π 12 2π 3 – .8 –1.5 3π 4 5π 6 11π 12 –2.1 –2.6 5π 4 4π 3 17π 12 3π 2 19π 12 5π 3 7π 4 11π 6 23π 12 –2.1 –1.5 2.1 3π 4 2π 3 –.8 0 r = 3 cos( θ ) π 5π 7π 2 12 12 .8 π 3 1.5 2.6 2.9 π 4 π 6 11π 12 π 12 π 0 13π 12 7π 6 9 – 2A Polar Graphs –2.9 23π 12 5π 4 4π 3 17π 12 3π 2 19π 12 Page 5 of 9 5π 3 7π 4 11π 6 ©2013 Eitel Example 2 Graph r = 2 − 2sin( θ ) Use a calculator. Round off values to 1 decimal place. θ 0 π 12 π 6 π 4 π 3 5π 12 π 2 R 2 1.5 1.0 .59 .27 .07 0 θ π R 2 13π 12 7π 6 2.5 3 5π 6 5π 4 .07 3π 4 .27 .59 1.0 1.5 7π 4 11π 6 23π 12 3.7 3.4 2π 3 3.9 4 .3.9 r = 2 − 2sin( θ ) π 5π 7π 2 12 12 π 3 3.7 3 2.5 π 4 π 6 11π 12 π 12 π 0 13π 12 7π 6 9 – 2A Polar Graphs 5π 6 11π 12 4π 3 17π 12 3π 2 19π 12 5π 3 3.4 3π 4 7π 12 2π 3 23π 12 5π 4 4π 3 17π 12 3π 2 19π 12 Page 6 of 9 5π 3 7π 4 11π 6 ©2013 Eitel Example 3 Graph r2 = 16cos ( 2θ ) Use a calculator. Round off values to 1 decimal place. r2 = 16cos ( 2θ ) is equal to r = ± 4 cos ( 2θ ) Put 4 cos ( 2θ ) in the calculator and add the ± sign to the answer. cos ( 2θ ) is negative at π 3 so 4 cos ( 2θ ) is undefined. I listed the answer as UND. θ 0 π 12 π 6 R 4 ± 3.7 ± 2.8 θ π 13π 12 7π 6 R 4 ± 3.7 ± 2.8 π 4 π 3 5π 12 π 2 7π 12 2π 3 0 UND UND UND UND UND 5π 4 4π 3 17π 12 3π 2 19π 12 5π 3 0 UND UND 0 3π 4 5π 6 11π 12 0 ± 2.8 ± 3.7 7π 4 11π 6 23π 12 UND UND 0 ± 2.8 ± 3.7 (± 3.7,π /12) means graph 2 points on at (+ 3.7,π /12) which will be in the first quadrant and one at (− 3.7,π /12 ) which will be in the third quadrant 5π 6 3π 4 2π 3 r2 = 16 cos ( 2θ ) π 5π 7π 2 12 12 π 3 π 4 π 6 11π 12 π 12 π 0 13π 12 7π 6 9 – 2A Polar Graphs 23π 12 5π 4 4π 3 17π 12 3π 2 19π 12 Page 7 of 9 5π 3 7π 4 11π 6 ©2013 Eitel Circle r = 2cos(θ ) DImpled Lemacon r = 3 + 2sin(θ) Cardioid r = 2 + 2cos(θ) Lemacon with inner loop r = 2 + 3cos(θ) 3 petal Rose r = 2sin(3θ ) 8 petal Rose r = 2cos(4θ ) 9 – 2A Polar Graphs Page 8 of 9 ©2013 Eitel Lemniscate r2 = 4 sin(2θ) 9 – 2A Polar Graphs Page 9 of 9 ©2013 Eitel
© Copyright 2026 Paperzz