BCCalculusFinal‘16-‘17 PartIA NoCalculatorAllowed 1. If f ( x ) = sin ln ( 2x ) ,then f ′ ( x ) = a) ( ( ) sin ln ( 2x ) 2x 1⎞ ⎝ 2x ⎟⎠ ) b) ( cos ln ( 2x ) x ) c) ( − cos ln ( 2x ) ( cos ln ( 2x ) 2x ) d) cos ⎛⎜ e) 2. If sin −1 x = ln y ,then (c) y 1+ x 2 (d) y 1− x 2 (a) e (e) esin x 1+ x 2 dy = dx xy 1− x 2 (b) x ) sin−1 x −1 3. Whichofthefollowingstatementsarefalse? I. ⌠ ⎮ ⎮ ⌡ (( II. ⌠ ⎮ ⌡ (x III. ∫ csc x dx = ln csc x + cot x + c a) I only x3 + x 5 ) 4 ) x 4 + 2x 2 − 5 dx = ( 1 4 x + 2x 2 − 5 5 ) 5 4 +c ) 1 sin x 6 dx = − cos x 6 + c 6 b) d) I and II only II only e) III only II and III only 0 4 x f ( x) c) 25 6 30 8 50 12 4. Letfbeadifferentiablefunctionwhichhasvaluesshownonthetable above.Usingthesub-intervalsdefinedbythetablevaluesandusingright handRiemannsums, ∫0 f ( x ) dx ≈ 50 a) b) c) d) e) 290 360 380 390 430 5. ThefunctionfisdefinedforallRealnumberssuchthat ⎧ x 2 − 7x +10 for x ≠ 2 ⎪ . f x = ⎨ b x−2 ⎪ ⎩ b for x = 2 ( () ) Forwhichvalueofbwillthefunctionbecontinuousthroughoutitsdomain? (a) −3 (b) (d) 5 (e) Noneofthese 2 (c) 3 6. a) ∫e x b) e x sin e x +1 + c c) e x sin e x + x + c cos ( ex +1) dx sin ( ex +1) + c ( ) ( ) d) 1 cos2 ( ex +1) + c 2 (e) Noneofthese 7. Shownaboveistheslopefieldforwhichofthefollowingdifferential equations? dy dy dy a) b) c) = xy − x = xy + x = y − x2 dx dx dx dy dy 3 d) (e) = ( y −1) x 2 = ( y −1) dx dx 8. ThreegraphslabeledI,II,andIIIareshownabove.Oneisthegraphof f ( x ) ,oneisthegraphof f ′ ( x ) ,andoneisthegraphof f ″ ( x ) .Whichofthe followingcorrectlyidentitieseachofthethreegraphs? f ( x ) = I , f ′ ( x ) = II , f ″ ( x ) = III a) f ( x ) = II , f ′ ( x ) = I , f ″ ( x ) = III f ( x ) = II , f ′ ( x ) = III , f ″ ( x ) = I b) c) f ( x ) = III , f ′ ( x ) = I , f ″ ( x ) = II f ( x ) = III , f ′ ( x ) = II , f ″ ( x ) = I d) e) 9. Onwhichofthefollowingintervalisthegraphofthecurve y = 2x 3 − 3x 2 − 12x + 15 bothdecreasingANDconcaveup? 1⎞ ⎛ a) b) c) ( −∞, −1) ( −1, 2 ) ⎜⎝ −1, − ⎟⎠ 2 ⎛1 ⎞ d) (e) ( 2, ∞ ) ⎜⎝ , 2 ⎟⎠ 2 10. Whichofthefollowingisthesolutiontothedifferentialequation dy ⎛π⎞ = ysec2 x withtheinitialcondition y ⎜ ⎟ = −1 ? ⎝ 4⎠ dx a) y = −etan x d) b) y = −e( y = − 2 tan x −1 −1+tan x ) y = −e( c) e) y = e( −1+tan x ) ) sec 3 x−2 2 3 11. 3( −2) The sum of the infinite series ∑ 5n n=3 a) 5 b) ∞ 15 7 16 75 c) n+1 is 48 175 d) e) dne ⎧ x if x < 2 4 ⎪ 12. If f ( x ) isdefinedby f ( x ) = ⎨ ,then ∫−1 f ( x ) dx = ⎪⎩ 3 if 2 ≤ x a) 9 2 b) 13 2 c) 15 d) 2 17 e) 2 dne 7x − sin x x 2 + sin ( 3x ) 13. lim x→0 a) 6 14. Let f and g be continuous functions such that b) 2 c) 1 d) 0 e) dne ∫0 f ( x ) dx = 9 , 6 ∫3 f ( x ) dx = 5 , and ∫3 g ( x ) dx = −7 . What is the value of 6 0 3 ⌠ ⎛1 ⎞ ⎮ ⎜⎝ 2 f ( x ) − 3g ( x )⎟⎠ dx = ⌡0 a) −23 b) −19 c) − 17 2 d) 19 e) 23 15. Thegraphsofthefunctionsfandgareshownabove.Thevalueof lim f g ( x ) is x→1 ( a) 0 ) b) 1 c) 2 d) 3 e) dne 16. Statethestepthathasthefirstmistakeinthisprocess: Step1: Step2: Step3: Step4: Step5: a. b. c. d. e. ∫ sec 4 2x tan 3 2x dx = 1 sec2 2x tan 3 2x sec2 2x 2dx = ∫ 2 1⌠ 1− u 2 ) u 3du = ( ⌡ 2 1⌠ 3 5 (u − u ) du = 2⌡ 1⎛ 1 4 1 6 ⎞ u − u + c⎟ = ⎠ 2 ⎜⎝ 4 6 1 4 1 tan 2x − tan 6 2x + c 8 12 Step1 Step2 Step3 Step4 Thereisnomistake. 17. A particle moves along a straight line so that, at time t > 0, the position of the particle is given by s(t), the velocity is given by v(t), and the acceleration is given by a(t). Which of the following expressions gives the average velocity of the particle on the interval [2, 8] ? a) 1 8 a (t ) dt 6 ∫2 d) b) v(8) − v(2) 6 1 8 s (t ) dt 6 ∫2 e) c) s (8) − s (2) 6 v(8) − v(2) 18. Attimet,apopulationofbacteriagrowsattherateof 5e0.2t + 4t grams perday,wheretismeasuredindays.Byhowmanygramshasthepopulation grownfromtime t = 0 daysto t = 10 days? 5e2 + 40 5e2 +195 25e2 + 40 a) b) c) 25e2 +195 25e2 +175 d) e) 19. Thefunctionfisdifferentiableandincreasingforallrealnumbersx,and thegraphoffhasexactlyonepointofinflection.Ofthefollowing,whichcould bethegraphof f ′ ( x ) ,thederivativeoff? 20. Functions w, x, and y are differentiable with respect to time and are related by the equation w = x2y. If x is decreasing at a constant rate of 1 unit per minute and y is increasing at a constant rate of 4 units per minute, at what rate is w changing with respect to time when x = 6 and y = 20? a) −384 b) −240 d) 276 e) 384 c) −96 x f ( x) f ′( x) 0 2 4 8 3 4 9 13 0 1 1 2 21. Thetableabovegivesvaluesofadifferentiablefunctionfandits derivativeatselectedvaluesofx.If h ( x ) = f ( 2x ) ,whichofthefollowing statementsmustbetrue? I. hisincreasingon 2 < x < 4 II. Thereexistsc,where 0 < x < 4 ,suchthat h ( c ) = 12 III. Thereexistsc,where 0 < x < 2 ,suchthat h′ ( c ) = 3 a) Ionly b) IIonly c) IandIIIonly d) IIandIIIonly e) I,II,andIII 22. Fortime t ≥ 0 ,thevelocityofaparticlemovingalongthex-axisisgiven 2 by v (t ) = (t − 5 )(t − 2 ) .Atwhatvaluesoftistheaccelerationoftheparticle equalto0? a) 2only d) 2and4only b) 4only e) 2and5only c) 5only 23. Thegraphofthefunctionfisshowninthefigureabove.Forhowmany valuesofxintheopeninterval ( −4, 4 ) isfdiscontinuous? a) One b) Two c) Three d)Four e)Five 24. a) Whichofthefollowingseriesconvergeabsolutely? ∞ ∑ ( −1) n+1 n=1 1 2n b) ∞ ∑ ( −1) n+1 n=1 1 n c) ∞ ( −1) ∑ n=1 n+1 n n +1 e) Noneofthese d) ( −1) ∑ n=1 lim a) 0 x→2 x2 − 4 x ∫2 cos (π t ) dt = n 1⎞ ⎜⎝ ⎟⎠ 2 25. ∞ n+1 ⎛ b) 1 c) 2 d) 4 e) DNE BCCalculusFinal‘16-‘17 PartIB CalculatorAllowed 1. Thefigureaboveshowsthegraphof f ′ ( x ) ,thederivativeoffunctionf, for-6<x<8.Ofthefollowing,whichbestdescribesthegraphoffonthesame interval? a) 1relativeminimum,1relativemaximum,and3pointsofinflection b) 1relativeminimum,1relativemaximum,and4pointsofinflection c) 2relativeminima,1relativemaximum,and2pointsofinflection d) 2relativeminima,1relativemaximum,and4pointsofinflection e) 2relativeminima,2relativemaxima,and3pointsofinflection 2. Thecost,indollars,toshredtheconfidentialdocumentsofacompanyis modeledbyC,adifferentiablefunctionoftheweightofdocumentsinpounds. Ofthefollowing,whichisthebestinterpretationofCʹ(500)=80? a) Thecosttoshred500poundsofdocumentsis$80. 80 b) Theaveragecosttoshreddocumentsis dollarperpound. 500 c) Increasingtheweightofdocumentsby500poundswillincreasethe costtoshredthedocumentsbyapproximately$80. d) Thecosttoshreddocumentsisincreasingatarateof$80perpound whentheweightofthedocumentsis500pounds. e) Noneofthese x 3. Thederivativeofthefunctionfisgivenby f ′ ( x ) = − + cos x 2 .Atwhat 3 valuesofxdoesfhavearelativeminimumontheinterval 0 < x < 3 ? 2.372 a) b) 1.798 c) 1.094 and 2.608 2.493 d) e) 1.798 and 2.372 ( ) 4. Whichofthefollowingseriescannotbeshowntoconvergeusingthe ∞ 1 limitcomparisontestwiththeseries ∑ 2 ? n=1 n a) ∞ 4 ∑ 2 n=1 3n − n d) b) ∞ ⎛ lnn ⎞ ∑ ⎜ 2 ⎟ n=1 ⎝ n ⎠ ∞ ∑ n=1 15 n4 + 5 e) c) ∞ sin ⎛⎜ 2 ⎞⎟ ∑ ⎝n ⎠ n=1 1 Noneofthese 5. Lethbethefunctiondefinedby h ( x ) = ofhand g ( 2 ) = 3 ,whatisthevalueof g ( 4 ) ? −0.020 0.152 a) b) 3.152 d) e) 1 x +1 5 c) . Ifgisanantiderivative 3.031 4.798 6. Aparticle moves along the x-axis so that its velocity at time t ≥ 0 is t 2 −1 given by v (t ) = 2 . What is the total distance traveled by the particle from t +1 t = 0 to t = 2 ? a) 0.214 0.927 d) b) 0.320 1.600 e) c) 0.600 2 ⎛ 1 ⎞ istheanti-derivativeof f ( x ) ,then ∫1 f ( x ) dx = 2 ⎟ ⎝ x +1⎠ 7. If sin ⎜ a) −0.281 b) −0.102 c) 0.102 d) 0.260 e) 0.282 8. Thetemperature,indegreesFahrenheit,ofwaterinapondismodeled ⎛ 2π ⎞ bythefunction H (t ) = 55 − 9cos ⎜ t +10 )⎟ ,wheretisthenumberofdays ( ⎝ 365 ⎠ sinceJanuary1(t=0).Whatistheinstantaneousrateofchangeofthe temperatureofthewaterattimet=90days? a) 0.114°F / day b) 0.153°F / day c) 50.252°F / day d) 56.350°F / day 2π e) °F / day 365 x0 = 0 x1 = 2 x2 = 4 f ( x0 ) = 2 f ( x1 ) ≈ 6 f ( x2 ) ≈10 dy Ax 2 + 4 9. Considerthedifferentialequation = ,whereAisaconstant. dx y Let y = f ( x ) betheparticularsolutiontothedifferentialequationwiththe initialcondition f ( 0 ) = 2 .Euler’smethod,startingat x = 0 withastepsizeof 2,isusedtoapproximate f ( 4 ) .Stepsfromthisapproximationareshownin thetableabove.WhatisthevalueofA? a) 1 2 b) 2 c) 5 d) 13 2 e) ThevalueofAcannotbedetermined 2 10. Thesecondderivativeofafunctiongisgivenby g″ ( x ) = 2 − x + cos x + x . For −5 < x < 5, onwhatopenintervalsisthegraphofgconcaveup? a) −5 < x < −1.606 only b) −1.606< x < 5only c) 0.463 < x < 2.100 only d) −5 < x < 0.463 and 2.100 < x < 5 e) −5 < x < −1.606 and 0.463 < x < 2.100 x 1 3 5 f ( x) 2.4 3.6 5.4 11. Thetableabovegivesselectedvaluesofafunctionf.Thefunctionis twicedifferentiablewith f ″ ( x ) > 0. Whichofthefollowingcouldbethevalue of f ′ ( 3) ? 0.6 b) 0.7 c) 0.9 d) 1.2 e) 1.5 a) ( 3x + 8 )( 5 − 4x ) . f x hasa 12. Letfbeafunctionsuchthat f ( x ) = ( ) 2 ( 2x +1) horizontalasymptoteat y = −6 a) y = −3 b) c) d) y = 0 e) 1 y=− 2 3 y= 2 Line l is tangent to the graph of y = ex at the point (k, ek ). What is the 1 positive value of k for which the y-intercept of l is ? 2 13. a) 14. 0.405 1.560 d) b) 0.768 c) 1.500 e) Thereisnovalueofk Thefunctionfiscontinuousandtwicedifferentiable.If f ′ ( x ) < 0 and f "( x ) < 0 forallvaluesofx,whichofthefollowingcouldbeatableofvalues for f ( x ) ? A x 1 2 3 4 f ( x ) B x f ( x ) 1 −3 −3 −4 2 −1 −6 3 3 −9 4 19 C x f ( x ) 1 −3 2 0 3 3 4 6 D x 1 2 3 4 f ( x) −3 5 11 13 E x 1 2 3 4 f ( x) −3 −4 −3 0 15. The regions A, B, and C in the figure above are bounded by the graph of the function f and the x-axis. The area of region A is 14, the area of region B is 16, and the area of region C is 50. What is the average value of f on the interval [0, 8] ? a) 6 b) 10 c) 40 d) 3 80 e) 3 48
© Copyright 2026 Paperzz