ID : gb-10-Trigonometry [1] Grade 10 Trigonometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) (2) (3) Simplif y . Simplif y An equilateral triangle is inscribed in a circle of radius 8 cm. Find the length of triangle's side. (4) From a tower on a straight road, the angles of depression of two cars at an instant are 30° and 45°. If the cars are 10 m apart, f ind the height of the tower. Choose correct answer(s) f rom given choice (5) (cosθ + secθ)2 + (sinθ + cosecθ)2 = ? a. 7 + tan2θ - cot 2θ b. 7 + tan2θ + cot 2θ c. 7 + cot 2θ - tan2θ d. 6 + cot 2θ - tan2θ (6) (1 + cotθ - cosecθ) (1 + tanθ + secθ) = ? a. 0 b. -2 c. 1 d. 2 (7) If cos 5A = sin A and 5A < 90°, f ind value of tan 4A. a. b. c. d. (8) Simplif y sin4x - cos 4x + 1 sin2x a. 1 b. -1 c. 2 d. 3 (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [2] (9) =? a. 1 - sinθ cosθ b. tanθ + cotθ c. 1 d. 2 (10) cosec4θ - cosec2θ a. cot 2θ + cot 4θ b. tan2θ + cot 4θ c. cot 2θ - cot 4θ d. cot 2θ + tan4θ (11) Simplif y a. 0 b. 2 secθ c. 2 tanθ d. 1/secθ (12) AD = cm, DC = cm and DB = cm. Find the value of angle ∠ACB. a. 110° b. 100° c. 95° d. 105° (13) If cos x = and sin y = (0° < x < 90° and 0° < y < 90°), f ind value of tan 4(y-x). a. b. c. d. (14) Simplif y a. 1 + sinθ cosθ b. tanθ + cotθ c. cos 2θ - sin2θ d. 1 - sinθ cosθ (15) If cos(X+Y) = 0, sin(X-Y) = ? a. cos Y b. sin X c. cos 2Y d. sin 2X © 2016 Edugain (www.edugain.com). All Rights Reserved (C) 2016 Edugain (www.Edugain.com) Many more such worksheets can be generated at www.edugain.com Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [3] Answers (1) 2cosec θ S= ⇒S= ⇒S= ⇒S= ⇒ S = 2cosec θ (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [4] (2) sin2x cos 2x Step 1 (1 + cotx + tanx)(sinx - cosx) We have been asked to simplif y the sec3x - cosec3x . Step 2 (1 + (1 + cotx + tanx)(sinx - cosx) = sec3x - cosec3x cosx + sinx sinx )(sinx - cosx) cosx ) (secx - cosecx)(sec2x + secx × cosecx + cosec2x) [Since, a3 - b3 = (a - b)(a2 + ab + b2] ( sinx cosx + cos 2x + sin2x )(sinx - cosx) sinx cosx = ( 1 1 - cosx )( sinx 1 cosecx = 1 cos 2x [Since, secx = 1 + sinx cosx + 1 cos 2x 1 and cosx ) ] sinx ( 1 + sinx cosx )(sinx - cosx) sinx cosx = (sinx - cosx)(sin2x + sinx cosx + cos 2x) (sinx cosx)(sin2x cos 2x) = (1 + sinx cosx)(sinx - cosx)(sin3x cos 3x) (sinx cosx)(sinx - cosx)(1 + sinx cosx) = sin2x cos 2x Step 3 T heref ore, (1 + cotx + tanx)(sinx - cosx) sec3x - cosec3x (C) 2016 Edugain (www.Edugain.com) is equal to the sin 2x cos2x. Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [5] (3) 8√3 cm Step 1 T riangle ABC is inscribed in a circle. Lets O be the center of circle. Step 2 Now connect all vertices of the triangle to O, and draw a perpendicular f rom O to side BC of triangle at point D. Step 3 OB and OC are bisectors of ∠B and ∠C respectively, hence ∠OBD = 30° Step 4 Since ∠ ODB is right angle BD/OB = cos 30° = √3/2 Step 5 BD = OB × (√3/2) = 8 × (√3/2) = 4√3 Step 6 BC = 2 BD = 2(4√3) = 8√3 cm (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [6] (4) 5(1 + √3) m Step 1 Following f igure shows the tower and the cars, Let's assume the height of the tower(AB) be 'y' and the distance between the tower and the f arther car i.e BC be 'x'. According to the question, the distance between the cars is 10 m, theref ore, BD = (x - 10) m Step 2 In right angled triangle ABD, AB = tan45° BD y ⇒ =1 x - 10 ⇒ y = x - 10 -----(1) Step 3 In right angled triangle ABC, AB = tan30° BC ⇒ y = x 1 √3 ⇒ √3(y) = x -----(2) Step 4 By putting the value of 'x' f rom equation (2) to equation (1), we get: y = 5(1 + √3) Step 5 T hus, the height of the tower is 5(1 + √3) m. (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [7] (5) b. 7 + tan2θ + cot 2θ Step 1 Let's expand using the algebraic identity (a + b)2 = a2 + b2 + 2ab (cosθ + secθ)2 + (sinθ + cosecθ)2, = (cosθ)2 + (secθ)2 + 2 cosθ secθ + (sinθ)2 + (cosecθ)2 + 2 sinθ cosecθ = sin2θ + cos 2θ + sec2θ + cosec2θ + 2 + 2 Step 2 Now using trigonometrical identities sin2θ + cos 2θ =1 = 5 + sec2θ + cosec2θ Step 3 Now let's use trigonometrical identities sec2θ = 1 + tan2θ and cosec2θ = 1 + tan2θ = 5 + 1 + tan2θ + 1 + cot 2θ = 7 + tan2θ + 1 + tan2θ (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [8] (6) d. 2 Step 1 We need to f ind f ollowing product S = (1 + cotθ - cosecθ) (1 + tanθ + secθ) Step 2 On multiplying each terms ⇒ S = 1 (1 + tanθ + secθ) + cotθ (1 + tanθ + secθ) - cosecθ (1 + tanθ + secθ) ⇒ S = (1 + tanθ + secθ) + (cotθ + cotθ tanθ + cotθ secθ ) - (cosecθ + cosecθ tanθ + cosecθ secθ) Step 3 Using identities cotθ tanθ = 1, cotθ secθ = cosecθ and cosecθ tanθ = secθ ⇒ S = (1 + tanθ + secθ) + (cotθ + 1 + cosecθ ) - (cosecθ + secθ + cosecθ secθ) Step 4 Now positive cosecθ and secθ will cancel each other ⇒ S = (1 + tanθ + secθ) + (cotθ + 1 + cosecθ ) - (cosecθ + secθ + cosecθ secθ) ⇒ S = 2 + tanθ + cotθ - cosecθ secθ Step 5 Using identities tanθ = sinθ/cosθ, and cotθ = cosθ/sinθ ⇒S= 2+ sinθ + cosθ ⇒S= 2+ cosθ - cosecθ secθ sinθ sin2θ + cos 2θ - cosecθ secθ sinθcosθ ⇒S= 2+ 1 - cosecθ secθ sinθcosθ ⇒ S = 2 + cosecθ secθ - cosecθ secθ ⇒S= 2 (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [9] (7) c. Step 1 It is given that, cos 5A = sin A .......... Eq.(1) Step 2 We know that sin(90°-θ ) = cos(θ ) T heref ore (1) can be re-written as f ollowing, sin(90°-5A) = sin A .......... Eq.(2) Step 3 On comparing two sides of (2), we get ⇒ 90°-5A = A ⇒ 90° = (1 + 5) A ⇒ A = 90°/6 ⇒ A = 15° Step 4 Now replace the value of A in tan 4A, ⇒ tan 4A = tan(4 × 15) ⇒ tan 4A = tan(60°) ⇒ tan 4A = (8) c. 2 Step 1 Lets f irst simplif y sin4x - cos 4x + 1 S = sin4x - cos 4x + 1 ⇒ S = sin4x - (cos 2x)2 + 1 ⇒ S = sin4x - (1 - sin2x)2 + 1 ........................ [Using identity cos 2θ = 1 sin2θ] ⇒ S = sin4x - (1 + sin4x - 2 sin2x) + 1 ........... [Using identity (a - b)2 = a2 + b2 - 2ab] ⇒ S = sin4x - 1 - sin4x + 2 sin2x + 1 ⇒ S = sin4x - 1 - sin4x + 2 sin2x) + 1 ⇒ S = 2 sin2x Step 2 T heref ore sin4x - cos 4x + 1 = sin2x (C) 2016 Edugain (www.Edugain.com) 2 sin2x =2 sin2x Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [10] (9) d. 2 Step 1 Since sin(90°-θ ) = cos θ and cos(90°-θ ) = sin θ , expression can be rewritten as f ollowing = cos 240° + sin240° + cosθ sinθ sin240° + cos 240° tanθ + sinθ cosθ cotθ Step 2 = 1 + cos 2θ + sin2θ Step 3 =1+1=2 (10) a. cot 2θ + cot 4θ Step 1 Let, S = cosec4θ - cosec2θ Step 2 Lets take cosec2θ common f rom both terms, ⇒ S = cosec2θ (cosec2θ -1) Step 3 Using trigonometrical identity cosec2θ = 1 + cot 2θ ⇒ S = (1 + cot 2θ) cot 2θ ⇒ S = cot 2θ + cot 4θ (11) b. 2 secθ Step 1 = Step 2 = Step 3 = (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [11] (12) d. 105° Step 1 tan A = DC/AD Step 2 tan A = 1/√3 Step 3 A = 30° Step 4 Similarly tan B = DC/DB Step 5 tan B = 1 Step 6 B = 45° Step 7 ∠ACB = 180° - (∠CAB + ∠ABC) = 180° - (30° + 45°) = 105° (13) c. Step 1 We know that cos(30°) = , and sin(45°) = Step 2 On comparing we get, x = 30° y = 45° Step 3 On substituting values of x and y tan 4(y-x) = tan (4(45° - 30°)) ⇒ tan 4(y-x) = tan (60°) ⇒ tan 4(y-x) = (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : gb-10-Trigonometry [12] (14) a. 1 + sinθ cosθ Step 1 Multiply numerator and denominator of f irst term by cosθ = Step 2 Since x3 - y3 = ( x + y ) ( x2 + x2 + xy) = Step 3 Now (cosθ - sinθ) cancels out and since sin2θ + cos 2θ = 1 = (15) c. cos 2Y Step 1 We are given that cos(X + Y) = 1, but we already know that cos 90° = 0 Step 2 T his means, X + Y = 90° => X = 90° - Y ........(1) Step 3 Now replace value of X f rom eq. (1) in sin(X-Y) : sin(X-Y) = sin(90° - Y - Y) = sin(90° - 2Y) = cos(2Y) ......... [ Here we have applied the identity sin(90° - θ ) = cos(θ ) ] (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited
© Copyright 2026 Paperzz