Mapping Urban Forest Productivity and Growth Rate by Remote Sensing Imagery Huan Gu and Phil Townsend [email protected], [email protected] 1 Urban Forest They provide “ecosystem services” water runoff mitigation shade absorb CO2 increase property values They’re pretty http://www.sustainablecities.net provide recreation areas people get attached to them http://www.thedailypage.com/isthmus/archive.php http://www.deseretnews.com/article/1,5143,705286478,00.html LIDAR Forest Structure : “Biomass” Forest Biochemistry : “Health” Hyper-spectral Imagery Study Area Study Data LIDAR data in 2005 and 2009 -acquired by Dane County and municipalities AVIRIS imagery in 2009, 2010 and 2011 -hyperspectral images from NASA MASTER imagery in 2010 -thermal images from NASA NAIP imagery in 2008 -color infrared air photos from USDA Street tree inventory -from municipalities ~100,000 trees LIDAR last return 1st return LIDAR sensor 1st and last return 1st return – last return = vegetation height http://forsys.cfr.washington.edu/JFSP06/lidar_technology.htm LIDAR Grid with specified size Lidar points Lidar points are each a few feet apart – so we calculate statistics on the points within a given GRID CELL, for example, a 10 ft X 10 ft cell might have 16 Lidar measurements. LIDAR Statistics of Forest Structure 10% quantile 70% quantile 80% quantile 90% quantile 95% quantile Maximum height Mean height Standard deviation Coefficient of Variance Skewness Kurtosis Lidar Statistical Indices Highest tree Mean tree height Crown base height Crown length Basal area Mean stem diameter Stand stem density Aboveground biomass Branch biomass Foliage biomass Tree Structure Indices Aboveground Biomass (mg/ha) Water No Forest 0 - 50 50 - 100 100 - 150 150 - 200 > 200 Mean Stem Diameter (in) Water No Forest 0-5 5 - 10 10 - 15 15 - 20 20 - 25 Mean Tree Height (ft) Water No Forest 0-5 5 - 15 15 - 50 50 - 75 > 75 Aboveground Biomass (mg/ha) Water No Forest 0 - 50 50 - 100 100 - 150 150 - 200 > 200 Mean Stem Diameter (in) Water No Forest 0-5 5 - 10 10 - 15 15 - 20 20 - 25 Mean Tree Height (ft) Water No Forest 0-5 5 - 15 15 - 50 50 - 75 > 75 Aboveground Biomass (mg/ha) Water No Forest < -20 -20 - 0 0 - 20 > 20 Mean Stem Diameter (in) Water No Forest < -6 -6 - 0 0-6 >6 Mean Tree Height (ft) Water No Forest < -6 -6 - 0 0-6 >6 Aboveground Biomass (mg/ha) Water No Forest 0 - 50 50 - 100 100 - 150 150 - 200 > 200 Mean Stem Diameter (in) Water No Forest 0-5 5 - 10 10 - 15 15 - 20 20 - 25 Mean Tree Height (ft) Water No Forest 0-5 5 - 15 15 - 50 50 - 75 > 75 Aboveground Biomass (mg/ha) Water No Forest 0 - 50 50 - 100 100 - 150 150 - 200 > 200 Mean Stem Diameter (in) Water No Forest 0-5 5 - 10 10 - 15 15 - 20 20 - 25 Mean Tree Height (ft) Water No Forest 0-5 5 - 15 15 - 50 50 - 75 > 75 Aboveground Biomass (mg/ha) Water No Forest < -20 -20 - 0 0 - 20 > 20 Mean Stem Diameter (in) Water No Forest < -6 -6 - 0 0-6 >6 Mean Tree Height (ft) Water No Forest < -6 -6 - 0 0-6 >6 AVIRIS http://masterweb.jpl.nasa.gov/sensor/sensor.htm AVIRIS (VIS-NIR-SWIR) • 224 channels • 380-2500 nm 450 1450 Wavelength (nm) 2450 Foliar N concentrations, Madison, WI AVIRIS Image, Madison 2009 False Color Composite Imagery Madison 2009 Foliar N concentration (%) 7.9% 0% Fully Characterize Urban Ecosystem At A Point In Time Acknowledgement: Aditya Singh Shawn Serbin Clayton Kingdon Bernard Isaacson Peter Wolter John Couture Benjamin Spaier Wesley Fox Field Assistants Marla Eddy Dave Davis Kirk Contrucci
© Copyright 2026 Paperzz