CHAPTER 26 Derivatives of Transcendental Functions 26.1 DERIVATIVES OF THE SINE AND COSINE FUNCTIONS 1. y ¼ sin 3x; y0 ¼ 3 cos 3x 31. f ðxÞ ¼ sin x; f 0 ðxÞ ¼ cos x; f 00 ðxÞ ¼ sin x 3. y ¼ 3 cos 2x; y0 ¼ 3ð sin 2xÞ 2 ¼ 6 sin 2x y ¼ sin x2 þ 1 ; y0 ¼ 2 x cos x2 þ 1 33. y ¼ sin x; y0 ¼ cos x; y00 ¼ sin x; y000 ¼ cos x y ¼ 4 sin2 3x ¼ 4ðsin 3xÞ2 ; y0 ¼ 4 2ðsin 3xÞ ðcos 3xÞð3Þ ¼ 24 sin 3x cos 3x y ¼ cos 3x2 2 ; y0 ¼ 6x sin 3x2 2 pffiffiffi y ¼pffiffisin x ¼ sin x1=2 ; y0 ¼ cos x1=2 12 x1=2 ¼ cospffiffi x 2 x pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi y ¼ cos 2x3 4; y0 ¼ sin 2x3 4 1=2 2 3x2 sin pffiffiffiffiffiffiffiffiffi 1 2x3 4 3 pffiffiffiffiffiffiffiffiffi 6x ¼ 3 2 2x 4 35. y ¼ sin x; y0 ¼ cos x; y00 ¼ sin x; and y000 ¼ d4 cos x; yð4Þ ¼ sin x, so dx 4 ðsin xÞ ¼ sin x pffiffiffi (a) When x ¼ 4, then f ðxÞ ¼ 2 cos 4 ¼ pffiffiffi pffiffi2 ¼ 1. The line is tangent at the point 2 2 4 ; 1 . The slope of the tangent line at this point pffiffiffi is f 0 4 . Since f 0 ðxÞ ¼ 2 sin x, the slope of pffiffiffi the tangent line is 2 sin 4 ¼ 1. Using the 5. 7. 9. 11. 13. 37. 2x 4 15. 17. 19. 21. 23. 25. 27. 29. slope-intercept form for the equation of a line, y ¼ x2 þ sin2 x; y0 ¼ 2x þ 2 sin x cos x the equation of the tangent line is y y0 ¼ m x x0 y 1 ¼ 1 x 4 ¼ x þ 4 y ¼ x þ 4 (b) 0 y ¼ sin x cos x; y ¼ sin xð sin xÞ þ cos x cos x ¼ cos2 x sin2 x ¼ cos 2x 2 cos x ; y¼ sin 2x sin 2xð2 sin xÞ 2 cos x cos 2x 2 y0 ¼ sin2 2x 2 sin x sin 2x 4 cos x cos 2x ¼ sin2 2x 2 sin xð2 sin x cos xÞ 4 cos x 2 cos2 x 1 ¼ ð2 sin x cos xÞ2 2 4 cos x sin x þ 2 cos2 x 1 ¼ 2 2 4 sin2 x cos x2 4 cos x sin x þ cos x þ cos2 x 1 ¼ 2 2 42 sin x cos x 4 cos x cos x cos x ¼ ¼ sin2 x 4 sin2 x cos2 x y ¼ x2 sin x; y0 ¼ 2x sin x þ x2 cos x pffiffiffi pffiffiffi y ¼ x sin x; y0 ¼ 12 x1=2 sin x þ x cos x y ¼ ðsin 2xÞðcos 3xÞ; y0 ¼ sin 2xð 3 sin 3xÞ þ 2 cos 2x cos 3x ¼ 2 cos 2x cos 3x 3 sin 2x sin 3x y ¼ sin3 x4 ; y0 ¼ 3sin2 x4 cos x4 4x3 ¼ 12x3 sin2 x4 cos x4 y ¼ sin2 x þ cos2 x ¼ 1; y0 ¼ 0 39. (a) The slope of the tangent line to h at this point is h0 2 . Since h0 ðxÞ ¼ 4 cosð4xÞ, we see that h0 2 ¼ 4 cosð2Þ ¼ 4. Thus, the slope of the normal line to h at this point is 14 and its equation is y y0 ¼ m x x0 1 y0¼ x 4 2 1 y¼ xþ 4 8 265 266 CHAPTER 26 DERIVATIVES OF TRANSCENDENTAL FUNCTIONS (b) 41. 43. 45. As in Example 27.7, V 0 ¼ 45;240 cos 377ð1:571Þ ¼ 3470:332 or about 3470 V. The current to the capacitor is given by I ¼ q0 ðtÞ ¼ 0:25 sinðt 1:45Þ. When t ¼ 7:6 s, the current is I ¼ q0 ð7:6Þ ¼ 0:25 sinð7:6 1:45Þ ¼ 0:25 sinð6:15Þ ¼ 0:033 A. pffiffi I 0 ðÞ ¼ 2M cosðÞ sinðÞ; I 0 3 ¼ 23 M 0:866M cd/rad 47. To find the maximum and minimum, we first find the critical values. I 0 ðtÞ ¼ 2 cos t sin t ¼ 0 sin t or 2 cos t ¼ sin t and so, cos t ¼ tan t ¼ 2. This occurs when t 1:107 and t 4:249. The maximum is at Ið1:107Þ ¼ 2 sinð1:107Þ þ cosð1:107Þ 2:24 A. The minimum is Ið4:249Þ ¼ 2 sinð4:249Þþ cosð4:249Þ 2:24 A. 49. (a) This sketch is from the end of 2000, when t ¼ 100, to end of 2008, when t ¼ 108. Since the marks at the bottom of the screen are one (year) apart you should be able to determine how the graph for the present year should look. 26.2 1. (b) The given formula is for t years after 1900, which means that on December 31, 1900, t ¼ 0, on January, 1, 1901, t 0:023, on December 31, 1901, t ¼ 1. So, December 31, 2001, t ¼ 101 and January 1, 2002, t ¼ 101:003: That means the July 1995 would be about when t ¼ 94:5. Evaluating Cð94:5Þ 360:2423 ppm (c) April 2002 was about when t ¼ 101:25 and Cð101:25Þ 375:8506 ppm. (d) C 0 ðtÞ ¼ ð0:010345Þ sinð6:283tÞ þ ð6:283Þ ð0:010345tþ2:105676Þ cosð6:283tÞþ0:027566t 0:844566 part per million per year t years after 1900. (e) C0 ð101:25Þ 2:3285 ppm/yr. (f) This sketch is from the end of 2000, when t ¼ 100, to the end of 2008, when t ¼ 108. Since the marks on the x-axis are one (year) apart you should be able to determine how the graph for the present year should look. DERIVATIVES OF THE OTHER TRIGONOMETRIC FUNCTIONS pffiffiffi pffiffiffi pffiffiffi y ¼ tan2 x; y0 ¼ 2 tan x sec2 x 12 x1=2 ¼ pffiffi 2 pffiffi tan xpsec ffiffi x 13. x 3. y ¼ sec 5x; y0 ¼ 5 sec 5x tan 5x 5. y ¼ cscð2x 1Þ; y0 ¼ 2 cscð2x 1Þ cotð2x 1Þ 7. 2 y ¼ sin x tan x; y0 ¼ sin x þ tan x cos x ¼ x sec 2 2 sin x sec x þ sin x ¼ sin x sec x þ 1 9. y ¼ tan3 x; y0 ¼ 3 tan2 x sec2 x y ¼ sec4 x2 ; y0 ¼ 4 sec3 x2 sec x2 tan x2 ð2xÞ ¼ 8x sec4 ðx2 tan x2 11. 15. 17. 19. y ¼ tanx cot x; y0 ¼ tan x csc2 x þ cot x sec2 x ¼ sec2 x cot x csc2 x tan x y ¼ sin2 xcot x; y0 ¼ 2 sin x cos x cot x þ sin2 x 2 x 1 csc2 x ¼ 2 sin x cos x cos sin x sin x sin2 x ¼ 2 2 cos x 1 ¼ cos 2x y ¼ tan 1x ; y0 ¼ sec2 1x x2 ¼ x12 sec2 1x pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1=2 0 1 y ¼ 1 þ tan x2 ¼ 1 þ tan x2 ; y ¼2 1þ 2 2 2 2 x sec x 2 1=2 tan x sec x ð2xÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffi2 1þtan x SECTION 26.3 21. y¼ y0 ¼ ¼ tan x ; 1 þ sec x ð1 þ sec xÞ sec2 x tan xðsec x tan xÞ 35. ð1 þ sec xÞ2 sec2 x þ sec3 x sec x tan2 x ¼ 33. ð1 þ sec xÞ2 2 2 sec x sec x þ sec x tan x ð1 þ sec xÞ2 sec x½sec x þ 1 sec x ¼ ¼ 2 1 þ sec x ð1 þ sec xÞ 23. cot x 0 Here y ¼ 1csc x ; so y ¼ ð1csc xÞ csc2 x cot xðcsc x cot xÞ ð1csc xÞ2 csc2 xþcsc3 xcsc x cot2 x ð1csc xÞ2 csc xð1csc xÞ ð1csc xÞ2 25. 27. ¼ Since y ¼ x sin y, then y0 ¼ xðcos yÞy0 þ sin y, or y0 xðcos yÞy0 ¼ sin y, or y0 ð1 x cos yÞ ¼ sin y y and so y0 ¼ 1xsincos y. 39. Here x þ y ¼ sinðx þ yÞ, and differentiating, we obtain 1 þ y0 ¼ cosðx þ yÞ½1 þ y0 ¼ cosðx þ yÞ þ y0 cosðx þ yÞ, or y0 y0 cosðxþ yÞ ¼ cosðx þ yÞ1, 1cosðxþyÞ and so y0 ¼ cosðxþyÞ1 1cosðxþyÞ or cosðxþyÞ1. n0 ¼ csc cot ¼ csc 8 cot 8 ¼ 6:31 41. ¼ csc x csc2 xcot2 xcsc x 2 ð1csc xÞ ¼ 43. 2xðtan 2xÞ 45. sec x 0 Here y ¼ 1þtan x, and so y ¼ 3 sec x tan xþtan2 xsec2 x ð1þtan xÞðsec x tan xÞsec x ¼ ¼ 2 2 ð1þtan xÞ ð1þtan xÞ sec xðtan x1Þ ð1þtan xÞ2 31. d dx cot u d ¼ dx cos u sin u Differentiating I ¼ 16 cot2 ð2Þ, produces I 0 ¼ 2 16 cotð2Þ csc2 ð2Þ ð2Þ ¼ 64 cotð2Þ csc2 ð2Þ 0 7 When ¼ 7 16 , then I 16 ¼ 2 7 csc 2 16 ¼ 64 cot 2 7 16 7 2 7 64 cot 8 csc 8 1055:05 mV/rad. csc x ¼ 1csc x 2=5 y ¼ tan 2x; y0 ¼ 2 sec2 2x ¼ 2ðsec 2xÞ2 ; y00 ¼ 4ðsec 2xÞðsec 2x tan 2xÞ2 ¼ 8 sec2 2x tan 2x y ¼ x tan x; y0 ¼ x sec2 x þ tan x; y00 ¼ xð2 sec x sec x tan xÞ þ sec2 x þ sec2 x ¼ 2x sec2 x tan x þ 2 sec2 x ¼ 2 sec2 xðx tan x þ 1Þ 37. y ¼ ðcsc x þ 2 tan xÞ3 ; y0 ¼ 3ðcsc x þ 2 tan xÞ2 csc x cot x þ 2 sec2 x ¼ 3ðcsc x þ 2 tan xÞ2 2 sec2 x csc x cot x y ¼ ðtan 2xÞ3=5 ; y0 ¼ 35 ðtan 2xÞ2=5 sec2 2x ð2Þ ¼ 6 2 5 sec 29. 267 ¼ T W 1 T d=dt ¼ T 2 w2 1þ w 1 T d=dt ¼ T2 W2 1 þ W2 ¼ arctan d=dt ¼ T þ T2 W2 d sin u dx cos u cos u2 sin u ¼ sin2 u du sin uð sin uÞ du dx cos u cos u dx ¼ sin2 u sin2 ucos2 u du dx ¼ csc2 u du dx sin2 u 26.3 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS 1. 2 y ¼ sin1 2x, so y0 ¼ pffiffiffiffiffiffiffiffiffi . 14x2 3. y ¼ tan1 2x, so y0 ¼ 5. 2x y ¼ cos1 1 x2 and y0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ffi ¼ 1 2 2 1 þ x4 7. 2 ¼ 4þx 2. 1 1x2 2x ffi pffiffiffiffiffiffiffiffiffiffi 2x2 x4 2 ¼ y ¼ sin1 ð1 2xÞ, so y0 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1ð12xÞ ffiffiffiffiffiffiffi2ffi ¼ p1 xx 9. 13x2 y ¼ cos1 x3 x ; y0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ffi ¼ 1 x3 x 2 13x pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1x2 þ6x4 x6 2 ffi pffiffiffiffiffiffiffiffiffiffi 4x4x2 268 11. CHAPTER 26 DERIVATIVES OF TRANSCENDENTAL FUNCTIONS 1 0 y ¼ sec ð4x þ 2Þ; y ¼ ð2xþ1Þ ð4xþ2Þ 4 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2 ð4xþ2Þ 1 ð4xþ2Þ 1 1 ffi þ sin1 x y ¼ x sin1 x; y0 ¼ x pffiffiffiffiffiffiffi 1x2 15. x ffi y ¼ x2 cos1 x; y0 ¼ 2x cos1 x pffiffiffiffiffiffiffi 1x2 17. Since y ¼ tan1 2x dy dx 2x sin 1x2 1 1x2 az ¼ xel sec el az d ¼ xel sec el del el az ¼ xel sec el tan el el x ffi pffiffiffiffiffiffiffiffiffiffiffi 2 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 sin 1x2 2x2 x4 1 ffi ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi. sin1 1x2 23. 25. 2x2 y ¼ x cot1 1 þ x2 ; y0 ¼ cot1 1 þ x2 þ 2x2 x 1 2 2x ¼ cot1 1 þ x2 2þ2x 2 þx4 2 1þ 1þx 1 ffi sin1 x x pffiffiffiffiffiffiffi 1 1x2 Since y ¼ sinx x, then y0 ¼ x2 1 1 1 ffi 1 ffi ¼ xpffiffiffiffiffiffiffi sinx2 x ¼ 1x pffiffiffiffiffiffiffi sinx x . 1x2 1x2 26.4 APPLICATIONS 1. If y ¼ sin x, then y0 ¼ cos x. Since cos x > 0 on 2 ; 2 ; sin x is increasing on 2 ; 2 . 3. If y ¼ arccos x, then y0 ¼ 1 ffi pffiffiffiffiffiffiffi 1x2 or sin x ¼ 0:84307. Hence, x ¼ 3:7765; x ¼ 5:6483; x ¼ 1:0030, or x ¼ 2:1386. Maxima are ; 1:5 ; minima are at 2 ; 1 and at 6 ; 1:5 ; 5 6 3 2 ; 3 . Inflection points are at ð1:0030; 1:2646Þ; ð2:1386; 1:2646Þ; ð3:7765; 0:8896Þ and ð5:6483; 0:8896Þ. when jxj < 1. 0 Hence y < 0 which means that the arccos x is decreasing for jxj 1. 5. d 1 ffi du ¼ dx cos1 u ¼ pffiffiffiffiffiffiffi . 1u2 dx 33. 1 1x2 dy dx In this problem, let P be a point on the track directly in front of the camera and x the distance the car has traveled past P, and the angle from P to the camera to x. Then ¼ x 1 1 dx 42 dx tan1 42 and d x 2 42 dt ¼ dt ¼ 422 þx2 dt . 1 þ 42 x x When ¼ 15 , then ¼ tan1 42 or tan ¼ 42 and x ¼ 42 tan 15 11:25387. Substituting this value of x and the given information that dx d dt ¼ 320 ft/s in the formula for dt produces d 42 dt ¼ 422 þð11:25387Þ2 ð320Þ 7:1087 rad/s. x y ¼ x tan1 ðx þ 1Þ; y0 ¼ tan1 ðx þ 1Þ þ 1þðxþ1Þ 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Here we are given y ¼ sin1 1 x2 , and so 1=2 2x qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi y0 ¼ 12 sin1 1 x2 2 ¼ 1 31. 4x2 x ffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ffi pffiffiffiffiffiffiffi 1x2 2 1 du 2 ¼ sin y dx. Since sin y þ cos y ¼ 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi we have sin y ¼ 1 cos2 y ¼ 1 u2 , and so 1 2x1 2 , then y0 ¼ d Let y ¼ cos1 u or u ¼ cos y. Hence du dx ¼ dx cos y ¼ sin y dy dx so 1þ 2x2ð2x1Þ2 4x4xþ2 1 ¼ 4x2 þ4x2 4xþ1 ¼ 4x2 4x2 2 8x2 4xþ1 21. 29. 2 2x1 y ¼ ðarcsin xÞ1=3 ; y0 ¼ 13 ðarcsin xÞ2=3 1 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 3 1 x ðarcsin xÞ2=3 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 13. 19. 27. f ðxÞ ¼ 2 sin x þ cos 2x; f 0 ðxÞ ¼ 2 cos x 2 sin 2x. The critical values occur when f 0 ðxÞ ¼ 0. Hence, we have 2 cos x 2 sin 2x ¼ 0; 2 cos x 4 sin x cos x ¼ 0. Factoring, we obtain 2 cos xð1 2 sin xÞ ¼ 0. If cos x ¼ 0 ) x ¼ 2 ; 3 2 and if 1 2 sin x ¼ . 0 ) sin x ¼ 12 ) x ¼ 6 ; 5 6 Differentiating again, 00 we get f ðxÞ ¼ 2 sin x 4 cos 2x ¼ 0, or 2ðsin x þ 2ð1 2 sin2 xÞÞ ¼ 0, or 2ðsin x þ 2 4 sin2 xÞ ¼ 0, and so 2 4 sin2 x sin x 2 ¼ 0. The quadratic formula yields sin x ¼ 0:59307 7. hðxÞ ¼ cos x sin x. To find the critical values, we take the derivative and set it equal to 0. Thus, SECTION 26.4 h0 ðxÞ ¼ sin x cos x ¼ 0 and so, sin x ¼ cos x, or tan x ¼ 1, which means that x ¼ 3 4 or 7 00 . The second derivative is h ðxÞ ¼ cos x þ 4 sin x and setting it equal to 0 produces sin x ¼ cos x or tan x ¼ 1. Thus, x ¼ 4 or x ¼ 5 4 . As a 7 pffiffiffi result, the maxima are 4 ; 3 ; the minimum is pffiffiffi 3 4 ; 3 , and the inflection points are 4; 0 5 and 4 ; 0 . 13. 3 y ¼ tan x; at x ¼ 4, we get y ¼ 1, so point is slope, we take the derivative 4 ; 1 . To find the y0 ¼ 3 tan x sec2 x and at 4, we get y0 ¼ 3 pffiffiffi 12 ð 2Þ2 ¼ 6. Hence, the equation of the tangent line is y 1 ¼ 6 x 4 . 15. The horizontal distance from the light to the plane is 8000 ft. The velocity is dx dt ¼ 400 mi/h ¼ 5280 ft 1 hr x ¼ 586:7 ft/s; tan ¼ 6000 . 400 mile hr 1 mi 3600 s 2 d 1 dx Taking derivatives we have sec dt ¼ 6000 dt . Also, 4 tan ¼ 8000 6000 ¼ 3, and so ¼ 0:9273 rad. Hence, y 1 d dt π 2π x –1 9. kðxÞ ¼ cos2 x þ sin x. To find the critical values, we take the derivative and set it equal to 0. k0 ðxÞ ¼ 2 cos x sin x þ cos x ¼ cos xð2 sin x þ 1Þ ¼ 0. This yields cos ¼ 0 which means that there are critical values at x ¼ 2 and x ¼ 3 2 . We also get sin x ¼ 12 ; and so there are additional critical values at x ¼ 6 and x ¼ 5 6 . For inflection points, we take the second derivatives and set them equal to 0: k00 ðxÞ ¼ cos xð2 cos xÞ sin xð2 sin x þ 1Þ ¼ 2 cos2 x þ 2 sin2 x sin x ¼ 2 1 2 sin2 x þ 2 sin2 x sin x ¼ 6 sin2 sin x 2 ¼ ð3 sin x 2Þ ð2 sin x þ 1Þ ¼ 0. Hence, sin x ¼ 23 ) x ¼ 0:7297 or x ¼ 2:4119, or sin x ¼ 12 ) x ¼ 7 6 or 11 that this function has the fol6 . Thus, we see 5 lowing maxima: 6 ; 1:25 and 6 ; 1:25 ; min points: ima: 2 ; 1 and 3 2 ; 1 ; and inflection ; 0 and (0.7297, 1.2222), (2.4119, 1.2222), 7 6 11 6 ; 0 . y 2π 11. y ¼ sin x, at x ¼ 6, we get y ¼ sin 6 ¼ 0:5. Thus, we want to find the line tangent at this point ; 0:5 . To find the slope of the tangent line we 6 take the derivative y0 ¼pcos ffiffi x and evaluate it when x ¼ 6 to get cos 6 ¼ 23. Using the point-slope form for the equation of the we pffiffi line, obtain the desired equation: y 0:5 ¼ 23 x 6 . dx=dt 6000 sec2 ðdx=dtÞ cos2 6000 ¼ ¼ ð586:7Þ cos2 ð0:9273Þ 6000 ¼ 17. d dt 19. d dt 30 21. (a) Q ¼ 1:33ð2Þ5=2 tan 2 ¼ 7:523 tan 2 ; Q ¼ 1 2 2 ð7:5236Þ sec 2 (b) Q0 ð30Þ ¼ 3:7618 sec2 15 ¼ 3:7518ð1:0353Þ2 ¼ 4:0319 m3 =s (c) Qð40Þ ¼ 3:7168 sec2 20 ¼ 4:2602 0 (d) Q ¼ k sec2 2; critical values at 2 ¼ 90 or ¼ 180 . Q is increasing so maximum at ¼ 180 . 23. I ¼ sin2 3t; I 0 ¼ 6 sin 3t cos 3t; I 0 ð1:5Þ ¼ 6ðsin 4:5Þðcos 4:5Þ ¼ 1:2364 A/s 25. xðtÞ ¼ 14 cos 2t; vðtÞ ¼ 12 sin 2t; aðtÞ ¼ vðtÞ ¼ cos 2t; aðtÞ ¼ 0 when 2t ¼ 2 þ 2k or 3 þ 2k. By the first derivative test the maximums 2 3 occur at 2t þ 3 or t ¼ 2 þ 2k or t ¼ 4 þ k 3þ4k 3 ; k ¼ 0; 1; 2; 3; . . . : Thus, v ¼ 12 sin 4 34 1 1 ¼ 2 ð1Þ ¼ 2 m/s ¼ 0:5 m/s. 2 27. f ðxÞ ¼ cosx þ x 2; f 0 ðxÞ ¼ sinx þ 1. Use first x¼ 3. f xn xnþ1 f xnþ1 n xn x –1 ¼ 0:0352 rad/s. 1 π 269 ¼ 1 rpm ¼ 2 rad/min ¼ 0:10472 rad/s . x tan ¼ 500 . Taking derivatives we have sec2 2 d 1 dx dx 2 d sec 4 dt ¼ 500 dt or dt ¼ sec dt 500 ¼ ð0:10472Þð500Þ ¼ 104:72 m/s. rpm ¼ 3:1416 rad/s. We know that tan ¼ 8x, and taking derivatives of both sides we have 1 dx dx 2 sec2 d dt ¼ 8 dt . Hence, dt ¼ 8 sec 40 ð3:1416Þ ¼ 42:8284 mi/s. 0 1 3 0:0100 2:98835 6:716105 5 2 2:98835 6:71610 2:9883 3:105109 29. 2 gðxÞ ¼ sin x þ x4 2x; g0 ðxÞ ¼ cos x þ 34 x2 2; x ¼ 0 is one answer. By Newton’s method x ¼ 2:71995214. Since gðxÞ is odd, x ¼ 2:71995214 is also an answer. 270 CHAPTER 26 26.5 1. 3. 5. 9. 11. 13. 15. DERIVATIVES OF LOGARITHMIC FUNCTIONS Since y ¼ log 5x, its derivative is y0 ¼ 15 x loge 5 ¼ 1x ln110. y ¼ ln x2 þ 4x ; y0 ¼ x2xþ4 2 þ4x qffiffiffiffiffiffiffiffiffiffiffi 1=2 0 2 y ¼ ln x þ 4x ; y ¼ 12 ln x2 þ 4x 2xþ4 x2 þ4x 7. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS xþ2ffi ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 1þln x3=2 x 1 ln x 1ln x y ¼ x 2 ¼ x2 x 0 29. Since y ¼ x2 lnðsin 2 xÞ, then y0 ¼ 2 x lnðsin 2 xÞ þ 2 x2 2 sin 2 x cos 2 x ¼ 2 x lnðsin 2 xÞ þ 2 x cot 2 x, and so y00 ¼ 2 lnðsin 2xÞþ2x sin12x cos 2x 22x2 csc2 2x 2þ 4x cot 2x ¼ 2 lnðsin 2xÞþ 4x cot 2x4x2 csc2 2x þ4x cot 2x ¼ 2 lnðsin 2xÞ þ 8x cot 2x 4x2 csc2 2x. 31. (a) N 0 ðtÞ ¼ 5 lnð0:045tÞ 0:225t 0:045t 0:5 ¼ 5 lnð0:045tÞ5:5. Solving 5 lnð0:045tÞ5:5 ¼ 0, or lnð0:045tÞ ¼ 1:1, we have 0:045t ¼ e1:1 1 and so, t ¼ 0:045 e1:1 7:397 h. The maximum number of medflies will be Nð7:397Þ 108:96 109. (b) Graphing NðtÞ,we see that it is 0 at about 31.67 h, so the medflies will be eradicated within the 36 h period. 33. (a) In order to find the critical values, we determine when P0 ðtÞ ¼ 0:008 lnð0:025tÞ 0:008 ¼ 0. The maximum value is when lnð0:025tÞ þ 1 ¼ 0 or when t ¼ 40e1 14:72 h (b) Pð14:72Þ ¼ 0:014 0:008ð14:72Þ ln 0:025ð14:72Þ ¼ 0:014 0:11776 lnð0:368Þ 0:132 ppm. 35. (a) H ¼xlnxð1xÞlnð1xÞ dH 1 1 ¼ð1lnxx Þ½1lnð1xÞþ ð1xÞð1Þ dx x 1x dH ¼lnx1½lnð1xÞ1 dx dH ¼lnx1þlnð1xÞþ1 dx dH ¼lnxþlnð1xÞ dx 1=2 0 1 1þx 1=2 1x y ¼ ln 1þx ; y ¼ 2 ln 1x 1þx 1x ð1xÞþð1þxÞ 1 1þx 1=2 1x 2 ¼ 2 ln 1x ¼ 1þx ð1xÞ2 ð1xÞ2 1=2 1 1þx 1=2 1 ln 1þx ¼ 1x 2 ð1þxÞð1xÞ ln 1x 1x pffiffiffiffiffiffiffiffi 3 x2 þ4 ffiffiffiffiffiffiffi ffi ; y0 ¼ 4x y ¼ ln p4x 3 x2 þ4 p ffiffiffiffiffiffiffiffiffiffiffiffi ffi 1=2 2 2x x þ 4 12x2 4x3 12 x2 þ 4 ¼ x2 þ 4 pffiffiffiffiffiffiffiffi x2 þ 4 12x2 4x4 4x2 x2 þ4 3x2 x2 þ4 1 ¼ ¼ 3=2 x2 þ4 4x3 4x3 x2 þ4 2x 2 þ12 x x2 þ4 17. y ¼ ðln xÞ2 ; y0 ¼ 2 ln x 1x ¼ 2 lnx x 19. y ¼ lnðln xÞ; y0 ¼ ln1x 1x ¼ x ln1 x 21. Since y ¼ ln x, then y0 ¼ 1x ¼ x1 , and y00 ¼ 1x2 ¼ 1 x2 . y ¼ 1x ln x; y0 ¼ 1x 1x þ ln x 1x2 ¼ 23. 1 x2 25. ln x x2 ¼ 1ln x x2 ; y00 ¼ x2 1x ð1 ln xÞ2x x4 ¼ x 2xxð14 ln xÞ ¼ 1 2xþ3 2 ln x ¼ 2 lnxx3 3 ¼ qffiffiffiffiffiffiffiffi 2 2 3 y ¼ ln sinx3 x ¼ 12 ln sinx3 x ; y0 ¼ 12 sinx 2 x 2 x3 sin x cos x 3x2 sin2 x x6 ln x2 3 x3 x 3 sin x ¼ 2 x cos ¼ cot x 23x ; 2 sin x x y00 ¼ csc2 x 32 ð1Þ x2 ¼ ln x2 x2 ln x2 1 Here y ¼ ln 1x and its derivative is y0 ¼ 1=x 1x2 ¼ 1x. By an alternate method: y ¼ ln x1 ¼ ln x, so y0 ¼ 1 1x ¼ 1x. y ¼ ln tan x; y0 ¼ tan1 x sec2 x ¼ sec x csc x y¼ pffiffiffiffiffiffiffiffiffi 1=2 0 1=2 1 ; y ¼ 12 ln x2 x2 ln x2 ¼ ln x2 1=2 1 2 2x ¼ 1 1=2 ; y00 ¼ x21 2x ln x2 x 2 ln x x ln x2 2 1=2 1 1 2 1=2 þ ln x ¼ x2 ln x2 1=2 þ ln x y¼ 2 ln x2 þ4x x2 þ4x ln x x ; 27. 3 2x2 csc2 x (b) lnxþlnð1xÞ¼ 0 lnð1xÞ¼ lnx 1x¼ x 1¼ 2x x¼ 0:5 (c) Hð0:5Þ 0:6931 SECTION 26.6 26.6 DERIVATIVES OF EXPONENTIAL FUNCTIONS 3. y ¼ 4x ; y0 ¼ 4x 1 ln 4 ¼ 4x ln 4 pffi pffiffi pffiffi x y ¼ 5 x ; y0 ¼ 5 x 2p1 ffiffix ln 5 ¼ 25pffiffix ln 5 5. y ¼ 2sin x ; y0 ¼ 2sin x cos x ln 2 ¼ cos x 2sin x ln 2 7. y ¼ ex 1. 2 þx ; y0 ¼ ð2x þ 1Þex 4 2 4 11. y ¼ xe2 ; y0 ¼ x 13. x 2 x 0 e ex ð2xÞ x4 ; y ¼ x x2 ex 1þex 2x x4 ¼ xex 22ex x3 ¼ y ¼ etan x ; y0 ¼ etan x sec2 x ¼ sec2 x etan x 17. y ¼ sin ex ; y0 ¼ cos ex ex 2x ¼ 2xeex cos ex y ¼ 3x x3 1 ; y0 ¼ 3x 3x2 þ x3 1 3x ln 3 ¼ 3x2 3x þ x3 1 3x ln 3 19. 21. 2 2 2 23. y ¼ ðsin xÞx ; Use logarithmic differentiation. Then, ln y ¼ x lnðsin xÞ, or 1y y0 ¼ x sin1 x cos x þ ln ðsin xÞ, and so y0 ¼ y½x cot x þ ln ðsin xÞ or y0 ¼ ðsin xÞx ½x cot x þ lnðsin xÞ. 25. e y ¼ ln sin e3x ; y0 ¼ sin1e3x cos e3x e3x 3 ¼ 3e sincos e3x ¼ 3e3x cot e3x 27. y ¼ ey þ y þ x; this is equivalent to 0 ¼ ey þ x. By implicit differentiation we obtain 0 ¼ ey y0 þ 1 0 y or ey y0 ¼ 1 so y0 ¼ 1 ey or y ¼ e d d ex þ ex ¼ 12 ex þ ex ð1Þ ¼ dx ðcosh xÞ ¼ dx 2 29. 41. ex ex 2 ¼ sinh x 2 1 Here f ðxÞ ¼ sinh1 7x, so f 0 ðxÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffi 7¼ 2 ð7xÞ þ1 3x jðxÞ ¼ x sinh1 1x. Using the product rule with the chain rule we obtain j0 ðxÞ ¼ sinh1 1x þ x 1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 2 þ 1 x y ¼ xcos x . Using logarithmic differentiation, we obtain ln y ¼ ln xcos x or ln y ¼ cos x ln x, or 1 0 1 0 1 y y ¼ cos x x þ ð sin xÞ ln x, and so y ¼ y x cos x sin x ln x , or y0 ¼ xcos x cosx x ðsin xÞ ðln xÞ . 3x 2 7 pffiffiffiffiffiffiffiffiffiffiffi . 49x2 þ1 15. 2 x ¼ 2e2 ¼ ex y ¼ esinh 3x ; y0 ¼ esinh 3x cosh 3x 3 ¼ 3ðcosh 3xÞesinh 3x pffiffiffiffiffi pffiffiffiffiffi gðxÞ ¼ tanh x3 þ 4; g0 ðxÞ ¼ sech2 x3 þ 4 pffiffiffiffiffiffiffiffiffiffiffiffiffi 1=2 3 2 1 ffi sech2 x3 þ 4 3x2 ¼ 2p3xffiffiffiffiffiffiffi 2 x þ4 x3 þ4 jðxÞ ¼ cosh3 x4 þ sin x ; j0 ðxÞ ¼ 3 cosh2 x4 þ sin x sinh x4 þ sin x 4x3 þ cos x ¼ 3 4x3 þ cos x cosh2 x4 þ sin x sinh x4 þ sin x 39. 2 e x e x 33. 37. ¼ e ðx2Þ x3 þ cosh x þ sin hx ¼ 3 y ¼ 4x ; y0 ¼ 4x 4x3 ln 4 ¼ 4x3 4x ln 4 e x þ e x 31. 35. þx 9. x y ¼ 1þe x2 ex ðx2Þ2 x3 271 43. 1 x2 ¼ sinh1 1 x 1 qffiffiffi ¼ x x12 þ 1 jxj ffiffiffiffiffiffiffi2ffi. Recall that sinh1 1x qffiffiffiffiffiffiffiffi ¼ sinh1 1x xpjxj 1þx 2 x 1þx 2 x pffiffiffiffiffi x2 ¼ jxj. The rate at which N is growing is N 0 ðtÞ ¼ 615 e0:02t ð0:02Þ ¼ 12:3e0:02t . After 7 days, N is growing at the rate of N 0 ð7Þ ¼ 12:3e0:14 ¼ 10:69 people/day. 45. (a) Using the product rule, we obtain I ¼ q0 ðtÞ ¼ 5et cos 2:5t 12:5et sin 2:5t, (b) q0 ð0:45Þ 8:57 A 47. (a) N 0 ðtÞ ¼ 106 ð0:1Þ sech2 ð0:1tÞ ¼ 10;000 sech2 ð0:1tÞ; (b) N 0 ð6:93Þ 6401 bacteria/h, (c) Nð6:93Þ ¼ 699;906 7 105 bacteria 272 CHAPTER 26 26.7 1. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS APPLICATIONS y ¼ x ln x. The domain is ð0; 1Þ. y0 ¼ x 1x þ 1 ln x ¼ 1 þ ln x. Setting y0 ¼ 0 we obtain the critical values 1 þ ln x ¼ 0; ln x ¼ 1; x ¼ e1 ¼ 0:3679; y00 ¼ 1x ; since x > 0, y00 is always positive so y is always concave up. This also means that the critical value yields a minimum. Sum mary: maxima: none, minima: e1 ; e1 or ð0:3679 0:3679Þ; inflection points: none. 7. x x y ¼ sinh x; y0 ¼ cosh x ¼ e þe 2 , which is never x x 0. y00 ¼ sinh x ¼ e e , which is 0 when ex ¼ ex 2 or when x ¼ 0. Inflection point at x ¼ 0. Summary: Maxima: none, minima: none, inflection point (0, 0) y 4 3 2 y 1 2 –4 –3 –2 –1 –1 1 2 3 4 x –2 1 –3 1 2 –4 x 3 9. 3. y ¼ xex ; y0 ¼ xex þ ex ¼ ex ðx þ 1Þ. The critical values occur when y0 ¼ 0. Since ex cannot be 0, the only one is when x þ 1 ¼ 0 or x ¼ 1. y00 ¼ ex ð1Þ þ ðx þ 1Þex ¼ 2ex þ xex ¼ ex ð2 þ xÞ. Inflection point is when x ¼ 2; y00 ð1Þ > 0 so at x ¼ 1 there is a minimum. Summary: Maxima; 1 none; minimum: 1; e ; inflection point: 2; 2e2 y 2 1 –5 –4 –3 –2 –1 1 x y ¼ ex cos x; 2 x 2; y0 ¼ ex sin x cos xex ¼ ex ðsin x þ cos xÞ. Critical values occur when sin x þ cos x ¼ 0 or sin x ¼ cos x or tan x ¼ 3 7 00 1. This is at 5 4 ; 4 ; 4 , and 4. y ¼ x x e ðcos x sin xÞ þ e ðsin x þ cos xÞ ¼ ex ð cos x þ sin x þ sin x þ cos xÞ ¼ 2ex sin x. Inflection points occur when sin x ¼ 0 or x ¼ 00 2; ; 0; ; 2. At x ¼ 5 > 0 so 4 ; y 00 y is minima. At x ¼ 4 ; y < 0 so y is max00 > 0 so y is minima. At ima. At x ¼ 3 4 ; y 7 00 x ¼ 4 ; y < 0 so y is maxima. Summary: 7 ; 4 ; 0:002896 , minima at maxima 4 ; 1:5509 5 3 and 4 ; 35:8885 4 ; 0:06702 ; Inflection points at ð2; 535:49Þ; ð; 23:1407Þ; ð0; 1Þ; ð; 0:0432Þ and ð2; 0:001867Þ. –1 5. y Here y ¼ ln x21þ1, and so y0 ¼ x2 þ1 1 2x x2 þ1 2 ¼ 4 2x x2 þ1. –2π Since the denominator cannot be 0, the only critical x2 þ1 ð2Þþ2 xð2 xÞ 00 2 ¼ value is when x ¼ 0. y ¼ 2 x 2þ4 x x2 þ1 2 2 –4 –12 π 2π x –20 –28 x2 þ1 2 –π –36 2 ¼ 2 x 22 . Inflectionpoints when x2 x2 þ1 1 ¼ 0 or at x ¼ 1. At x ¼ 0; y00 < 0 so y is a maximum. Summary: maxima; (0, 0); minima: none; inflection points: 1; ln 12 ; 1; ln 12 . y 11. y ¼ x3 ln x; y0 ¼ 3x2 ln x þ x2 ; at x ¼ 1; y0 ¼ 3 12 ln 1 þ 12 ¼ 12 ¼ 1 so the slope is 1. y 0 ¼ 1ðx 1Þ or y ¼ x 1 13. y ¼ x2 ex ; y0 ¼ 2xex þ x2 ex ; at x ¼ 1; y0 ¼ 2e þ e ¼ 3e. The equation of the line is y e ¼ 3eðx 1Þ 15. (a) sðtÞ ¼ e3t ; vðtÞ ¼ s0 ðtÞ ¼ 3e3t , (b) v 0 ðtÞ ¼ 9e3t which is never undefined or 0 so velocity is never maximum. 1 –4 –3 –2 –1 1 –1 –2 –3 2 3 4 x CHAPTER 26 REVIEW 17. 19. sðtÞ ¼ sin et ; t t (a) vðtÞ ¼ s0 ðtÞ ¼ cos et et ; vðtÞ ¼e cos e ; 0 t t t 2t aðtÞ ¼ v ðtÞ ¼ e cos e sin e e or aðtÞ ¼ et cos et et sin et (b) vðtÞ ¼ 0 when cos et ¼ 0 or et ¼ 2; this gives t ¼ ln 2 0:4516 s; a ln 2 ¼ 2 0 2 2 2 sin 2 ¼ 2 ; 2 2:4674 units/ss. 2 273 2 21. i ¼ 1 et =2L ; i ¼ Lt et =2L ; The critical value is when t ¼ 0. When t < 0; i0 < 0 and when t > 0; i0 > 0 so this yields a maximum. 23. PðtÞ ¼ 100e0:015t ; P0 ðtÞ ¼ 1:5e0:015t ; P0 ð50Þ ¼ 1:5e0:01550 ¼ 0:7085 W/day 25. f ðxÞ ¼ x ln x 2; f 0 ðxÞ ¼ 1 1x. The roots are 0.1586; 3.1462. 27. hðxÞ ¼ ex cos x; h0 ðxÞ ¼ ex cos x ex sin x ¼ ex ðcos x sin xÞ. Newton’s method yields 1.570796327 and several other answers. Reexamining hðxÞ we can see that ex is never 0 and cos x ¼ 0 when x ¼ 2 þ k where k is an integer. 2=3 ðxÞ ¼ xex ; this will have a maximum when 2=3 2=3 0 ðxÞ ¼ 0. 0 ðxÞ ¼ x ex 23 x1=3 þ ex ¼ 2=3 2 ex 1 23 x2=3 ¼ 0 when 23 x3 ¼ 1 or x2=3 ¼ 32 or 3=2 x ¼ 32 1:8371 m. We can use the first derivative test to verify that this is a maximum. CHAPTER 26 REVIEW 1. y ¼ sin 2x þ cos 3x; y0 ¼ cos 2x 2 sin 3x 3 ¼ 2 cos 2x 3 sin 3x 3. y ¼ tan2 3x; y0 ¼ 2 tan 3x sec2 3x 3 ¼ 6 tan 3x sec2 3x 5. y ¼ x2 sin x. Using the product rule we obtain y0 ¼ x2 cos x þ 2x sin x ¼ xðx cos x þ 2 sin xÞ 7. 1 3 ffi y ¼ sin1 ð3x 2Þ; y0 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 12x9x2 3 9. 11. 13. 25. 1ð3x2Þ 2 0 y ¼ arctan 3x ; y ¼ 1 1þ9x4 6x 6x ¼ 1þ9x 4 pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ffi Here y ¼ arcsin 1 x2 , and so y0 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 1ð1xÞ 1=2 1 2 xffiffiffiffiffiffiffiffi p ffiffiffiffiffiffiffi2ffi . ð2xÞ ¼ pffiffiffi ¼ jxjpx 2 1 x x2 1x2 1x y ¼ x2 ex ; y0 ¼ 2xex þ x2 e2 ¼ ex x2 þ 2x . The critical values occur when x2 þ 2x ¼ 0 or x ¼ 0 and x ¼ 2. For the inflection points, we find y00 ¼ 2ex þ 2xex þ x2 ex þ 2xex ¼ ex x2 þ 4x þ 2 . Inflection points occur when x2 þ 4x þp 2 ffiffi¼ ffi 0. The quadratic formula yields x ¼ 2 2. When x ¼ 2, then y00 < 0, and so y is a maximum. When x ¼ 0, then y00 > 0, and so y is a minimum. Summary: Maxima: ð2; 0:5413Þ; minima: (0, 0); pffiffiffi pffiffiffi inflection points: ð2 2; 0:3835Þ and ð2 þ 2; 0:1910Þ. y 1 ffi 1 ffi If x > 0 then y0 ¼ pffiffiffiffiffiffiffi ; x < 0; y0 ¼ pffiffiffiffiffiffiffi 1x2 1x2 y ¼ log4 3x2 5 ; y0 ¼ 3x215 ð6xÞ ln14 ¼ 3x6x 2 5 6 4 1 ln 4 2 15. 2 ln x3 þ4 y ¼ ln2 x3 þ 4 ; y0 ¼ x3 þ4 3x2 ¼ 6x2 ln x3 þ4 x3 þ4 17. –10 2 3 2 2 3 2 ¼ ð4x3Þ 3x x3 2 ð4x3Þ2 8x3 ð4x3Þ ð4x3Þ4 ¼ 3ð4x3Þ8x xð4x3Þ ¼ 4x9 xð4x3Þ 2 2 19. y ¼ e4x ; y0 ¼ 8xe4x 21. y ¼ esin x ; y0 ¼ 2x cos x2 esin x 23. y ¼ ex sin 5x; y0 ¼ ex cos 5x 5 þ ð1Þex sin 5x ¼ ex ð5 cos 5x sin 5xÞ 2 2 –6 –4 –2 2 27. ð4x3Þ ð4x3Þ 3x x 2ð4x3Þ4 x 0 y ¼ ln ð4x3Þ 2 ; y ¼ x3 ð4x3Þ4 –8 x y ¼ ex=2 sin 2x on ½0; 2; y0 ¼ 12 ex=2 sin 2x þ 2 cos 2xex=2 ¼ ex=2 2 cos 2x 12 sin 2x . Since 1 e2x never equals 0, the critical values occur when 2 cos 2x 12 sin 2x ¼ 0. Solving we get 2 cos 2x ¼ 1 2 sin 2x or tan 2x ¼ 4; so 2x ¼ 1:325817; 4:45741; 7:6090, and 10.75060, and as a result x ¼ :6629; 2:2337; 2:38045; 5:3753. Taking the second deri vative, we obtain y00 ¼ 12 ex=2 2 cos 2x 1 x=2 ð4 sin 2x cos 2xÞ ¼ ex=2 2 sin 2x þ e cos 2x þ 14 sin 2x 4 sin 2x cos 2xÞ ¼ ex=2 15 2 cos 2x 15 4 sin 2x . Solving 2 cos 2x þ 4 sin 2x 274 CHAPTER 26 DERIVATIVES OF TRANSCENDENTAL FUNCTIONS sin 2x ¼ 0, we obtain 15 4 sin 2x ¼ 2 cos 2x, or cos 2x ¼ 2 8 , or tan 2x ¼ 14 which means that 2x ¼ 15 31. 1 0 1 1 y ¼ arctan x; y0 ¼ 1þx 2 ; y ð1Þ ¼ 1þ1 ¼ 2 1 (a) The slope of the tangent is 2 and its equation is y ¼ 4 ¼ 12 ðx 1Þ, (b) The slope of the normal is 2 and its equation is y ¼ 4 ¼ 2ðx 1Þ 33. y ¼ ln 3x has derivative y0 ¼ 1x and, when x ¼ 1, the derivative is y0 ð1Þ ¼ 1. (a) The slope of the tangent at the point (1, 0) is 1 and its equation is y ¼ x 1. (b) The slope of the normal line at the point (1, 0) is 1 and its equation is y ¼ x þ 1 or y ¼ 1 x. 35. y ¼ lnðsin xÞ has the derivative y0 ¼ sin1 x cos x ¼ tan x and, when x ¼ 4, the derivative is y0 4 ¼ tan 4 ¼ 1. 4 2:6516; 5:7932; 8:9348, and 12:0764, and as a result, that x ¼ 1:3258; 2:8966; 4:4675; 6:0382. Summary: maxima: (0.6629, 0.6964), (3.8045, 0.1448); minima: ð2:2337; 0:3175Þ; ð5:3753; 0:0660Þ; inflection points: (1.3258, 0.2425), ð2:8966; 0:1106Þ, (4.4674, 0.0504), and ð6:0382; 0:0230Þ y 0.5 π 2π x (a) The slope of the tangent is 1 and its equation is pffiffiffi y þ ln 2 ¼ x 4. –0.5 29. With y ¼ x3 ln x, we get y0 ¼ 3x2 ln x þ x2 ¼ x2 ð3 ln þ1Þ. Solving 3 ln x þ 1 ¼ 0, we obtain ln x ¼ 13 or e1=3 0:7165. For the second derivative, we have y00 ¼ 6x ln x þ 3x þ 2x ¼ 6x ln x þ 5x ¼ xð6 ln xþ5Þ. Solving 6 ln xþ5 ¼ 0, 5 we find ln x ¼ 56 or x ¼ e6 0:4346. At x ¼ 0:7165; y00 is positive so y has a minimum at this point. Summary: Maxima: none; minima; ð0:7165; 0:1226Þ; inflection point (0.4346, 0.0684) (b) The slope pffiffiffi of the normal is 1 and its equation is y þ ln 2 ¼ 4 x. 37. T ¼ 75e0:05109t þ 29 (a) Tð10Þ ¼ 75e0:5109 þ 29 ¼ 64:9967 C, (b) T 0 ¼ ð0:05109Þ75e0:05109t and T 0 ð10Þ ¼ ð0:05109Þ75e0:5109 ¼ 2:2989 C 39. Using the same set-up as Example 27.20 we have 8 tanð þ Þ ¼ 48 tan ¼ x and tan ¼ x. Writing tan ðþÞ , we obtain tan ¼ tan ðþÞ 48 8 40 tanðþÞtan x x ¼ 1þtanðþÞ ¼ x384 ¼ x2 40x þ384. tan ¼ 48 8 1þ 2 1þ x x x 0 Hence, ¼ arctan x240x þ384 and ¼ 2 1 x2 þ384 4040xð2xÞ x2 þ384 ¼ 2 2 2 x2 þ384 x2 þ384 þð40xÞ2 1 þ x240x þ384 y 40x2 þ1536080x2 2 x2 þ384 ¼ 1536040x2 x2 þ384 2 þð40xÞ2 . The derivative is 0 when 15360 40x2 ¼ 0 or 40x2 ¼ 15360, or x2 ¼ 384, which is x ¼ 19:5959. By the first derivative test this is a maximum. Answer 19.5959 ft. x 1 CHAPTER 26 TEST 1. d f 0 ðxÞ ¼ cos 7x dx ð7xÞ ¼ 7 cos 7x 3. d h0 ðxÞ ¼ e2x dx ð2xÞ ¼ 2e2x x2 x2 d 1 d 1 k0 ðxÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffi e dx 2 2ffi dx e ¼ pffiffiffiffiffiffiffiffiffiffi 2 1e2x 5. 1 ex 2 x2 ffiffiffiffiffiffiffiffiffiffi2 x ¼ p2xe 1e2x 7. d Using the product rule: g0 ðxÞ ¼ 7x2 þ 3x dx 2 d 2 tan 5x dx 7x þ 3x . Then, by using the chain rule we obtain g0 ðxÞ ¼ 7x2 þ 3x ð2 tan 5xÞ 2 2 sec 5x 5þ tan 5x ð14x þ 3Þ ¼ ðtan 5xÞ 10 7x2 þ3x sec2 5x þ ð14x þ 3Þðtan 5xÞ . 9. The current, i, at a particular time is found by taking the derivative of the charge. So, iðtÞ ¼ q0 ðtÞ ¼ 3et cos 2:5 t 7:5et sin 2:5 t. At t ¼ 0:65 sec; ið0:65Þ 3:82 A.
© Copyright 2026 Paperzz