Marin e En viron m en tal Research 102 (2014) 59e 72 Contents lists available at ScienceDirect Marin e En viron m en tal Research j o u r n al h o m ep ag e: w w w .el sev i er .co m /l o cat e/m ar en v r ev Im pacts of an th ropogen ic disturban ces at deep-sea hydroth erm al ven t ecosystem s: A review Cin dy Lee Van Dover * Marine Laboratory, Nicholas School of the Environment, Duke University, 135 Marine Lab Rd, Beaufort, NC 28516, USA a r t i c l e i n f o a b s t r a c t Article history: Received 20 Septem ber 2013 Received in revised form 25 February 2014 Accepted 11 March 2014 Available on lin e 20 March 2014 Deep-sea hydroth erm al-ven t ecosystem s h ave stim ulated decad es of scien tific research an d h old prom ise of m in eral an d gen etic resources th at also serve societal n eeds. Som e en dem ic taxa th rive on ly in ven t en viron m en ts, an d ven t-associated organ ism s are adapted to a variety of n atu ral disturban ces, from tidal variation s to earth quakes an d volcan ic eruption s. In th is paper, physicoch em ical an d biological im pacts of a ran ge of h um an activities at ven ts are con sidered. Min in g is curren tly th e on ly an th ropogen ic activity projected to h ave a m ajor im pact on ven t ecosystem s, albeit at a local scale, based on our curren t un d erstan din g of ecological respon ses to disturban ce. Natural recovery from a sin gle m in in g even t depen d s on im m igration an d larval recruitm en t an d colon ization ; un d erstan din g processes an d dyn am ics in fluen cin g life-h istory stages m ay be a key to effective m in im ization an d m itigation of m in in g im pacts. Cum ulative im pacts on ben th ic com m un ities of several m in in g projects in a sin gle region , w ith ou t proper m an agem en t, in clude possible species extin ction s an d sh ifts in com m un ity structure an d fun ct ion . Ó 2014 Th e Auth or. Publish ed by Elsevier Ltd. Th is is an open access article un d er th e CC BY-NC-ND licen se (h ttp://creativecom m on s.org/licen ses/by-n c-n d /3.0/). Keywords: Scien tific research Mitigation Deep-sea m in in g Cum ulative im pacts Resilien ce Com m ercial activities Larval dyn am ics Colon ization processes 1. In t r o d u ct io n Sin ce th e discovery of hydroth erm al ven ts in th e late 1970s, scien tific research h as been th e prim ary source of an th ropogen ic disturban ce in th ese ecosystem s (Glow ka, 20 03), but th ere is in creasin g in terest in com m ercial exploitation of seafloor m assive sulfides th at h ost ven t com m un ities (Han n in gton et al., 2011; Hein et al., 2013; Hoaglan d et al., 2010; Ron a, 20 08). Im pacts of an th ropogen ic disturban ces at deep-sea ven ts are con sidered h ere in th e con text of n atural disturban ce regim es an d in m ore detail th an h as been provided elsew here (e.g., Baker et al., 2010; Halfar an d Fujita, 20 07; Ram irez-Llodra et al., 2010, 2011; Van Dover, 2011a; Bosch en et al., 2013). 2. Gen er a l ch a r a ct er ist ics o f d eep -sea ven t eco syst em s Hydroth erm al-ven t ecosystem s are localized areas of th e seabed w h ere h eated an d ch em ically m odified seaw ater exits th e seafloor as diffuse or focused flow an d w h ere m icrobial ch em oautotrophs are at th e base of th e food w eb (Van Dover, 20 0 0). Most ven t ecosystem s ten d to be lin early distributed on h ard substrata * Tel.: þ 1 252 504 7655. E-mail address: [email protected] . (basalt) associated w ith n ew ocean crust alon g seafloor spreadin g cen ters, th ough th ere are sites w h ere active ven ts on spreadin g cen ters are sedim en t-h osted (e.g., Guaym as Basin in th e Gulf of Californ ia, Gorda Ridge in th e n orth east Pacific; Van Dover, 20 0 0). Ven ts are also associated w ith seam oun t volcan ic system s (e.g., Loih i Seam oun t, Karl et al., 1988; seam oun ts of th e Kerm adec Ridge; Clark an d O’Sh ea, 20 01). Th e spatial exten t of any given ven t field depen ds on th e geological settin g, but th ey ten d to be at m ost a h un dred m eters or so in m axim um dim en sion an d separated from on e an oth er by 50e 10 0 km (e.g., th e TAG m oun d on th e slow -spreadin g Mid-Atlan tic Ridge) at on e extrem e or, at th e oth er extrem e, to be m uch sm aller features (on th e order of 10e 50 m m axim um dim en sion ) arrayed lin early in clusters an d spaced at in tervals ran gin g from a few kilom eters to 10s of kilom eters on th e axis of fast spreadin g cen ters (e.g., th e 9 N ven t field on th e East Pacific Rise). W h ile hydroth erm al fluids exitin g th e seafloor from black sm oker ch im n eys reach tem peratures from 330 C to 40 0 C, m ixin g of ven t fluids w ith cold seaw aterd eith er in subsurface rocks or th rough w alls of black sm oker ch im n eysd results in h abitable zon es of diffuse flow w ith tem peratures ran gin g from just above am bien t (w 2 C) to w 50 C (Girguis an d Lee, 20 06). Fluid ch em istry is gen erally correlated w ith tem perature at hydroth erm al ven ts, w ith h igh er tem peratures associated w ith a greater proportion of typically sulfide- an d m etal-rich an d oxygen - h ttp://dx.doi.org/10.1016/j.m arenvres.2014.03.0 08 0141-1136/Ó 2014 Th e Auth or. Publish ed by Elsevier Ltd. Th is is an open access article un der th e CC BY-NC-ND licen se (h ttp://creativecom m on s.org/licen ses/by-n c-n d/3.0/). 60 C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 depleted ven t fluids (Joh n son et al., 1988; Zielin ski et al., 2011). Th e specific n ature of th ese relation sh ips can vary from on e site to an oth er (Bein art et al., 2012; Podow ski et al., 2010). Ven t ecosystem s are t yp ically d om in ated by ben t h ic in vertebrate taxa (e.g., vestim en tiferan tu bew orm s, bat hym od iolin m u ssels, vesicom yid clam s, p rovan n id sn ails, rim icarid sh rim p , yet i crabs) th at h ost sym biotic, ch em oau totrop h ic m icroorgan ism s. Th ese sym bion t s require a source of electron d on ors (e.g., su lfid e in ven t flu id ), a sou rce of elect ron acceptors (e.g., O2 in seaw ater), an d a sou rce of in organ ic carbon (e.g., CO2 or CH4 in ven t flu id s, CO2 in seaw ater). Th ese so-called ‘h olobion t’(h ost sym bion t) t axa often exh ibit u n u su al m orp h ological, p hysiological, an d bioch em ical ad aptation s to ch aracteristics of ven t en viron m en ts, in clu d in g loss of t h e d igestive system in vestim en tiferan tu bew orm s, n ovel ph otorecep tors in sw arm in g sh rim p on black sm oker ch im n eys, an d su lfid e-bin d in g p rotein s in vesicom yid clam s (Van Dover, 20 0 0). Holobion t t axa are also often fou n d ation sp ecies, creatin g com p lex 3-dim e n sion al h abitat (e.g., w orm aggregat ion s, bivalve bed s, sn ail aggregation s) th at serves as su bstratu m for m icrobial grow th an d as refugia for ju ven ile in vertebrates an d h abitat for associated organ ism s, in clu d in g p rim ary con su m e rs (e.g., lim p et grazers on m icrobial biofilm s) an d secon d ary an d tert iary con su m ers (e.g., scaven gin g an d p red atory cru st acean s an d fish es). Zon ation at ven ts can be rem in iscen t of in tertidal zon ation , w ith h olobion t taxa typically dom in atin g th e biom ass of h abitable diffuse flow region s an d w ith abrupt tran sition s from on e species to an oth er th at relate to differin g toleran ces am on g species for th erm al an d ch em ical regim es an d to biotic in teraction s (facilitation , com petition , predation ). Total biom ass of ben th ic organ ism s is typically very h igh at ven ts; beyon d th e periph ery of a ven t field, livin g biom ass is relatively in con spicuous, pun ctuated occasion ally by solitary large an em on es, gorgon ian corals, or oth er m egafaun al organ ism s. Diversity (species rich n ess) at deep-sea hydroth erm al ven ts is relatively low, on a par w ith th at observed in tem perate an d boreal rocky in tertidal system s (Van Dover an d Trask, 20 0 0), w ith n um erical dom in an ce (th ousan ds of in dividuals per m 3 ) by a sm all n um ber of species (< 10) an d w ith a large percen tage (25%) of rare taxa (occurrin g as sin gleton s or doubletons) in suites of replicate quan titative sam ples (Van Dover, 20 02). Cryptic taxa (m orph ologically sim ilar, gen etically distin ct) an d ph en otypic plasticity (gen etically sim ilar, m orph ologically distin ct) are com m on ly observed. Species com position is often differen tiated by h abitat w ith in a geograph ic region (e.g., species-abun dan ce m atrices of m ussel beds are differen t from th ose of tubew orm aggregation s) an d varies substan tively across ocean basin s, w ith up to 11 biogeograph ic provin ces recogn ized to date (Moalic et al., 2012; Rogers et al., 2012; Van Dover et al., 20 02). Grow th rates of h olobion t taxa at ven ts are am on g th e fastest reported for m arin e in vertebrates (Lutz et al., 1994; Sh an k et al., 1998). Reproductive m aturation is early an d gam etogen esis in ven t taxa is gen erally con tin uous, w ith out a stron g season al sign al an d little if any eviden ce for gam etogen ic syn ch rony in m any ven t taxa an alyzed (Tyler an d Youn g, 1999). Surprisin gly, th ere is good an ecdotal eviden ce of coh ort ph en om en a occurrin g in at least som e ven t taxa (e.g., vestim en tiferan tubew orm s, rim icarid sh rim p), w h ere en orm ous n um bers of juven iles h ave been observed in a given location (Sh ort an d Metaxas, 2010). Fertilization strategies of ven t in vertebrates are diverse, ran gin g from sperm tran sfer, storage, an d in tern al fertilization [e.g., in scalew orm (polyn oid) polych aetes] to broadcast spaw n in g (e.g., bathym odiolin m ussels), w ith n early all taxa un dergoin g a dispersive larval ph ase w ith eith er lecith otroph ic or plan kotrophic developm en t (Adam s et al., 2011; Tyler an d Youn g, 1999). 3. Na t u r a l d ist u r b a n ce in d eep -sea h yd r ot h er m a l ven t eco syst em s Natural physico-ch em ical disturban ces at hydroth erm al ven ts ran ge in severity from periodic tidal fluctuation s in fluid flow an d plum e fall-out th at h ave n egligible im pact on th e ecosystem , to ch ron ic disturban ce regim es associated w ith m in eralization an d cloggin g of con duits, to system atic disturban ces associated w ith th e hydroth erm al cycle. Unpredictable an d catastroph ic disturban ce regim es result from collapse of structures eith er th rough in h eren t in stability of m in eralized structures or as a result of tecton ic activity an d in frequen t catastroph ic volcan ism th at paves over ven t fields an d result in local extin ction s (Fig. 1). Deep-sea ven ts h ave been un derstood to be eph em eral h abitat islan ds from th e m om en t of th eir discovery (Macdon ald et al., 1980). Ven t-restricted taxa are ch aracterized by rapid grow th rates, early m aturation , large reproductive output, an d w elldeveloped dispersal capabilities (Grassle, 1986), ch aracteristics sh ared by opportun istic m arin e in vertebrate species th at persist despite frequen t local extin ction s an d divergent from th ose of deep-sea species in low -disturban ce regim es (Grassle an d San ders, 1973). Th e docum en ted im pact of n atural disturban ces on ven t ecosystem s is review ed h ere, to provide con text for un derstan din g im pacts of h um an activities at deep-sea ven ts. Levels of im pacts are assessed based on both th e am oun t of ch an ge to ven t ecosystem s an d th e duration of ch an ge (Table 1). 3.1. Tidal fluctuations and plume fall-out Diffuse ven ts exh ibit con tin uous m icroscale tem perature an d ch em ical fluctuation s due to turbulen t m ixin g, an d larger scale fluctuation s (several degrees Celsius, several orders of m agn itude in sulfide con cen tration ) related to tidally in duced ch an ges in bottom flow (Tivey et al., 20 02) an d tidal pum pin g (Luth er et al., 20 08; Sch eirer et al., 20 06). Th e alvin ellid polych aete Paralvinella sulfincola an d oth er m obile in vertebrate types m ay adjust th eir position in respon se to th ese fluctuation s to m ain tain an optim al position (Robert et al., 2012). Tidal excursion s of 10 C or m ore are com m on ly tolerated by sessile or attach ed ven t taxa (e.g., th e m ussel Bathymodiolus puteoserpentis; Zielin ski et al., 2011). W h ile tidal periodicities in sh allow w ater are lin ked to a variety of periodicities in physiological processes of sh allow -w ater in vertebrates, in cludin g reproductive activities, th is kin d of lin kage h as so far n ot been docum en ted for ven t in vertebrates. W h at seem s clear is th at m any in vertebrate species at ven ts are n aturally exposed to an d tolerate variable fluid ch em istry an d tem perature regim es. W h at is usually n ot clear for m ost taxa is th e optim al set of con dition s th at m axim ize grow th an d reproductive output. Iron - an d m an gan ese-rich particulate plum es gen erated by black sm okers typically rise 10 0 m or m ore vertically an d disperse h orizon tally; m ost (99%) sedim en tation of particulate iron an d m an gan ese m ay occur aw ay from th e ven t field (e.g., Feely et al., 1994) an d h ave little im pact on ben th ic ecosystem s th rough processes such as burial or cloggin g of feedin g system s. Volcan oclastic fragm en ts are also produced at spreadin g cen ters durin g deep-sea volcan ic eruption s (Barreyre et al., 2011). To date, eviden ce for im pacts of hydroth erm al or volcan ic plum e fallout on hydroth erm al ven t organ ism s is scarce in th e prim ary literature. 3.2. Mineralization and conduit dynamics Tim e-series studies of sulfide structures at ven ts sites on th e Juan de Fuca Ridge, Mid-Atlan tic Ridge, an d elsew here em ph asize th e role th at m in eralization an d cloggin g of con duits play in destroyin g an d creatin g h abitat. Cuvelier et al. (2011) describe th e C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 61 Fig. 1. Natural an d an th ropogen ic disturban ce at hydroth erm al ven ts. Levels of disturban ce are defin ed in Table 1. Natural disturban ce occurs on a con tin uum of frequen cy an d in ten sity of im pact on ven t biota. ‘?’in dicates un certain ty associated w ith th e classification of im pact. variability of hydroth erm al activity on th e Eiffel Tow er edifice (Lucky Strike field, Mid-Atlan tic Ridge) over a 14-year period an d n ote th e declin e of hydroth erm al activity at th e sum m it an d in creased activity periph erally, w ith som e correspon din g reorgan ization of m ussel beds but w ith overall con stan cy in th eir areal coverage. A sim ilar pattern of diversion of hydroth erm al activity to th e periph ery of sulfide m oun ds an d cen tral cloggin g h as also been reported for n orth east Pacific ven t sites (Sarrazin et al., 1997). In th is Pacific settin g, com m un ity structure is m ore dyn am ic th an it is at th e Eiffel Tow er structure, w ith distin ct faun al assem blages th at occur durin g colon ization of n ew ‘ch im lets’ th at form on large sulfide structures (Sarrazin et al., 20 02): As early colon ization of a ch im let takes place by a pion eer alvin ellid polych aete species, th e tubes of th e polych aete allow a m arcasite crust to m in eralize un dern eath , w h ich in turn m odulates th e th erm o-ch em ical m ilieu an d allow s a secon d, less toleran t species of alvin ellid polych aete to colon ize th e site. As fluid flow decreases furth er, oth er taxa m ove in , in cludin g lim pets an d tubew orm s. In th e sen escen t ph ase, Ta b le 1 Levels of potential im pacts to hydroth erm al ven t ecosystem s. Modified from Cardn o TEC In c., 2013). Im pact level Defin ition Negligible Min or No m easureable im pact Detectable ch an ge th at is sm all, localized, of little con sequen ce Readily apparen t ch an ge over a relatively w ide area Substan tial ch an ge to th e ecosystem over a large area (i.e., a ven t field) Moderate Major w h ere cloggin g of th e con duit becom es com plete, th e tubew orm s, lim pets, an d oth er colon ists are replaced by scaven gers an d detritivores. Because n ew ch im lets open as oth er ch im lets clog, a large sulfide edifice becom es a patch w ork m osaic of assem blages represen tin g differen t ph ases of th e colon ization cycle. In th e above exam ples of very localized an d abrupt n atural disturban ce caused by ch an ges in th e location of fluid flow, th e suite of biological respon ses in clude m igration , facilitation , succession , recruitm en t, an d troph ic in teraction s. Th ese disturban ces do n ot typically result in local extin ction , but com m un ity h istory an d legacy effects can in fluen ce succession ch aracteristics (Mullin eaux et al., 20 09). Biological respon ses to th is scale of disturban ce take place over periods of days to m on th s an d can prom ote locally en h an ced species diversity as a con sequen ce of m osaics of m icroh abitats in differen t ph ases of faun al succession at ven ts. Decadal-scale in varian ce in dom in an ce, gen eral distribution , an d abun dan ce of species at th e TAG m oun d (Copley et al., 20 07) an d th e Eiffel Tow er edifice (Cuvelier et al., 2011) on th e MidAtlan tic Ridge rem in d us th at processes occurrin g in on e system m ay differ in oth ers. 3.3. Tectonic activity Ven t fields occur on tecton ically active region s of th e seafloor, an d tecton ic activity can result in perturbation of fluid flow at ven ts th rough collapse of black sm oker ch im n eys (e.g., Delan ey et al., 1992) an d sw arm -in duced rearran gem en t of th e perm eability zon e (Cron e et al., 2010). Docum en ted disturban ces in clude exten ded duration (w eeks to m on th s) tem perature an om alies of 10 C or m ore in diffuse flow zon es occupied by ven t in vertebrates 62 C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 th at, prior to seism ic activity, h ad tem perature records below 5 C; th e con sequen ces of th is scale of perturbation on th e biological com m un ities rem ain s un certain (Joh n son et al., 20 0 0). W h ere ch im n eys collapse, th ere is loss of h abitat, but n ew surfaces m ay form an d becom e recolon ized. Ch an ges in fluid flow resultin g from seism ic activity could h ave m any biological con sequen ces, in cludin g m ortality of taxa in toleran t of th e altered th erm och em ical con dition s an d en h an ced grow th , reproduction , an d recruitm en t of taxa adapted to th e altered con dition s. Tecton ic even ts m ay also gen erate plum es of suspen ded sedim en ts th at m igh t cause burial of organ ism s, clog filterin g m ech an ism s of suspen sion -feedin g in vertebrates, or oth erw ise in terfere w ith biological activity (Bin n s an d Decker, 1998), but such an even t an d its con sequen ces are so far n ot docum en ted. 3.4. Volcanic eruptions and hydrothermal cycles Hydroth erm al ven ts are associated w ith volcan ic system s an d as such are periodically subjected to volcan ic eruption s an d overrun . Th e frequen cy an d duration of volcan ic even ts vary depen din g on factors such as seafloor spreadin g rate an d th ickn ess of th e crust (Rubin et al., 2012). Subm arin e volcan ic eruption s m ay be explosive an d con tin uous even ts, as eviden ced by m ulti-year eruption s at subm arin e subduction zon es (Em bley et al., 20 06; Deardorff et al., 2011; Rubin et al., 2012), or m ore effusive even ts (som etim es w ith explosive com pon en ts; Ch adw ick et al., 2012; Dziak et al., 20 09; Gregg et al., 1996) th at take place relatively frequen tly (decadal or even sub-decadal tim e scales) an d in a pun ctuated m an n er (duration s of days to w eeks) on fast- an d in term ediate spreadin g cen ters (e.g., East Pacific Rise, Juan de Fuca Ridge). Ch ron ic explosive volcan ic activity gen erates an un stable ben th ic h abitat th at is colon ized by on ly a few species. At ‘Brim ston e Pit’, a volcan ically active crater at th e NW Rota-1 seam oun t, m icrobial m ats an d population s of m obile ven t sh rim p an d crabs are th e on ly persisten t organ ism s (Em bley et al., 20 06). Acute effusive volcan ic eruption s h ave acute catastroph ic effects on hydroth erm al ven t com m un ities. Lava flow s, m ass w astin g, an d explosive eruption s destroy ven t com m un ities, an d th ere is typically a redistribution of ven tin g activity associated w ith an eruption (Haym on et al., 1993). Th ese even ts create a ‘tim e zero’, a Krakataulike reset of th e system (W h ittaker et al., 2010), w ith w elldocum en ted ‘recovery’ of ven t com m un ities to pre-disturban ce con dition s takin g place w ell w ith in a decade (Marcus et al., 20 09; Sh an k et al., 1998; Tun nicliffe et al., 1997). Very in frequen t eruptive even ts (repose in tervals of a th ousan d years or m ore) are in ferred for slow -spreadin g ridges (e.g., MidAtlan tic Ridge; Rubin et al., 2012), w h ere ven t sites are lon g-lived an d spaced at in tervals of 10 0 km an d m ore (Ch erkash ov et al., 2010). Despite th e apparen t lon gevity of ven tin g activity in a given location , in vertebrates livin g at Mid-Atlantic Ridge ven ts also display life-h istory ch aracters associated w ith opportun istic species (Llodra et al., 20 0 0; Tyler an d Youn g, 1999), w h ich suggests th at factors oth er th an volcan ic eruption s m ay in fluen ce th ese lifeh istory ch aracters. Gen etic data can provide in sigh t in to th e occurren ce of catastrophic even ts, but any lin k to a sin gular volcan ic even t is so far n ot ten able. As an exam ple, th ere is prelim in ary gen etic eviden ce based on a sin gle gen e sequen ce for a recen t bottlen eck or foun der even t follow ed by dem ograph ic expan sion in th e sh rim p Rimicaris exoculata, a typical dom in an t species at ven ts south of th e Azores (Teixeira et al., 2011), but th is gen etic ‘even t’exten ded from 36 N to 4 S, far beyon d th e reach of a sin gle eruptive even t as w e curren tly un derstan d th em . In addition to th e physical disturban ce of lava overrun , eruption s reset th e hydroth erm al cycle for fluid physic-ch em ical param eters, creatin g a lon ger-lastin g (years), ch ron ic effect th at in fluen ces th e com m un ity com position of ven ts. In th is cycle, h eat flux in th e hydroth erm al system in creases im m ediately follow in g th e upw ellin g or eruption of m agm a (Butterfield et al., 1997; Von Dam m , 1995). Th is triggers ph ase separation of fluids an d delivery of low ch lorin ity fluids, h eat, volatiles (e.g., sulfide, carbon dioxide, hydrogen ), an d dissolved m etals to th e seafloor. As th e system cools, ven t fluids m ay go th rough a brin e ph ase, follow ed by decay back to ch lorin ities of seaw ater. Th is hydroth erm al cycle affects th e biological productivity, h abitat quality, an d com m un ity com position of diffuse flow system s. At th e 9 N ven t field on th e East Pacific Rise, w h ere th e hydroth erm al cycle w as reset by a 1991 eruption , com m un ity respon se to ch an gin g physico-ch em ical con dition s w as docum en ted durin g a m ulti-year period (Sh an k et al., 1998). Subseafloor bacterial productivity in creased im m ediately follow in g th e eruption (a ph en om en on observed on oth er ridge system s as w ell; Marcus et al., 20 09; Tun nicliffe et al., 1997) an d bacterial m ats an d grazers on bacterial m ats predom in ated im m ediately follow in g th e eruption (Marcus et al., 20 09; Sh an k et al., 1998). Th e vestim en tiferan tubew orm Tevnia jerichonana blan keted th e study sites w ith in on e year an d w as in ferred to be a pion eer species th at tolerates h igh er tem perature an d sulfide con dition s th an gian t tubew orm s (Riftia pachyptila). Sulfide con cen tration s at study sites decreased 50% w ith in tw o years of th e eruption , an d T. jerichonana w as replaced by den se aggregation s of R. pachyptila (Sh an k et al., 1998). Sulfide con cen tration s con tin ued to declin e in subsequen t years an d m ussels began to colon ize th e seafloor diffuse flow ven ts alon g w ith in creasin g n um bers of associated in vertebrate taxa (Sh an k et al., 1998). A sim ilar hydroth erm al cycle w as observed in th e sam e area follow in g a 20 05e 20 06 eruption (Luth er et al., 2012; Nees et al., 20 08. Biological respon ses to eruption s at Co-Axial Volcan o (Tun nicliffe et al., 1997) an d Axial Volcan o on th e Juan de Fuca Ridge (Marcus et al., 20 09) h ave also been m on itored, an d a relatively rapid succession of taxa respon din g to biotic an d abiotic factors is reported. Sign ifican t ch an ges in larval supply before an d after a m ajor volcan ic eruption h ave been reported usin g larval traps (Mullin eaux et al., 2010). Th e 20 06 eruption on th e East Pacific Rise n ear 9 50 0N resurfaced an area of n early 15 km 2 alon g w 18 km of ridge crest (Soule et al., 20 07). Loss of residen t population s w as correlated w ith dim in ish ed larval supply after th e eruption (Mullin eaux et al., 2010), a correlation con sisten t w ith population m ain ten an ce th rough processes th at allow for larval reten tion . On e species th at w as all but absen t prior to th e eruption d th e lim pet Ctenopelta poriferad in creased in supply (Mullin eaux et al., 2010), con sisten t w ith h igh gen e flow facilitated by in frequen t exch an ge of in dividuals am on g population s. Con tin ued studies w ill docum en t w h eth er th e ch an ges observed in larval supply an d colon ization represen t a ph ase of a succession al process or w h eth er th ere h as been an ecological regim e sh ift (Mullin eaux et al., 2010). Physico-ch em ical environ m ents of diffuse flow h abitats at hydroth erm al ven ts evolve durin g th e hydroth erm al cycle an d different taxa m ay be optim ally adapted to or tolerate differen t phases of th is cycle. Because th ere are m ultiple vent sites com prisin g a vent field at 9 N an d on th e eruptive segm en t of th e Juan de Fuca Ridge, an d because th ese sites are n ot all lin ked to th e sam e hydrotherm al system an d n ot all affected by a given eruption even t, th ere is alw ays an array of h abitats in differen t phases of th e hydroth erm al cycle that facilitates persistence of populations in th e face of local extin ction s th rough dispersal an d colon ization events. This dem ograph ic in stability m ay be recorded in gen etic data as loss of rare alleles durin g frequent extin ction an d recolonization even ts (Coyken dall et al., 2011), w ith shallow, star-like gen ealogical n etw orks in dicatin g recen t population expan sion (Vrijen h oek, 2010). C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 3.5. Placing deep-sea hydrothermal vent ecosystems in an ecological-disturbance-resilience framework As sum m arized above, hydroth erm al-ven t ecosystem s are subject to a variety of spatio-tem poral scales of n atural disturban ce an d as such , th ey arguably occupy on e extrem e of a disturban ceresilien ce gradient relative to oth er deep-sea ecosystem s (Fig. 1), an extrem e sim ilar to th at of tem perate an d boreal rocky in tertidal zon es th at experien ce ch ron ic disturban ce th rough w ave action an d th at are periodically scoured by ice (Kelly an d Metaxas, 2010). Characteristic taxa colonizing hydrotherm al vents tend to be abundan t, w ith h igh biom ass, rapid grow th rates, an d h igh reproductive output. The faun a of other deep-sea reducin g environm en ts (seeps and w hale falls) are in term ediate in this disturban ce-resilien ce con tinuum (Glover et al., 2010), experien cing, for exam ple, tectonic shifts in fluid flux (seeps: Hornbach et al., 2007; Tryon et al., 2012) an d successional sequen ces (seeps: Bergquist et al., 2003; Cordes et al., 2009; w hale falls: Sm ith and Baco, 2003). Taxa that live in sedim en ts of the abyssal plain and m an ganese n odule beds are arguably at the other extrem e of the disturban ce-resilience con text in the deep sea (Fig. 2). At this m ore stable extrem e, n atural disturban ces ten d to be biogen ic an d subtle com pared to those experienced by vent organ ism s. Such disturban ces include periodic pulses of phytodetritus deposition (Gooday, 2002), bioturbation (Sm ith et al., 1997), boom e bust cycles of ech in oderm s (Billett et al., 2010), and clim atic effects (Ruhl, 2007). In these low -disturbance, low -resilien ce regim es there is generally relatively low abundan ce, biom ass, grow th rates, an d reproductive output of ben th ic invertebrates (McClain et al., 2012). Cold-w ater coral reefs and garden s experien ce biogenic reef cycles and are m ore productive than abyssal plain ecosystem s (Roberts et al., 2006; Thiem et al., 2006; Murray et al., 2006); as such , they are at an interm ediate level in the disturban ce-resilien ce space. 4. An t h r op o gen ic d ist u r b a n ce in h yd r ot h er m a l ven t eco syst em s 4.1. Impact of scientific research and mineral exploration activities Th e presen ce of h um an s at deep-sea hydroth erm al ven ts h as a relatively sh ort h istoryd m easured in decadesd sin ce th eir in itial Fig. 2. Hydroth erm al-ven t ecosystem s in an ecological (e.g., abun dan ce, biom ass, grow th rate, reproductive output), disturban ce (likelih ood an d spatiotem poral scale), an d resilien ce fram ew ork. Ven ts are exposed to frequen t an d som etim es locally catastroph ic n atural disturban ces an d ven t taxa h ave ecological attributes con sisten t w ith resilien ce (h igh abun dan ce, biom ass, grow th rate, reproductive output); biodiversity at ven ts is relatively low. Ven ts on slow -spreadin g cen ters such as th e MidAtlan tic Ridge (MAR) experien ce less frequen t volcan ic eruption s th an th ose on fastspreadin g cen ters like th e East Pacific Rise (EPR). Wh ite text: sh allow -w ater ecosystem . 63 discovery in 1976 (Corliss et al., 1979). Scien tific research h as been th e prim ary source of h um an disturban ce at ven ts (Glow ka, 20 03), w ith m ore th an 60 0 scien tific research expedition s to hydroth erm al ven ts sin ce 1976 (Godet et al., 2011). Th e n um ber of expedition s h as been doublin g every five years globally. Scien tific research an d m in eral exploration activities at ven ts h as th e ben eficial im pact of in creasin g our kn ow ledge of geophysical an d hydroth erm al processes, biodiversity, adaptation to extrem e environ m ents, an d m any oth er fields. Th e ‘kn ow ledge value’ of hydroth erm al-ven t ecosystem s as ‘livin g libraries’d as m easured by both th e n um ber of publication s resultin g from th is research an d th eir im pact factorsd is h igh (Godet et al., 2011). W h ere expedition s use rem ote sen sin g system s such as m ultibeam son ar an d a variety of w ater-colum n sen sor system s (e.g., backscatter, Eh an d oth er ch em ical sen sors, m agn etics), th ere is likely n egligible im pact on hydroth erm al-ven t com m un ities. But m ost scien tific or m in eral exploration research uses a com bin ation of auton om ous, teth ered, or h um an -occupied veh icles, tow ed cam era sleds, an d cabled observatories to en gage in observation , sam plin g, an d in strum en t deploym en ts an d recoveries. Th ese tools an d activities h ave varyin g types of im pacts on ven t ecosystem s (discussed below ). Kn ow n im pacts of scien tific or m in eral exploration activities to date are deem ed to be n egligible or m in or an d sh ort-term , w ith th e possible exceptions of scien tific drillin g (w h ere it exten ds 10s of m eters an d m ore below th e seafloor in an active ven t system ) an d dam age to ph otoreceptors by h igh in ten sity illum in ation (see discussion s below ). 4.1.1. Interference with vent ecosystems by tools of scientific research and mineral exploration At th e largest spatial scales, scien tific an d com m ercial exploration in terferen ce w ith ven t ecosystem s is in curred durin g geophysical m appin g, in cludin g active m ulti-ch an n el seism ic studies th at use air gun s an d oth er soun d sources to study th e subsurface structure of th e seabed (e.g., Carbotte et al., 2012) an d son ar m eth ods th at yield bathym etric m aps w ith 1-m scale resolution (e.g., Caress et al., 2012). Th ese activities are un dertaken from surface sh ips an d, in th e case of m ultibeam son ar m appin g, from autonom ous, tethered, an d h um an -occupied veh icles as w ell. In son ification durin g m ultibeam m appin g is at low frequen cies (e.g., th e Reson m ultibeam system h as dual frequen cies at 20 0 an d 40 0 kHz) th at, togeth er w ith soun ds gen erated by th e veh icle itself, could poten tially alter beh aviors an d m ask com m un ication repertoires of, for exam ple, ven t-dw elling fish (see Codarin et al., 20 09; Popper, 20 03). To date th ere h as been n o study or eviden ce of im pact of biologically relevan t am bien t an d in troduced soun d in ven t ecosystem s. Large-scale m appin g is also un dertaken w ith m agn etom eters to iden tify m agn etic an om alies associated w ith volcan ic rocks, but th e m agn etic recordin gs are passive. Sen sor surveys (e.g., con ductivity, tem perature, Eh , tran sm issivity) in th e w ater colum n are ben ign to ben th ic com m un ities. Im agin g surveys are com m on ly un dertaken at m ultiple spatial scales an d require h igh -in ten sity ligh t th at can tem porarily alter beh avior of fish an d in vertebrates. Th ese beh avioral m odification s m ay result in cen sus biases resultin g from attraction or avoidan ce (Ston er et al., 20 08), but th e im pact of ligh tin g durin g ph otosurveys on ben th ic ven t com m un ities is deem ed to be m in im al, th e ligh t bein g in frequen t an d of sh ort duration , albeit of h igh in ten sity. Rock dredge activities in support of scien tific an d com m ercial exploration of m id-ocean ridge system s result in relatively in discrim in ate, destructive ‘bites’from th e seabed (th e m outh of a rock dredge is typically on th e order of 0.5 m in w idth ). Scien tists leadin g rock dredge activities gen erally aim to avoid hydroth erm al ven t sites. Th ere is at least on e celebrated exam ple, h ow ever, w h ere a rock dredge recovered sulfide deposits an d live m ussels 64 C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 ch aracteristic of ven t com m un ities, providin g th e first in dication of a previously un kn ow n ven t field on th e Mid-Atlantic Ridge, subsequen tly n am ed ‘Lucky Strike’(Lan gm uir et al., 1997). Traw lers (com m ercial or scien tific) avoid m ost hydroth erm al ven t settin gs because of th e h ard rock n ature of th e seabed an d th e rugged terrain . Plan kton n et tow s an d pum ps m ay be m ade in th e vicin ity of hydroth erm al ven ts in studies of larval distribution s, pelagic food w ebs, an d biodiversity; th e ‘take’of plan kton n ets is gen erally very low. Typical biom ass recovered is low, alth ough th ere h as been at least on e record of a 226 alvin ocarid post-larval sh rim p in 33 tow s (Herrin g an d Dixon , 1998). Given th eir sh ort duration an d lim ited sam plin g sw ath , plan kton tow s an d pum p sam ples are in ferred to h ave n egligible im pact on ven t ecosystem s. Scien tific drillin g in hydroth erm al settin gs is used to study th e structure of th e ocean crust, hydroth erm al circulation , an d oth er deep-crustal processes an d provide a subsurface dim en sion useful for un derstan din g th e distribution of ven t faun as (Greh an an d Jun iper, 1996). Sedim en t deposition occurs durin g activities of th e Ocean Drillin g Program (ODP), w h ere drill rigs deployed from surface sh ips pen etrate to depth s of 10 0 m an d m ore below th e seafloor. At th e TAG hydroth erm al m oun d on th e Mid-Atlan tic Ridge, ODP drillin g activities in 1994 resulted in tran sien t displacem en t of sh rim p an d burial of an em on es (Copley et al., 1999). Disturban ces caused by th is drillin g w ere localized an d th e overall ecology an d productivity of th e ven t site h as been stable on a decadal tim escale (Copley et al., 20 07). Bore h oles can alter local hydroth erm al circulation an d create n ew ‘artificial’hydroth erm al ven ts th at are often cased an d capped w ith an outlet for subsequen t study of th e evolution of hydroth erm al fluids an d of m icro- an d m acrofaun al developm en t (e.g., Takai et al., 2012). Hum an -Occupied Veh icles (HOVs) an d Rem otely Operated Veh icles (ROVs) likely do th e m ost dam age to hydroth erm al-ven t com m un ities th rough m an euvers, ligh t pollution , in ten sive an d destructive sam plin g, in ten tion al an d un in ten tion al tran splan ts, aban don ed m aterials, an d poten tial for tran sport of propagules to n on -n ative areas an d spread of disease. By virtue of th eir relatively large size an d ability to take on w ater ballast an d ach ieve w eigh ted stability on th e seabed, HOVs h ave th e greatest poten tial to dam age ven t com m un ities by crush in g seabed faun a an d bash in g an im als livin g on sulfide deposits an d oth er seafloor features w ith vertical relief (basalt pillars, graben w alls, etc.). In th e past, HOVs w ere in ten tion ally used to ram sulfide ch im n eys for sam ples, but th is brute tactic is n ow discouraged (Devey et al., 20 07). Tops of ch im n eys are, h ow ever, often rem oved as part of a precision strategy to collect paired fluid/rock sam plin g from ven t orifices an d to excavate orifices to en able sam plin g of un diluted en d-m em ber ven t fluids. Un in tention al destruction seem s likely to be lim ited to fraction al areas of ven t com m un ities; th e im pact of un in ten tion al h abitat disturban ce is rarely m easured. Im pacts of sam plin g or oth er h um an -in duced disturban ces th at displace an im als are m ost severe w h ere th e disturbed an im als are attach ed h olobion t taxa (such as vestim en tiferan tubew orm s) an d relatively sessile h olobion t taxa, in cludin g bathym odiolin m ussels an d provan n id gastropods (Tun nicliffe, 1990), all of w h ich depen d on th eir position in diffuse flow to sustain th eir sym bion ts. Scien tific sam plin g equipm en t on HOVs an d ROVs h as th e poten tial for un in ten tion al tran sport of an im als from on e site to an oth er, as observed in th e case of Gorda Ridge lim pets tran sported to th e Juan de Fuca Ridge in a suction sam plin g device (Voigh t et al., 2012). It is n ot clear w h eth er th e Gorda lim pet species w as in fact in troduced to th e Juan de Fuca locale, but th ere is convin cin g eviden ce th at it w as a con tam in an t in sam ples osten sibly from th e Juan de Fuca sam plin g site, h igh ligh tin g th e poten tial for in troduction . Ballast w ater also h as th e poten tial to tran sport larval stages from on e site to an oth er. Ballast tan ks on HOVs design ed to h old w ater at am bien t seafloor pressures are often filled or dum ped in th e vicin ity of ven ts, w h ere th ey can take on an d expel larvae an d m icrobes. W h ere study sites are w ith in a day or tw o-day tran sit from on e an oth er, it is easy to im agin e ballast system s of deep-sea veh icles as effective vectors, just as th ey are in coastal w aters. Th e poten tial role of scien tific gear an d veh icles in un in ten tion al tran sport w as also h igh ligh ted in th e case of an epizootic fun gal in fection in m ussels from sites in Fiji Basin (Van Dover et al., 20 07) an d for oth er path ogen s an d parasites (Voigh t et al., 2012). High -in ten sity illum in ation associated w ith HOVs an d ROVs h as been im plicated in ph otoreceptor dam age in sh rim p th at aggregate on black sm okers at ven ts th e Mid-Atlan tic Ridge, an d by in ference, th eir cogn ates at ven ts on th e Cen tral In dian Ridge an d MidCaym an Spreadin g Cen ter. Th oracic eyes in adult ven t sh rim p (R. exoculata) con tain visual pigm en t (rhodopsin ) th at is ligh t sen sitive an d th e structure of th e eyes suggests th ey are adapted to detectin g dim ligh t gen erated by h igh -tem perature ven tin g as a n ear-field rem ote-sen sin g m ean s of avoidin g th erm al stress an d m ortality (Van Dover et al., 1989). In itial description of th ese th oracic ph otoreceptors n oted degraded rh abdom eral segm en ts in ferred to result from exposure to ligh t (Van Dover et al., 1989). Fun ction al arh abdom eral segm en ts in juven iles an d atten uated arh abdom eral segm en ts in adult specim en s suggest th at th e cellular m ach in ery to support rh abdom eric turn over (recovery from ligh t dam age) disappears durin g on togeny (Ch am berlain , 20 0 0). Herrin g et al. (1999) brough t forw ard furth er associative eviden ce of ligh t-in duced dam age to eyes of ven t sh rim p, but to date, th ere is little to n o un derstan din g of th e beh avioral con sequen ces of ligh t-dam aged ph otoreceptors in ven t sh rim p. Th ere h as also been n o eviden ce of a declin e in sh rim p population s at th e TAG m oun d durin g a decade of repeated exposure to scien tific research , suggestin g th at th ere is n o im m ediate con servation th reat to sh rim p population s resultin g from h igh -in ten sity illum in ation (Copley et al., 20 07). Oth er taxa w ith ligh t-sen sitive organ s are likely susceptible to dam age from subm ersible illum in ation , in cludin g byth ograeid crabs (Jin ks et al., 20 02). Scien tific research activities in ten tion ally an d un in ten tion ally aban don m aterials on th e seafloor in th e vicin ity of hydroth erm al ven ts, in cludin g subm ersible ballast (iron sh ot or plates), ‘gh ost’ traps (deployed to capture crabs, fish , an d oth er m obile scaven gers an d predators an d aban don ed on th e seafloor), plastics of various kin ds (m ilk crates, n avigation al m arkers, polypropylen e lin e), m oorin g ch ain s an d an ch ors, etc. Th is scien tific ‘trash’h as so far h ad n egligible or possibly m in or im pact on ven t ecosystem s, but it can h ave a lon g-term im pact on view sh eds of scien tific research areas an d th e ability of docum en tary artists to capture im ages of pristin e ven t h abitats. Cultural artifacts are occasion ally purposefully placed on th e seafloor at hydroth erm al ven ts. Perh aps th e best exam ples are in stallation s of glass ‘Plan ets’created by artist Josh Sim pson at hydroth erm al ven ts in Pacific, Atlan tic, an d In dian Ocean s (Forn ari, 20 01) an d ash es of th e late Professor Joh n Edm on d, a pion eer in th e study of th e ch em istry of hydroth erm al ven ts, at ‘Moose’(Sn ake Pit ven t field) on th e Mid-Atlan tic Ridge (Van Dover, pers. obs.). In addition to HOVs, ROVs, an d AUVs, th e scien tific com m un ity is buildin g cabled observatories, in cludin g th e US Regional Scale Network (RSN) th at in strum en ts a tecton ic plate, w ith a n ode at hydroth erm al sites on Axial Seam oun t (Juan De Fuca Ridge). Th e fun din g agen cy for th e RSN (Nation al Scien ce Foun dation ) required a site-specific En viron m en tal Assessm en t of poten tial im pacts to th e n atural en viron m en t for a n um ber of resources durin g in stallation , operation s, an d m ain ten an ce of th e RSN cabled observatory, in com plian ce w ith th e US Nation al Environ m ental Protection Act. Deploym en t an d recovery of cables, n odes, an d in strum en ts w ere deem ed to result in sh ort-term , m in or ch an ges in w ater quality an d C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 occupan cy of very sm all patch es of seabed (Cardn o TEC In c., 2013; TEC In c., 2011) an d th at th e th resh old of im pact th at w ould require an En viron m en tal Im pact Statem en t (EIS) w as n ot reached. W h ile th e in stallation of th e cabled observatory itself m ay h ave n o im pact, th e im pact of lon g-term an d in ten sified scien tific studies of Axial Seam oun t an d oth er ven t ecosystem s (e.g., th e En deavour ven ts, w w w.ocean n etw orks.ca) facilitated by th e operation of th e cabled in frastructure is of in terest, but likely to be m in or, i.e., resultin g in detectable but sm all, localized, ch an ges to ven t ecosystem s w ith little en viron m en tal con sequen ce. 4.2. Impact of commercial (exploitation) activities Im pacts of com m ercial activities are in form ed by our kn ow ledge of ven t ecosystem s, but m ost w ill rem ain th eoretical un til th e activities begin an d im pacts are experien ced an d m on itored. W h ere th e tem po an d scale of h um an activities at hydroth erm al ven ts in a given region are in ten se, cum ulative im pacts w ill n eed to be assessed an d m an aged as appropriate to en sure th ere are n ot region al losses of brood stock, gen etic diversity, species, trophic in teraction s an d com plexity, an d resilien ce, togeth er w ith ch an ges in com m un ity structure, gen etic isolation , an d th e possibility of species extin ction s, an d species in vasion s. Am on g th e com m ercial activities proposed for hydroth erm al ven ts, th e m ost ben ign m ay be tourism an d docum en tary arts, already un derw ay. Gen etic resources h ave already been developed from ven t organ ism s in tan dem w ith scien tific research; com m ercial h arvest of ven t organ ism s for secon dary m etabolites th at m ay serve as th erapeutic agents or oth er com m ercial products are so far n ot w idely reported, if th ey h ave taken place at all. Hydroth erm al an d geoth erm al en ergy sources h ave been con sidered sin ce ven ts w ere first discovered an d are still un der study. On e recen t con cept paper en vision s offsh ore gigaw att pow er station s th at extract m in erals from hydroth erm al fluids usin g th erm o-electric gen erators (Parada et al., 2012), w ith poten tial for hydrogen fuel production as w ell (Bubis et al., 1993). Conven tional, open -cut m in eral extraction of seafloor m assive sulfide deposits, associated w ith hydroth erm al ven ts, seem s th e m ost likely com m ercial activity to take place in th e n ear future (Aldh ous, 2011; Hoaglan d et al., 2010). Each of th ese activities is con sidered below. 4.2.1. Adventure tourism and documentary arts Th e UK-based Deep-Ocean Expedition s LLC (in active sin ce 2012) h as taken m ore th an 40 fee-payin g tourists to Atlan tic an d Pacific deep-sea hydroth erm al ven ts in th e MIR subm ersibles (Leary, 20 07). HOVs an d ROVs h ave been used in th e production of television , film , an d video docum en taries, in cludin g titles produced by Steph en Low an d Jam es Cam eron (Leary, 20 07; Van Dover pers. obs). Tourism an d docum en tary arts activities are relatively in frequen t an d are usually in tegrated in to m arin e scien tific research program s; th eir im pacts are in distin guish able from th ose cited above for scien tific research (Section 4.1). Tourism an d docum en tary arts h ave th e ben eficial im pact of educatin g th e public about th e deep ocean an d hydroth erm al system s an d, in th e case of tourism un der th e auspices of Deep-Ocean Expedition s, h elped to fun d scien tific research (Leary, 20 07). 4.2.2. Genetic resources Deep-sea hydroth erm al ven ts are extrem e en viron m en ts, w h ere organ ism s are adapted to tem peratures, ch em istries, sym biotic relation sh ips, an d oth er circum stan ces th at m ake ven t organ ism s of in terest to drug, en zym e, cosm etic, biofuel, an d oth er product developers (Arrieta et al., 2010; Leary, 20 04; Leary et al., 20 09; Th orn burg et al., 2010). Th ese products are of ben efit to society as th erapeutic agen ts an d in a variety of in dustrial application s. 65 Derivatives of ven t m icroorgan ism s in clude en zym es developed by Diversa Corporation (PyrolaseÔ 60, Valley Ultra-Th in Ô ), Invitrogen Corporation (Th erm alAceÔ DNA Polym erase), an d New En glan d Biolabs In c. (Deep Ven t Ò R DNA Polym erase, am on g oth ers) (Leary, 20 04). Th e Valley Ultra-Th in Ô en zym e low ers th e viscosity of corn starch , operates at h igh tem perature an d low er pH, an d allow s for m ore efficien t eth an ol production th an oth er en zym es (PR New sw ire, 28 February 20 06), an d w as estim ated to h ave an an n ual sales value of US$150 m illion (Leary et al., 20 09). To date, in terest in gen etic resources from ven ts h as in volved th erm oph ilic an d hyperth erm oph ilic prokaryotic m icroorgan ism s (Bacteria an d Arch aea) collected in lim ited quan tities durin g scien tific research for in itial gen e or product discovery (Leary et al., 20 09; Pettit, 2011). Dow n stream product developm en t often relies on laboratory cultivation , especially for m icrobes (Martin s et al., 2013; Pettit, 2011; Th orn burg et al., 2010). As such , th e en viron m en tal im pacts of gen etic resource activities on deep-sea hydroth erm al ven ts are curren tly con sidered to be n egligible or m in or. For n atural products th at m igh t even tually be derived from ven t in vertebrates (e.g., An drian asolo et al., 2011), in itial h arvest w ill likely be sm all (Th orn burg et al., 2010), but subsequen t an d m ore substan tial h arvests m ay be required (Arrieta et al., 2010). In th e absen ce of environ m ental regulation s, large h arvests of w ild ven t in vertebrate species to sustain a com m ercial en terprise are un desirable (Arrieta et al., 2010) an d, if un dertaken , m ay exceed th e size of collection s m ade durin g scien tific sam plin g an d h ave m oderate to m ajor im pacts on both th e target species an d th e ven t ecosystem , in cludin g m odified recruitm en t, size-class structure, diversity, trophic in teraction s, an d ecosystem services. Large h arvests un dertaken periodically (e.g., on an an n ual basis) as part of a com m ercial production sch em e w ould likely h ave a m ajor im pact on th e ven t ecosystem . 4.2.3. Energy and mineral harvesting Military in terest in tappin g in to deep-sea hydroth erm al ven ts to pow er seafloor listenin g devices an d oth er equipm en t began soon after th e discovery of ven ts on th e seafloor. In terest in usin g pow er from ven ts is grow in g (e.g., Hiriart et al., 2010), an d pilot gen erators for scien tific research are n earin g th e testin g ph ase. For exam ple, Mercury, ‘a solid-state, m odular, an d scalable hydro-th erm oelectric gen erator’is plan n ed for Axial Seam oun t as a pow er source for research sen sors an d AUVs (MAPC: w w w.m apcorp.com ). A m ore am bitious, com m ercial approach to a ‘deep-sea en ergy park’in cludes a th erm oelectric pow er-generatin g station com bin ed w ith m etal an d m in eral extraction from hydroth erm al fluids, desalin ation , an d hydrolysis an d hydrogen storage (Parada et al., 2012). At least on e U.S. patent h as been aw arded for a ‘hydroth erm al en ergy an d deep-sea resource recovery system ’(Marsh all, 2010). En ergy an d m in eral h arvestin g system s do n ot resurface th e ven t ecosystem as m in eral extraction of sulfide deposits w ill do, but th ey m ay in volve activities (e.g., establish in g stable con duits), th at w ould cause physical dam age (Parada et al., 2012) an d likely alter th e diffuse fluid flow s th at support hydroth erm al-ven t ecosystem s. 4.2.4. Mineral extraction Tech n ologies curren tly proposed for extraction of m in eral deposits at hydroth erm al ven ts in volve bulk rem oval of m in erals akin to an un derw ater equivalen t of terrestrial open -cut m in in g. On e proposed m eth od is m ech an ical cuttin g an d slurry tran sportation of ore th rough a riser system to a support vessel an d a return w ater pipe w h ich return s th e seaw ater separated from th e ore after rem oval of particles > 8 mm (Coffey Natural System s, 20 08), to 25e 50 m above th e seafloor (Coffey Natural System s, 20 08; Hoaglan d et al., 2010; Masuda, 2011; Sm ith an d Sm ith , 2010-2011). Oth er con cepts for com m ercial m in in g un der con sideration in clude a 66 C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 ‘grab’system (rem oval an d tran sport of m in eral deposits in a grab to a surface vessel), m agn etic separation at th e seabed, an d solution m in in g or bio-leach in g (Scott, 20 07). Th e im pacts of m in eral extraction rem ain th eoretical in th e absen ce of a pilot m in in g operation or experim en t alth ough m uch can be estim ated based on oth er seafloor operation s such as dredgin g, trench in g an d diam on d m in in g. Th ere con tin ues to be un certain ty about w h eth er m in eral extraction w ill be un dertaken at active hydroth erm al-ven t ecosystem s (Hein et al., 2013), particularly given th at h igh tem perature an d caustic ch aracteristics of ven t fluids of vigorously active black sm okers m ay be in com patible w ith extraction tech n ologies (Yam azaki, 2011). If extraction takes place at n on -active, ‘old‘ ven t system s, th ere is likely to be a differen t set of, poten tially m ore deleterious, im pacts (Van Dover, 2011a). Poten tial im pacts of a m in eral extraction activity on a hydroth erm al-ven t ecosystem fall in to tw o broad categories: causal physico-ch em ical ch an ges an d biological respon se or con sequen ce (Table 2). Th e m ain physical im pacts expected are loss of h abitat th rough rem oval of ore an d associated organ ism s, degradation of h abitat quality th rough resh apin g of th e seabed, an d m odification of fluid flux regim es. Th e in ten sity of im pacts is expected to be m ajor at th e site scale (Fig. 1). W h ile ven t ecosystem s are n aturally exposed to fallout of m in erals from black-sm oker plum es an d possibly from plum es of n earby volcan oes, th e in ten sity of sedim en t plum es gen erated durin g m in in g activities m ay be in excess of n atural exposures at th e local scale durin g certain ph ases of operation s. Im pacts to biological system s resulting from m in in g activities in clude loss of local population s w h ere ore an d organ ism s are rem oved together an d th e poten tial local extin ction of rare species. Th e ecological sign ifican ce of th e rare species is un certain , but th e im pact of th eir local loss is likely to be m in or. Likely m in or to m oderate im pacts m ay result from pum pin g w ater from n ear th e seabed at ven ts w h ere larvae of ven t in vertebrates ten d to be m ost con cen trated (Section 4.2.4.1). Min or (likely sh ort term ) im pacts m ay also be eviden t in altered beh aviors of ven t fish an d oth er m obile organ ism s th at m ay avoid or be attracted to ligh t an d/or n oise. In a region w h ere th ere is on ly a sin gle geograph ically con strain ed m in in g even t, ven t com m un ities are predicted to reestablish w ith in years, as th ey do follow in g volcan ic eruption s (Van Dover, 2011a), alth ough th ey m ay h ave structure an d fun ction differen t from w h at existed prior to m in in g. 4.2.4.1. Impact of mineral extraction on recolonization processes. On ce an im pact h as occurred, recovery of a ven t ecosystem is depen den t on both im m igration of m obile species an d successful colon ization by larvae (Adam s et al., 2012). Literature th at provides in sigh t in to factors th at m ay in fluen ce th e recovery of a ven t system is review ed h ere in th e con text of extraction activities, but apply as w ell to any h um an activity th at results in a sim ilar quality an d in ten sity of h abitat alteration . 4.2.4.1.1. Maintenance of local populations: self-recruitment and near-bottom larval densities. Th ere is gath erin g eviden ce th at, at least for som e hydroth erm al-ven t system s, in vertebrate population s are m ain tain ed by local larval supply an d reten tion durin g periods of h abitat stability (Adam s an d Mullin eaux, 20 08; Metaxas, 20 04, 2011), even w h ile gen e flow m ay be h igh from on e site to an oth er (Vrijen h oek, 2010). Ch aracteristics th at facilitate local larval supply in clude beh avioral or oth er processes th at retain larvae n ear th e seafloor, effectively m in im izin g dilution an d tran sport (e.g., Kim an d Mullin eaux, 1998; Mullin eaux et al., 1995). For exam ple, topograph ic basin s form ed by deep axial valleys (e.g., Juan de Fuca Ridge, NE Pacific) con strain circulation an d trap an d m ix larvae (McGillicuddy et al., 2010; Th om son et al., 20 03). Larval distribution s estim ated from n et tow s w ith in axial valleys m ay be h om ogen eous i.e., n o differen ce in larval abun dan ce n ear ven ts (w ith in ten s of m eters) or aw ay from ven ts (up to 5 km ; Metaxas, 20 04) or h eterogen eous, w ith h igh er abun dan ces foun d n ear ven ts (w ith in ten s of m eters) th an aw ay from ven ts (h un dreds of m eters; Mullin eaux et al., 20 05). 4.2.4.1.2. Timing of larval supply. A few studies h ave used larval traps on m oorin gs to ch aracterize th e tem poral dyn am ics of larval Ta b le 2 Types of en viron m en tal im pacts resultin g from m in eral exploitation at deep-sea hydroth erm al ven ts an d exam ples of referen ces th at m en tion th ese im pacts. Im pact Ph ysico -ch em ica l im p a ct s (ca u se) Loss of h abitat Degradation of h abitat quality (altered topograph y, substrata) Modification of fluid flux regim es (flow rates, distribution , ch em istry) Sedim en t plum e an d sedim en tation Ligh t, n oise Po t en t ia l b io lo gica l im p a ct s (r esp o n se) Elim in ation or reduction of local population s an d decreased reproductive output Loss of larvae/zooplan kton in lift system Local, region al, or global extin ction of rare species Decreased seafloor prim ary production Modification of troph ic in teraction s Decreased local diversity (gen etic, species, h abitat) Mortality or im pairm en t due to toxic sedim en ts Altered beh aviors Ot h er Poten tial Cum ulative effects (region al losses of: brood stock, gen etic diversity, species, troph ic in teraction s an d com plexity, resilien ce; ch an ges in com m un ity structure, gen etic isolation , species extin ction s, species in vasion s) Referen ces Baker et al., 2010; Coffey Natural System s, 2008; Glover an d Sm ith , 2003; Glow ka, 2000; Halfar an d Fujita, 2007; Hein et al., 2013; Ram irez-Llodra et al., 2011; Van Dover, 2007; Van Dover, 2011a,b Coffey Natural System s, 2008; Halfar an d Fujita, 2002, 2007; Van Dover, 2007, 2011a,b Baker et al., 2010; Coffey Natural System s, 2008; Glow ka, 2000, Halfar an d Fujita, 2007, van den Hove an d Moreau, 2007; Van Dover, 2007, 2011a Baker et al., 2010; Coffey Natural System s, 2008; Glow ka, 2000; Halfar an d Fujita, 2002, 2007; Ram irez-Llodra et al., 2011; Th iel, 2003; Van Dover, 2007; Van Dover, 2011a Baker et al., 2010; Coffey Natural System s, 2008; Van Dover, 2011a; Yam azaki, 2011 Baker et al., 2010; Gen a 2013; Glover an d Sm ith , 2003, van den Hove an d Moreau, 2007, Van Dover 2007, 2011a; Van Dover et al., 2011 Coffey Natural System s, 2008; Th is paper Van Dover, 2007, 2011a Van Dover, 2007 Van Dover, 2007 Coffey Natural System s, 2008; van den Hove an d Moreau, 2007; Van Dover 2007, 2011a Coffey Natural System s, 2008; Halfar an d Fujita, 2007, Van Dover, 2007, 2011a; W oodw ell, 2011 Th is paper Van Dover, 2007, 2011a,b; Van Dover et al., 2011; Vrijen h oek, 2010; th is paper C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 supply in th e vicin ity of hydroth erm al ven ts (e.g., Kh ripoun off et al., 20 08; Mullin eaux et al., 20 05). Th ese studies suggest th at supply of larvae is discon tin uous an d th at tim in g of m axim al supply of larval taxa varies from on e taxon to an oth er. W h ile season al periodicity in reproduction is suggested as on e m ech an ism th at could accoun t for discon tin uous larval supply, altern ative (n on -exclusive) explan ation s h ave also been suggested, in cludin g beh avioral in teraction s w ith turbulen ce produced by black sm okers th at could in crease residen ce tim e (Mullin eaux an d Fran ce, 1995; Mullin eaux et al., 20 05), flow con dition s m odulated by tidal variation s an d tecton ic activity (Cron e et al., 2010), or settlem en t cues (Kh ripoun off et al., 20 08). 4.2.4.1.3. Settlement cues and gregarious settlement. Larvae of m arin e in vertebrate taxa are selective in w h ere th ey settle an d th ey respon d to in ducem en t an d deterren t cues, in cludin g th ose associated w ith ch em ical an d physical ch aracters of th e environ m ent an d odors from con specifics or oth er organ ism s (m icrobial an d oth erw ise) in th e en viron m en t (review ed in Hadfield, 2011; Hadfield an d Paul, 20 01; Stein berg et al., 20 02; am on g oth ers). Observation s of gregarious settlem en t in tw o species of vestim en tiferan tubew orm s [Lamellibrachia sp. on th e Mon ow ai Volcan ic Com plex (Ton ga-Kerm adec Arc; Sh ort an d Metaxas, 2010), R. pachyptila on th e south ern East Pacific Rise (G Rouse, R Vrijen h oek, CLVan Dover, unpublish ed)] an d in m ussels (Van Dover et al., 20 01) in dicate th at th ere can be pulsed, gregarious settlem en t of larvae in ven t h abitats. Habitat degradation h as been im plicated in altered settlem en t cues an d ch an ges in th e pattern of replen ish m en t of coral-reef fish com m un ities (Feary et al., 20 07; McCorm ick et al., 2010). An th ropogen ic activities th at in terfere w ith in ductive settlem en t cues or gen erate deterren t settlem en t cues at hydroth erm al ven ts w ill in terfere w ith colon ization an d succession processes. We un derstan d little about h ow to predict th e strength an d duration of such in terference effects, but expect th at ch an ges in ch aracters such as fluid ch em istry, substratum texture, m icrotopography, an d m icrobial biofilm regen eration resulting from m in eral extraction activities m ay n ot differ quan titatively from ch an ges in th ese ch aracters th at take place follow in g a volcan ic eruption or oth er circum stan ces th at cause n ew ven ts to form , follow ed by rapid colon ization . 4.2.4.1.4. Major disturbances and changes in larval supply. Sign ifican t ch an ges in larval supply before an d after a m ajor volcan ic eruption h ave been reported (Mullin eaux et al., 2010). Th e 20 06 eruption on th e East Pacific Rise n ear 9 50 0N resurfaced an area of n early 15 km 2 alon g w 18 km of ridge crest (Soule et al., 20 07). Supply of four gastropod larval types (m easured in sedim en t traps at 6- to 7-day in tervals) declin ed sign ifican tly after th e eruption , an d on e species th at w as all but absen t prior to th e eruption d th e lim pet C. poriferad in creased in supply (Mullin eaux et al., 2010). C. porifera w as a successful colon ist in th is system (first report for th e locale) an d species-abun dan ce m atrices derived from colon ization experim en ts docum en t differen ces in pre- an d post-eruption gastropod assem blages. Th e auth ors suggest th at a com bin ation of altered larval supply an d toleran ce to altered en viron m en tal con dition s are n ot m utually exclusive an d could accoun t for th e observed pattern s. Loss of residen t population s w as correlated w ith dim in ish ed larval supply, a correlation con sisten t w ith population m ain ten an ce th rough processes th at allow for larval reten tion . In troduction of a species previously un reported for th e area is con sisten t w ith h igh gen e flow facilitated by in frequen t exch an ge of in dividuals am on g population s. Con tin ued studies w ill docum en t w h eth er th e ch an ges observed in larval supply an d colon ization represen t a ph ase of a succession al process or w h eth er th ere h as been an ecological regim e sh ift (Mullin eaux et al., 2010). Th e exten t to w h ich th e 9 50’N East Pacific Rise system d w h ere m ajor volcan ic resets of ven t h abitats occur on tim e fram es 67 approach in g th at of th e life cycle of th e dom in an t taxad is a m odel for ven t ecosystem s in oth er geological settin gs w ith differen t frequen cies of catastroph ic disturban ce, rem ains to be determ in ed. Alth ough volcan ic eruption s are in discrim in an t an d do n ot em ploy strategies to m in im ize im pacts such as establish in g setaside areas n or do th ey em ploy strategies to restore, volcan ic eruption s m ay be th e closest n atural an alog to th e scale of im pact of m in eral extraction at an active hydroth erm al system . Lesson s learn ed from larval studies follow in g eruption s in clude: W h ere larval reten tion occurs n ear n atal sites, larval supply w ill be at least tem porarily dim in ish ed follow in g an eruption or oth er disturban ce th at rem oves ben th ic adult population s (Mullin eaux et al., 2010); larval supply is likely correlated w ith ben th ic population den sity (Metaxas, 2011). Ch an ges in substratum , fluid ch em istry, an d oth er ven t properties con com itan t w ith seabed eruption s an d oth er m assive disturban ces can select for subsets of species w ith toleran ces to th e ch an ged an d ch an gin g con dition s, at least tem porarily ch an gin g th e n ature of th e ven t com m un ity (Mullin eaux et al., 2010) Tem poral variability (Mullin eaux et al., 20 05) an d stoch asticity (Mullin eaux et al., 2010) in larval supply w ill in fluen ce postdisturban ce colon ization option s an d outcom es. Colon ization success by previously rare or absen t species m ay be facilitated by n atural or an th ropogen ic resets of th e hydroth erm al cycle th at alter com petitive in teraction s in th e earliest stages of succession relative to establish ed system s (Mullin eaux et al., 2010). Th e relative im pact of m in in g or sim ilarly-scaled h um an activity on a ven t ecosystem from th e perspective of larval supply depen ds on th e size of th e local adult population th at rem ain s in th e vicin ity an d con tin ues to produce propagules, th e degree of isolation of th e site relative to larval dispersal capabilities, th e degree of ch an ge in th e geoch em ical an d geophysical settin g (Metaxas, 2011), an d on th e con sequen ces of stoch astic an d determ in istic processes related to succession an d developm en t of th e ven t com m un ity. 4.2.5. Indirect effects of human activities Global clim ate ch an ge w ould seem decoupled from any direct im pact on th e ecology of hydroth erm al-ven t ecosystem s (Glover an d Sm ith , 20 03). Variable an d elevated pCO2 an d low pH fluids in h abited by som e ben th ic ven t organ ism s can provide in sigh t in to th e m etabolic cost of sh ell deposition (Tun n icliffe et al., 20 09) an d com pen sation m ech an ism s for acidosis (Fabry et al., 20 08) un der th ese con dition s. Larvae of ven t organ ism s disperse in th e pelagic environ m ent an d som e m ay even rely on developm en t periods in relatively sh allow w ater, w h ere th e biological effects of decreasin g pH are expected to be eviden t (Don ey et al., 20 09) but th e sign ifican ce to ven t ecosystem s of a ch an gin g surface ocean is obscure at th is tim e. An th ropogen ically in duced an d sh iftin g pattern s in th e tim in g, duration , an d strength of deep-reach in g m esoscale surface eddies th at m ay tran sport propagules h un dreds of kilom eters from th eir source (Adam s et al., 2011) could ch an ge th e dyn am ics of lon g-distan ce dispersal an d larval reten tion at ven ts. But un certain ties associated w ith any assessm en t of th e im pact of clim ate ch an ge on ven t ecosystem s are substan tial. 5. Po ten t ia l m it iga t io n m ea su r es W h ile a detailed review of m itigation m easures is outside th e scope of th is paper, it is im portan t to recogn ize th at th ere m ust be a balan ce betw een resource extraction an d acceptable en viron m en tal im pact, an d th at environ m ental im pacts can be m itigated. 68 C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 Approach es to m itigation of en viron m en tal im pacts in clude avoidan ce, m in im ization , restoration , an d offset m easures. Th is m itigation h ierarchy w as establish ed for w etlan ds m itigation (US EPA an d DA, 1990) an d h as sin ce been m ore broadly adopted as a fram ew ork for en viron m en tal m an agem en t (McKen n ey an d Kiesecker, 2010). Un derlyin g m itigation fram ew orks for hydroth erm al-ven t ecosystem s m ust be kn ow ledge of th e n atural ecosystem s, in cludin g its biogeograph ic con text, biodiversity, com m un ity an d troph ic structure, con n ectivity, ecosystem services, disturban ce regim es an d com m un ity dyn am ics, etc. Th is kn ow ledge can be acquired th rough scien tific research an d th rough baselin e data collected as part of En viron m en tal Im pact Assessm en ts (EIAs) (e.g., Van Dover, 20 07; Collin s et al., 2013). Mon itorin g program s at appropriate spatial an d tem poral scales yield addition al kn ow ledge an d in form adaptive m an agem en t (Bosch en et al., 2013). Avoidan ce is a key first step in th e m itigation h ierarchy an d it is th e approach advocated by th e scien tific com m un ity for m itigatin g th e im pacts of deep-sea research . Over-sam plin g an d un in ten tion al an d in ten tion al dam age to sulfide structures are am on g th e im pacts to ven t ecosystem s resulting from scien tific research . Con cern about th ese im pacts prom pted developm en t of a volun tary code of con duct for scien tific research at ven ts th at em ph asizes avoidan ce of activities th at m igh t h ave lon g-lastin g an d deleterious effects (Devey et al., 20 07). Action s to m itigate im pacts of oth er activities, such as scien tific drillin g deep in to th e seabed, also in clude avoidan ce of sen sitive areas w h ere ven t an im als are particularly abun dan t (Jun iper et al., 1992). Marin e Protected Areas (MPAs) con tribute to m itigation by establish avoidan ce zon es. To date, a n um ber of coun tries h ave created Marin e Protected Areas (MPAs) for hydroth erm al ven t ecosystem s (Van Dover et al., 2011), in cludin g Can ada (En deavour Hydroth erm al Ven ts MPA), Mexico (Guaym as Basin an d Eastern Pacific Rise Hydroth erm al Ven ts San ctuary), Portugal (Azores Hydroth erm al Ven t MPAs, an d th e Un ited States (Marian a Tren ch Nation al Mon um en t). Th ere are curren tly n o hydroth erm al-ven t MPAs in in tern ation al w aters, but hydroth erm al-ven t ecosystem s are frequen tly cited as m eetin g several of th e criteria of ecologically or biologically sign ifican t areas (EBSAs) in areas beyon d n ation al jurisdiction an d in n eed of protection (e.g., Ardron et al., 20 09; Taran to et al., 2012). Marin e protected areas th at in clude hydroth erm al ven ts an d th at m an age h um an activities can im plem en t avoidan ce m easures w ith obligatory com plian ce (Van Dover et al., 2012). Establish m en t of n etw orks of ch em osyn th etic ecosystem reserves as part of m in in g regulation s h as been recom m en ded to th e In tern ation al Seabed Auth ority as a m easure to address issues of population m ain ten an ce an d gen e flow for system s w h ere m in eral extraction or oth er h um an activities m igh t put ven t ecosystem s at risk (Van Dover et al., 2011, 2012). Such an approach is m odeled after th e proposal for protection of Areas of Particular En viron m en tal In terest (APEIs) for m an gan ese n odule beds un der th e jurisdiction of th e In tern ation al Seabed Auth ority (Weddin g et al., 2013). Th e poten tial for self-recruitm en t of population s at ven ts suggests larval supply is at risk w h ere an th ropogen ic disturban ce in cludes rem oval of brood stock. In such cases, th e local abun dan ce of eggs an d larvae of ven t in vertebrates an d suitable colon ization con dition s w ould be dim in ish ed. Th e scale of th is im pact rem ains to be assessed for any h um an activity at th e seabed, but m itigation m easures th at protect brood stocks th rough avoidan ce m ay prove to be an im portan t m an agem en t tool. Because hydroth erm al ven t ecosystem s m ay prove to be relatively resilien t to extractive activities, strategies th at stagger h um an activities th rough both tim e an d space could reduce th e likelih ood an d degree of cum ulative im pacts w ith in a region . Such a tem poral strategy w ould require th e ecosystem to recover at an im pacted ven t field before activity at an oth er ven t field is perm itted. Risk m an agem en t an d m itigation efforts related to m in eral extraction in clude establish m en t of un -m in ed biological corridors (tem porary refuges) w ith in a m in e site to aid in recovery of th e biota an d site reh abilitation , as described in th e voluntary Code for Environ m ental Man agem en t of Marin e Min in g (In tern ation al Marin e Min erals Society, 2011). Th ese an d addition al approach es to m in im ize im pacts of m in eral extraction an d th eir application to a future extractive operation are presen ted in Coffey Natural System s (20 08). Th ese approach es in clude i) establish m en t of an un -m in ed area th at can serve as both a referen ce site for com parative studies an d as a source of colon ists (Collin s et al., 2012), ii) n etw orks of perm an en t an d tem porary set-aside areas w ith in th e m in e site th at can also serve as sources of colon ists, iii) deploym en t of 3dim en sion al structures (artificial substrates) to provide topograph ic relief an d structural stability for developin g sulfide deposits follow in g m in in g, an d relocation of an im als w ith in th e site to facilitate re-establish m en t of ch aracteristic in vertebrates. Min im ization approach es m ay also be applied to en gin eerin g design (Coffey Natural System s, 20 08; Bosch en et al., 2013), in cludin g, in th e case of deep-sea m in in g, system s an d approach es th at m in im ize n oise an d sedim en t plum es, biodegradable lubrican ts, etc. Restoration or reh abilitation of ven t ecosystem s an d oth er degraded deep-sea h abitats sh ould be con sidered to address residual im pacts as part of any m itigation h ierarchy, un dertaken on ly after all effort h as been m ade to avoid an d m in im ize im pacts (Van Dover et al., 2014). Given th e apparen t n atural resilien ce of ven t ecosystem s, th e scope for un assisted recoveryd som etim es referred to as ‘passive restoration ’d sh ould also be assessed an d con sidered. Th ere is scope for developin g m itigation action s th at tim e activities (e.g., to reproductive periodicity, tidal periodicity) to m in im ize im pacts, in addition to spatial set-asides. We do n ot yet h ave a soph isticated un derstan din g of rates of n atural recovery for m ost ven t system s or of tem poral variability in larval supply at ven ts, but buildin g th is kn ow ledge w ill h elp to determ in e w h eth er m itigation opportun ities exist th at m ay be tim ed to, for exam ple, periods of m in im al larval supply. Biodiversity offset fram ew orks do n ot yet exist for hydroth erm al system s an d sh ould be an area of active discussion an d en gagem ent am on g stakeh olders in th e con text of deep-sea m in in g. In lan dbased system s, offset ben efits sh ould accrue to th e affected area (e.g., w atersh ed) an d sh ould provide ben efits in addition to any existin g con servation value (McKen n ey an d Kiesecker, 2010); such ben efits could be ch allen gin g to develop in a deep-sea con text. An altern ative (or addition al) offset fram ew ork h as recen tly been proposed follow in g a polluter-pays prin ciple th at w ould fun d deepsea ecosystem reserves, research , an d restoration (Barbier et al., 2014). 6. Su m m a r y Hydroth erm al-ven t ecosystem s h ave been h ubs for scien tific activities sin ce th e m om en t of th eir discovery an d th ey h ave been of com m ercial in terest sin ce alm ost th e sam e m om en t because ven ts form m etal-rich sulfide deposits. For decades, scien tific activities dom in ated, occasion ally resultin g in readily apparen t im pacts over a localized area (i.e., w ith in a ven t field). From th is scien tific w ork, an d especially from studies related to respon ses of ven t com m un ities to a variety of n atural disturban ces, ven t ecosystem s are in ferred to be am on g th e m ost resilien t ecosystem s in th e deep sea. Despite th is resilien ce, scien tific an d civil com m un ities h ave paid in creasin g atten tion to detrim en tal im pacts of scien tific sam plin g an d oth er activities on ven t ecosystem s, resultin g in a code of con duct for scien tific research an d in C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 establish m en t of protected areas w ith in an d beyon d n ation al jurisdiction s. Most extan t or proposed com m ercial activities (tourism , docum en tary arts, n on -h arvest gen etic resource developm en t, m in eral exploration ) h ave im pacts equal to or less th an th ose of scien tific research . Because of un certain ties in th e scale an d tech n ology associated w ith proposed en ergy extraction at ven ts, th e im pacts of th is com m ercial sector are n ot w ell con strain ed. Min eral extraction is curren tly th e sin gle proposed en terprise th at could h ave m ajor, local, im pacts on ven t ecosystem s; th e im pact of a sin gle m in in g even t is arguably expected to be on th e scale of a volcan ic eruption . Avoidan ce, m in im ization , an d restoration m easures durin g an d follow in g m in in g or oth er h um an activities on th e seabed can m itigate im pacts, an d m ay be especially effective in system s th at are n aturally resilien t, as in th e case of hydroth erm al ven t ecosystem s. Th ese approach es m ust be in form ed by baselin e data an d m on itorin g efforts. Offset fram ew orks n eed to be developed for th e m in in g sector as a key part of th e m itigation h ierarchy. Of particular con cern is th e im pact of cum ulative m in in g even ts in a region , w ith poten tial for species extin ction s an d un an ticipated ch an ges in ecosystem structure an d fun ction if th e extractive activities aren ’t appropriately m an aged. Most atten tion h as been paid to ben th ic com pon en ts of ven t ecosystem s in th e face of m in in g activities, but m ost ven t in vertebrate species un dergo a pelagic larval ph ase. Our un derstan din g of th e im pacts of m in eral extraction tech n ologies on larval dem ograph ics an d on recolon ization dyn am ics an d process is em bryonic, but en surin g th at th ere are adequate brood stocks an d sources of larvae to support un assisted recovery of a ven t site is a key m itigation approach . Ack n ow led gm en t s Professor Robert Ken n edy en couraged th is update on th e ecology of deep-sea hydroth erm al ven ts in relation to an th ropogen ic disturban ce as a con tribution to th e 2013 European Marin e Biology Sym posium . S Sm ith , J Wagn er, an d an onym ous review ers provided useful com m en ts an d suggestion s, but th e view s expressed in th e m an uscript reflect solely th ose of th e auth or. Th is m an uscript w as w ritten w ith partial support from th e Nich olas Sch ool of th e En viron m en t, Duke Un iversity. Refer en ces Adam s, D.K., Mullin eaux, L.S., 20 08. Supply of gastropod larvae to hydroth erm al ven ts reflects from local of gastropod larvae to hydroth erm al tran sport from local larval sources. Lim n ol. Ocean ogr. 53, 1945e 1955. Adam s, D.K., McGillicuddy, D.J., Zam udio, L., Th urn h err, A.M., Lian g, X., Rouxel, O., Germ an , C.R., Mullin eaux, L.S., 2011. Surface-gen erated m esoscale eddies tran sport deep-sea products from hydroth erm al ven ts. Scien ce 332, 580e 583. Adam s, D.K., Arellan o, S.M., Goven ar, B., 2012. Larval dispersal: ven t life in th e w ater colum n . Ocean ography 25, 256e 268. Aldh ous, P., 2011. Deep sea ven ts m in in g operation s to begin in 2013. New. Sci. 211, 6e 9. An drian asolo, E.H., Haram aty, L., McPh ail, K.L., W h ite, E., Vetrian i, C., Falkow ski, P., Lutz, R., 2011. Bathym odiolam ides A an d B, ceram ide derivatives from a deepsea hydroth erm al ven t in vertebrate m ussel, Bathymodiolus thermophilus. J. Nat. Prod. 74, 842e 846. Ardron , J., Dun n , D., Corrigan , C., Gjerde, K., Halpin , P., et al., 20 09. Defin in g Ecologically or Biologically Sign ifican t Areas in th e Open Ocean s an d Deep Seas: An alysis, Tools, Resources an d Illustration s. Available: h ttps://w w w.cbd.in t/doc/ m eetin gs/m ar/ew bcsim a-01/oth er/ew bcsim a-01-m ultiorgs-en .pdf (accessed 23.02.14.). Arrieta, J.M., Arn aud-Haon d, S., Duarte, C.M., 2010. W h at lies un dern eath : con servin g th e ocean s’ gen etic resources. Proc. Natl. Acad. Sci. U. S. A. 107, 18318e 18324. Baker, M.C., Ram irez-Llodra, E.Z., Tyler, P.A., Germ an, C.R., Boetius, A., Cordes, E.E., Dubilier, N., Fish er, C.R., Levin, L.A., Metaxas, A., Row den , A.A., Santos, R., Sh an k, T.M., Van Dover, C.L., Young, C.M., 2010. Biogeography, ecology, an d vuln erability of chem osynthetic ecosystem s in th e deep sea. In : McIn tyre, A.D. (Ed.), Life in th e World’s Oceans. W iley-Blackw ell Publish in g, Oxford, pp.161e182. 69 Barbier, E.B., Moren o-Mateos, D., Rogers, A.D., Aron son , J., Pen dleton , L., Dan ovaro, R., Hen ry, L.-A., Morato, T., Ardron , J., Van Dover, C.L., 2014. Nature 504, 576e 477. Barreyre, T., Soule, A., Soh n , R.A., 2011. Dispersal of volcan iclasts durin g deep-sea eruption s: settlin g velocities an d en train m en t in buoyan t seaw ater plum es. J. Volcan ol. Geoth erm . Res. 205, 84e 93. Bein art, R.A., San ders, J.G., Faure, B., Sylva, S.P., Lee, R.W., Becker, E.L., Gartm an , A., Luth er, G.W., Seew ald, J.S., Fish er, C.R., Girguis, P.R., 2012. Eviden ce for th e role of en dosym bion ts in regional-scale h abitat partition in g by hydroth erm al ven t sym bioses. Proc. Natl. Acad. Sci. U. S. A. 109, E3241e E3245. Bergquist, D.C., An dras, J.P., McNelis, T., How lett, S., van Horn , M.J., Fish er, C.R., 20 03. Succession in Gulf of Mexico cold seep vestim en tiferan aggregations: th e im portan ce of spatial variability. Mar. Ecol. 24, 31e 4 4. Billett, D.S.M., Bett, B.J., Reid, W.D.K., Boorm an , B., Priede, M., 2010. Lon g-term ch an ge in th e abyssal NE Atlan tic: th e ‘Am perim a Even t’revisited. Deep Sea Res. 57, 1406e 1417. Bin n s, R., Decker, D., 1998. Th e m in eral w ealth of th e Bism arck Sea. Sci. Am . Presen ts, 92e 97. Bosch en , R.E., Row den , A.A., Clark, M.R., Gardn er, J.P.A., 2013. Min in g of deep-sea seafloor m assive sulfides: a review of th e deposits, th eir ben th ic com m un ities, im pacts from m in in g, regulatory fram ew orks an d m an agem en t strategies. Ocean . Coast. Man ag. 84, 54e 67. Bubis, Y.V., Moloch n ikov, Z.N., Bruyakin , Y.V., 1993. Hydrogen fuel production in th e ocean usin g th e en ergy of ‘black sm okers’. Mar. Geores. Geotech n ol. 11, 259e 261. Butterfield, D.A., Jon asson , I.R., Massoth , G.A., Feely, R.A., Roe, K.K., Em bley, R.E., Holden , J.F., McDuff, R.E., Lilley, M.D., Delan ey, J.D., 1997. Seafloor eruption s an d evolution of hydroth erm al fluid ch em istry. Ph ilos. Tran s. Royal Soc. Lon d. A 355, 369e 386. Carbotte, S.M., Can ales, J.P., Neim ovic, M.R., Carton , H., Mutter, J.C., 2012. Recen t seism ic studies at th e east Pacific rise 8 20’e 10 10’N an d en deavour segm en t. Ocean ography 25, 10 0e 112. Cardn o TEC, 2013. Fin al Supplem en tal En viron m en tal Report for Modification s in th e Design , In frastructure, an d In stallation of th e Coastal-Scale Nodes Region alScale Nodes, an d Global-Scale Nodes of th e Ocean Observatories In itiative (OOI). Bain bridge WA. h ttp://w w w.n sf.gov/geo/oce/envcom p/ooi/ooi-post-sseafin al-ser-19-feb-2013-ver-2.pdf (accessed 11.06.13.). Caress, D.W., Clague, D.A., Paduan , J.B., Martin , J.F., Dreyer, B.M., Ch adw ick, W.W., Den ny, A., Kelley, D.S., 2012. Repeat bathym etric surveys at 1-m etre resolution of lava flow s erupted at Axial Seam oun t in April 2011. Nat. Geosci. 5, 483e 488. Ch adw ick, W.W., Noon er, S.L., Butterfield, D.A., Lilley, M.D., 2012. Seafloor deform ation an d forecasts of th e April 2011 eruption at Axial Seam oun t. Nat. Geosci. 5, 474e 477. Ch am berlain , S.C., 20 0 0. Vision in hydroth erm al ven t sh rim p. Ph il. Tran s. Royal Soc. Lon d. B 355, 1151e1154. Ch erkash ov, G., Porosh in a, I., Stepan ova, T., Ivan ov, V., Bel’ten ev, V., Lazareva, L., Rozh destven skaya, I., Sam ovarov, M., Sh ilov, V., Glasby, G.P., Fouquet, Y., Kuzn etsov, V., 2010. Seafloor Massive Sulfides from th e n orth ern equatorial Mid-Atlan tic Ridge: n ew discoveries an d perspectives. Mar. Geores. Geotech n ol. 28, 222e 239. Clark, M.R., O’Sh ea, S., 20 01. Hydroth erm al ven t an d seam oun t faun a from th e south ern Kerm adec Ridge, New Zealan d. In ter-Ridge New s 10, 14e 17. Codarin , A., W ysocki, L.E., Ladich , F., Picciulin , M., 20 09. Effects of am bien t an d boat n oise on h earin g an d com m un ication in th ree fish species livin g in a Marin e Protected Area (Miram are, Italy). Mar. Pollut. Bull. 58, 1880e 1887. Coffey Natural System s, 2008. Environ m ental Im pact Statem en t: Solw ara 1 Project (accessed 13.06.13.). h ttp://w w w.cares.n autilusm in erals.com /assets/docum en ts/ m ain %20docum en t%20text.pdf. Collin s, P.C., Ken n edy, R., Van Dover, C.L., 2012. A biological survey m eth od applied to seafloor m assive sulfides (SMS) w ith con tagiously distributed hydroth erm alven t faun a. Mar. Ecol. Prog. Ser. 452, 89e 107. Collin s, P.C., Croot, P., Carlsson , C., Colaco, A., Greh an, A., Hyeon g, K., Ken n edy, R., Moh n , C., Sm ith , S., Yam am oto, H., Row den , A., 2013. A prim er for th e en viron m en tal im pact assessm en t of m in in g at seafloor m assive sulfide deposits. Mar. Policy 42, 198e 209. Copley, J.T.P., Tyler, P.A., Van Dover, C.L., Sch ultz, A., Dickson , P., Sin gh , S., 1999. Suban n ual tem poral variation in faun al distribution s at th e TAG hydroth erm al m oun d (26 N, Mid-Atlan tic Ridge). P.S.Z.N.: Mar. Ecol. 20, 291e 306. Copley, J.T.P., Jorgen sen , P.B.K., Soh n , R.A., 20 07. Assessm en t of decadal-scale ecological ch an ge at a deep Mid-Atlan tic hydroth erm al ven t an d reproductive tim e-series in th e sh rim p Rimicaris exoculata. J. Mar. Biol. Assoc. U. K. 87, 859e 867. Cordes, E.E., Bergquist, D.C., Fish er, C.R., 20 09. Macroecology of Gulf of Mexico cold seeps. An n u. Rev. Mar. Sci. 1, 143e 168. Corliss, J.B., Dym on d, J., Gordon , L.I., Edm on d, J.M., Von Herzen , R.P., Ballard, R.D., Green , K., W illiam s, D., Bain bridge, A., Cran e, K., van An del, T., 1979. Subm arin e th erm al sprin gs on th e Galapagos Rift. Scien ce 203, 1073e 1083. Coyken dall, D.K., Joh n son , S.B., Karl, S.A., Lutz, R.A., Vrijen h oek, R.C., 2011. Gen etic diversity an d dem ographic in stability in Riftia pachyptila tubew orm s from eastern Pacific hydroth erm al ven ts. BMC Evol. Biol. 11, 96. Cron e, T.J., W ilcock, W.S.D., McDuff, R.E., 2010. Flow rate perturbation s in a black sm oker hydroth erm al ven t in respon se to a m id-ocean ridge earth quake sw arm . Geoch em . Geophys. Geosyst. 11, 1e13. Cuvelier, D., Sarradin , P.-M., Sarrazin , J., Colaço, A., Copley, J.T., Desbruyères, D., Glover, A.G., San tos, R.S., Tyler, P.A., 2011. Hydroth erm al faun al assem blages an d 70 C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 h abitat ch aracterization at th e Eiffel Tow er edifice (Lucky Strike, Mid-Atlan tic Ridge). Mar. Ecol. 32, 243e 255. Deardorff, N.D., Cash m an , K.V., Ch adw ick, W.W., 2011. Observation s of eruptive plum e dyn am ics an d pyroclastic deposits from subm arin e explosive eruption s at NW Rota-1, Marian a Arc. J. Volcan ol. Geoth erm . Res. 202, 47e 59. Delan ey, J.R., Robigou, V., McDuff, R.E., Tivey, M.K., 1992. Geology of a vigorous hydroth erm al system on th e En deavour Segm en t, Juan De Fuca Ridge. J. Geophys. Res. 97, 19663. Devey, C.W., Fish er, C.R., Scott, S., 20 07. Respon sible scien ce at hydroth erm al ven ts. Ocean ography 20, 162e 171. Don ey, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., 20 09. Ocean acidification : th e oth er CO2 problem . An n u. Rev. Mar. Sci. 1, 169e 192. Dziak, R.P., Boh n en stieh l, D.R., Matsum oto, H., Fow ler, M.J., Haxel, J.H., Tolstoy, M., Waldh auser, F., 20 09. Jan uary 20 06 seafloor-spreadin g even t at 9 50 0N, East Pacific Rise: ridge dike in trusion an d tran sform fault in teraction s from region al hydroacoustic data. Geoch em . Geophys. Geosyst. 10. Em bley, R.W., Ch adw ick, W.W., Baker, E.T., Butterfield, D.A., Resin g, J.A., de Ron de, C.E.J., Tun n icliffe, V., Lupton , J.E., Jun iper, S.K., Rubin , K.H., Stern , R.J., Lebon , G.T., Nakam ura, K., Merle, S.G., Hein , J.R., W ien s, D.A., Tam ura, Y., 20 06. Lon g-term eruptive activity at a subm arin e arc volcan o. Nature 441, 494e 497. Fabry, V.J., Seibel, B.A., Feely, R.A., Orr, J.C., 20 08. Im pacts of ocean acidification on m arin e faun a an d ecosystem processes. ICES J. Mar. Sci. 65, 414e 432. Feary, D.A., Alm any, G.R., McCorm ick, M.I., Jon es, G.P., 20 07. Habitat ch oice, recruitm en t an d th e respon se of coral reef fish es to coral degradation . Oecologia 153, 727e 737. Feely, R.A., Massoth , G.J., Trefry, J.H., Baker, E.T., Paulson , A.J., Lebon , G.T., 1994. Com position an d sedim en tation of hydroth erm al plum e particles from North Cleft segm en t, Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 99, 4985e 50 06. Forn ari, D., 20 01. h ttp://w w w.divediscover.w h oi.edu/expedition 4/daily/ss010421/. (accessed 04.06.13.). Gen a, K., 2013. Deep-sea m in in g of subm arin e hydroth erm al deposits an d its possible en viron m en tal im pact in Man us Basin , Papua New Guin ea. Proc. Earth Plan et. Sci. 6, 226e 233. Girguis, P.R., Lee, R.W., 20 06. Th erm al preferen ce an d tolerance of alvin ellids. Scien ce 312, 231. Glover, A.G., Sm ith , C.R., 20 03. Th e deep-sea floor ecosystem : curren t status an d prospects of an th ropogen ic ch an ge by th e year 2025. En viron . Con serv. 30, 219e 241. Glover, A.G., Gooday, A.J., Bailey, D.M., Billett, D.S.M., Ch evaldon n é, P., Colaço, A., Copley, J., Cuvelier, D., Desbruyères, D., Kalogeropoulou, V., Klages, M., Lam padaraiou, N., Lejeusn e, C., Mestre, N.C., Paterson , G.L.J., Perez, T., Ruh l, H., Sarrazin , J., Soltw edel, T., Soto, E.H., Th atje, S., Tselepides, A., Van Gaever, S., Van reusel, A., 2010. Tem poral ch an ge in deep-sea ben th ic ecosystem s: a review of th e eviden ce from recen t tim e-series studies. Adv. Mar. Biol., 1e 95. Glow ka, L., 20 0 0. Bioprospectin g, alien in vasive species, an d hydroth erm al ven ts: th ree em ergin g legal issues in th e con servation an d sustain able use of biodiversity. Tulan e En viron . Law J. 329, 329e 360. Glow ka, L., 20 03. Puttin g m arin e scien tific research on a sustain able footin g at hydroth erm al ven ts. Mar. Policy 27, 303e 312. Godet, L., Zeln io, K.A., Van Dover, C.L., 2011. Scien tists as stakeh olders in con servation of hydroth erm al ven ts. Con serv. Biol. 25, 214e 222. Gooday, A.J., 20 02. Biological respon ses to season ally varyin g fluxes of organ ic m atter to th e ocean floor: a review. J. Ocean ogr. 58, 305e 332. Grassle, J.F., 1986. Th e ecology of deep-sea hydroth erm al ven t com m un ities. Adv. Mar. Biol. 23, 301e 362. Grassle, J.F., San ders, H., 1973. Life h istories an d th e role of disturban ce. Deep-Sea Res. 20, 643e 659. Gregg, T.K.P., Forn ari, D.J., Perfit, M.R., Haym on , R.M., Fin k, J.H., 1996. Rapid em placem en t m id-ocean Ridge lava flow East Pac. Rise 9 46 0e 51 0N, 14 4, E1e E7. Greh an , A.J., Jun iper, S.K., 1996. Clam distribution an d subsurface hydroth erm al processes at Ch ow der Hill (Middle Valley), Juan de Fuca Ridge. Mar. Ecol. Prog. Ser. 130, 105e 115. Hadfield, M.G., 2011. Biofilm s an d m arin e in vertebrate larvae: w h at bacteria produce th at larvae use to ch oose settlem en t sites. An n u. Rev. Mar. Sci. 3, 453e 470. Hadfield, M.G., Paul, V.J., 20 01. Natural ch em ical cues for settlem en t an d m etam orph osis of m arin e in vertebrate larvae. In : McClin tock, J.B., Baker, B.J. (Eds.), Marin e Ch em ical Ecology. CRC Press, Boca Raton , Florida, pp. 431e 461. Halfar, J., Fujita, R.M., 20 02. Precaution ary m an agem ent of deep-sea m in in g. Mar. Policy 26, 103e 106. Halfar, J., Fujita, R.M., 20 07. Dan ger of deep-sea m in in g. Scien ce 316, 987. Han n in gton , M., Jam ieson , J., Mon ecke, T., Petersen , S., Beaulieu, S., 2011. Th e abun dan ce of seafloor m assive sulfide deposits. Geology 39, 1155e 1158. Haym on , R.M., Forn ari, D.J., Von Dam m , K.L., Lilley, M.D., Perfit, M.R., Edm on d, J.M., Sh an ks, W.C., Lutz, R.A., Grebm eier, J.M., Carbotte, S., Wrigh t, D., McLaugh lin , E., Sm ith , M., Beedle, N., Olson , E., 1993. Volcan ic eruption of th e m id-ocean ridge alon g th e East Pacific Rise crest at 9 45e 52 0N: direct subm ersible observation s of seafloor ph en om en a associated w ith an eruption even t in April, 1991. Earth Plan et. Sci. Lett. 119, 85e 101. Hein , J.R., Mizell, K., Kosch in sky, A., Con rad, T.A., 2013. Deep-ocean m in eral deposits as a source of critical m etals for h igh - an d green -tech n ology application s: com parison w ith lan d-based resources. Ore Geol. Rev. 51, 1e14. Herrin g, P.J., Dixon , D.R., 1998. Exten sive deep-sea dispersal of postlarval sh rim p from a hydroth erm al ven t. Deep-Sea Res. 45, 2105e 2118. Herrin g, P.J., Gaten , E., Sh elton , P.M.J., 1999. Are ven t sh rim ps blin ded by scien ce. Nature 398, 116. Hiriart, G., Prol-Ledesm a, R.M., Alcocer, S., Espín dola, S., 2010. Subm arin e geoth erm ics; hydroth erm al ven ts an d electricity gen eration . In : Proceedin gs World Geoth erm al Con gress 2010, Bali, In don esia, pp. 1e 6. Hoaglan d, P., Beaulieu, S., Tivey, M.A., Eggert, R.G., Germ an , C.R., Glow ka, L., Lin , J., 2010. Deep-sea m in in g of seafloor m assive sulfides. Mar. Policy 34, 728e 732. Horn bach , M.J., Ruppel, C., Van Dover, C.L., 20 07. Th ree-dim en sion al structure of fluid con duits sustain in g an active deep m arin e cold seep. Geophys. Res. Lett. 34, L05601. In tern ation al Marin e Min erals Society, 2011. Code for En viron m en tal Man agem en t (accessed 20.09.13.). h ttp://w w w .im m soc.org/IMMS_code.h tm . Jin ks, R.N., Markley, T.L., Taylor, E.E., Perovich , G., Dittel, A.I., Epifan io, C.E., Cron in , T.W., 20 02. Adaptive visual m etam orph os.is in a deep-sea hydroth erm al ven t crab. Nature 420, 68e 70. Joh n son , K.S., Ch ildress, J.J., Hessler, R.R., Sakam oto-Arn old, C.M., Beeh ler, C.L., 1988. Ch em ical an d biological in teraction s in th e Rose Garden hydroth erm al ven t field, Galapagos Spreadin g Cen ter. Deep-Sea Res. 3, 1723e 174 4. Joh n son , H.P., Hutn ak, M., Dziak, R.P., Fox, C.G., Urcuyo, I., Cow en , J.P., Nabelek, J., Fish er, C., 20 0 0. Earth quake-in duced ch an ges in a hydroth erm al system on th e Juan de Fuca m id-ocean ridge. Nature 407, 174e 177. Jun iper, S.K., Tun n icliffe, V., South w ard, E.C., 1992. Hydroth erm al ven ts in turbidite sedim en ts on a n orth east Pacific spreadin g cen ter: organ ism s an d substratum at an ocean drillin g site. Can . J. Zool. 70, 1792e 1809. Karl, D.M., McMurtry, G.M., Malahoff, A., Garcia, M.O., 1988. Loih i Seam oun t, Haw aii: a m id-plate volcan o w ith a distinctive hydroth erm al system . Nature 335, 532e 535. Kelly, N., Metaxas, A., 2010. Understan din g population dyn am ics of a n um erically dom in an t species at hydroth erm al ven ts: a m atrix m odelin g approach . Mar. Ecol. Prog. Ser. 403, 113e 128. Kh ripoun off, A., Van griesh eim , A., Crassous, P., Segon zac, M., Lafon , V., Warén , A., 20 08. Tem poral variation of curren ts, particulate flux an d organ ism supply at tw o deep-sea hydroth erm al fields of th e Azores Triple Jun ction . Deep Sea Res. Part 55, 532e 551. Kim , S.L., Mullin eaux, L.S., 1998. Distribution an d n ear-bottom tran sport of larvae an d oth er plan kton at hydroth erm al ven ts. Deep Sea Res. Part II 45, 423e 4 40. Lan gm uir, C., Hum ph ris, S., Forn ari, D., Van Dover, C., Von Dam m , K., Tivey, M.K., Colodn er, D., , et al.Ch arlou, J.-L., Deson ie, D., W ilson , C., Fouquet, Y., Klin kh am m er, G., Bougault, H., 1997. Hydroth erm al ven ts n ear a m an tle h ot spot: th e Lucky Strike Ven t Field at 37 N on th e Mid-Atlan tic Ridge. Earth Plan et. Sci. Lett. 148, 69e 91. Leary, D.K., 20 04. Bioprospectin g an d th e gen etic resources of hydroth erm al ven ts on th e h igh seas: w h at is th e existin g legal position , w h ere are w e h eadin g an d w h at are our option s. Macquarie J. In t. Com p. En viron . Law 1, 137e 178. Leary, D.K., 20 07. In tern ation al Law an d th e Gen etic Resources of th e Deep Sea. Martin us Nijh off Publish ers, Leiden , Neth erlan ds. Leary, D., Vierros, M., Ham on , G., Arico, S., Mon agle, C., 20 09. Marin e gen etic resources: a review of scien tific an d com m ercial in terest. Mar. Policy 33, 183e 194. Llodra, E.R., Tyler, P.A., Copley, J.T.P., 20 0 0. Reproductive biology of th ree caridean sh rim p, Rimicaris exoculata, Chorocaris chacei an d Mirocaris fortunata (Caridea: Decapoda), from hydroth erm al ven ts. J. Mar. Biol. Assoc. U. K. 80, 473e 484. Luth er, G.W., Glazer, B.T., Ma, S., Trouw borst, R.E., Moore, T.S., Metzger, E., Kraiya, C., Waite, T.J., Drusch el, G., Sun dby, B., Taillefert, M., Nuzzio, D.B., Sh an k, T.M., Lew is, B.L., Bren del, P.J., 20 08. Use of voltam m etric solid-state (m icro)electrodes for studyin g biogeoch em ical processes: laboratory m easurem en ts to real tim e m easurem en ts w ith an In Situ Electroch em ical An alyzer (ISEA). Mar. Ch em . 108, 221e 235. Luth er, G.W., Gartm an , A., Yucel, M., Madison , A.S., Moore, T.S., Nees, H.A., Nuzzio, D.B., Sen , A., Lutz, R.A., Sh an k, T.M., Fish er, C.R., 2012. Ch em istry, tem perature, an d faun al distribution s at diffuse-flow hydroth erm al ven ts: com parison of tw o geologically distin ct ridge system s. Ocean ography 25, 234e 245. Lutz, R.A., Sh an k, T.M., Forn ari, D.J., Haym on, R.M., Lilley, M.D., Von Dam m , K.L., Desbruyeres, D., 1994. Rapid grow th at deep-sea ven ts. Nature 371, 663e 664. Macdon ald, K., Becker, K., Spiess, F.N., Ballard, R.D., 1980. Hydroth erm al h eat flux of th e ‘black sm oker’ven ts on th e East Pacific Rise. Earth Plan et. Sci. Lett. 48, 1e 7. Marcus, J., Tun n icliffe, V., Butterfield, D.A., 20 09. Post-eruption succession of m acrofaun al com m un ities at diffuse flow hydroth erm al ven ts on Axial Volcan o, Juan de Fuca Ridge, North east Pacific. Deep-Sea Res. Part II 56, 1586e 1598. Marsh all, B., 2010. Hydroth erm al en ergy an d deep-sea resource recovery system . US Paten t No. 80 01784 B2: h ttp://w w w.google.com /paten ts/US80 01784. (accessed 13.06.13.). Martin s, A., Ten reiro, T., An drade, G., Gadan h o, M., Ch aves, S., Abran tes, M., Calado, Ten reiro, P.R., Vieira, H., 2013. Ph otoprotective bioactivity presen t in a un ique m arin e bacteria collection from Portuguese deep-sea hydroth erm al ven ts. Mar. Drugs 11, 1506e 1523. Masuda, N., 2011. Ch allen ges tow ard th e sea-floor m assive sulfide m in in g w ith m ore advan ced techn ologies. In : 2011 IEEE Sym posium on Un derw ater Tech n ology an d Worksh op on Scien tific Use of Subm arin e Cables an d Related Tech n ologies, pp. 1e 4. McClain , C.R., Allen , A.P., Titten sor, D.P., Rex, M.A., 2012. En ergetics of life on th e deep seafloor. Proc. Natl. Acad. Sci. U. S. A. 109, 15366e 15371. McCorm ick, M.I., Moore, J.A.Y., Mun day, P.L., 2010. In fluen ce of h abitat degradation on fish replen ish m en t. Coral Reefs 29, 537e 546. McGillicuddy, D.J., Lavelle, J.W., Th urn h err, A.M., Kosnyrev, V.K., Mullin eaux, L.S., 2010. Larval dispersion alon g an axially sym m etric m id-ocean ridge. Deep Sea Res. Part 57, 880e 892. McKen n ey, B.A., Kiesecker, J.M., 2010. Policy developm en t for biodiversity offsets: a review of offset fram ew orks. En viron . Man ag. 45, 165e 176. C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 Metaxas, A., 20 04. Spatial an d tem poral pattern s in larval supply at hydroth erm al ven ts in th e North east Pacific Ocean . Lim n ol. Ocean ogr. 49, 1949e 1956. Metaxas, A., 2011. Spatial pattern s of larval abun dan ce at hydroth erm al ven ts on seam ounts: eviden ce for recruitm en t lim itation . Mar. Ecol. Prog. Ser. 437,103e 117. Moalic, Y., Desbruyères, D., Duarte, C.M., Rozen feld, A.F., Bach raty, C., Arn audHaon d, S., 2012. Biogeography revisited w ith n etw ork th eory: retracin g th e h istory of hydroth erm al ven t com m un ities. Syst. Biol. 61, 127e 137. Mullin eaux, L.S., Fran ce, S.C., 1995. Dispersal m ech an ism s of deep-sea hydroth erm al ven t faun a. In : Hum ph ris, S.E., et al. (Eds.), Seafloor Hydroth erm al System s: Physical, Ch em ical, Biological, an d Geological In teraction s, Geophysical Mon ograph s Series 91. AGU, Wash in gton , D.C, pp. 408e 424. Mullin eaux, L.S., W iebe, P.H., Baker, E.T., 1995. Larvae of ben th ic in vertebrates in hydroth erm al ven t plum es over Juan de Fuca Ridge. Mar. Biol. 122, 585e 596. Mullin eaux, L.S., Mills, S.W., Sw eetm an , A.K., Beaudreau, A.H., Metaxas, A., Hun t, H.L., 20 05. Vertical, lateral an d tem poral structure in larval distribution s at hydroth erm al ven ts. Mar. Ecol. Prog. Ser. 293, 1e16. Mullin eaux, L.S., Mich eli, F., Peterson , C.H., Len ih an , H.S., Markus, N., 20 09. Im prin t of past en viron m en tal regim es on structure an d succession of a deep-sea hydroth erm al ven t com m un ity. Oecologia 161, 387e 40 0. Mullin eaux, L.S., Adam s, D.K., Mills, S.W., Beaulieu, S.E., 2010. Larvae from afar colon ize deep-sea hydroth erm al ven ts after a catastroph ic eruption . Proc. Natl. Acad. Sci. U. S. A. 107, 7829e 7834. Murray, R.J., W h eeler, A.J., Freiwald, A., 20 06. Reefs of th e deep: th e biology an d geology of cold-w ater coral ecosystem s. Scien ce 312, 543e 547. Nees, H.A., Moore, T.S., Mullaugh , K.M., Holyoke, R.R., Jan zen , C.P., Ma, S., Metzger, E., Waite, T.J., Yü cel, M., Lutz, R.A., Sh an k, T.M., Vetrian i, C., Nuzzio, D.B., Luth er, G.W., 20 08. Hydroth erm al ven t m ussel h abitat ch em istry: pre- an d post-eruption at 9 50 0 North on th e East Pacific Rise. J. Sh ellfish Res. 27, 169e 175. Parada, J., Fen g, X., Hauerh of, E., Suzuki, R., Abubakar, U., 2012. Th e deep-sea en ergy park: h arvestin g hydroth erm al en ergy for seabed exploration . In : Th e LRET Collegium 2012 Series, vol. 3. Un iversity of South am pton , UK, 128 pp. Pettit, R.K., 2011. Culturability an d secon dary m etabolite diversity of extrem e m icrobes: expan din g con tribution of deep sea an d deep-sea ven t m icrobes to n atural product discovery. Mar. Biotech n ol. 13, 1e11. Podow ski, E.l., Ma, S., Luth er, G.W., Wardrop, D., Fish er, C.R., 2010. Biotic an d abiotic factors affectin g distribution s of m egafaun a in diffuse flow on an desite an d basalt alon g th e Eastern Lau Spreadin g Cen ter, Ton ga. Mar. Ecol. Prog. Ser. 418, 25e 45. Popper, A.N., 20 03. Effects of an th ropogen ic soun ds on fish es. Fish eries 28, 24e 31. Ram irez-Llodra, E., Bran dt, A., Dan ovaro, R., de Mol, B., Escobar, E., Germ an , C.R., Levin , L.A., Arbizu, P.M., Buh l-Morten sen , P., Narayan asw am y, B.E., Sm ith , C.R., Titten sor, D.P., Tyler, P.A., Van reusel, A., Vecch ion e, M., 2010. Deep, diverse an d defin itely differen t: un ique attributes of th e w orld ’s largest ecosystem . Biogeoscien ces 7, 2851e 2899. Ram irez-Llodra, E., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., Escobar, E., Levin , L.A., Men ot, L., Row den , A.A., Sm ith , C.R., Van Dover, C.L., 2011. Man an d th e last great w ildern ess: h um an im pact on th e deep sea. PloS On e 6, e22588. Robert, K., On th an k, K.L., Jun iper, S.K., Lee, R.W., 2012. Sm all-scale th erm al respon ses of hydroth erm al ven t polyn oid polych aetes: prelim in ary in situ experim en ts an d m eth odological developm en t. J. Exp. Mar. Biol. Ecol 420-421, 69e 76. Roberts, J.M., W h eeler, A.J., Freiw ald, A., 20 06. Reefs of th e deep: th e biology an d geology of cold-w ater coral ecosystem s. Scien ce 312, 543e 547. Rogers, A.D., Tyler, P.A., Con n elly, D.P., Copley, J.T., Jam es, R., Larter, R.D., Lin se, K., Mills, R.A., Garabato, A.N., Pan cost, R.D., Pearce, D.A., Polun in , N.V.C., Germ an , C.R., Sh an k, T., Boersch -Supan , P.H., Alker, B.J., Aquilin a, A., Ben n ett, S.A., Clarke, A., Din ley, R.J.J., Grah am , A.G.C., Green , D.R.H., Haw kes, J.A., Hepburn , L., Hilario, A., Huven n e, V.A., Marsh , L., Ram irez-Llodra, E., Reid, W.D.K., Roterm an , C.N., Sw eeting, C.J., Th atje, S., Zw irglm aier, K., 2012. Th e discovery of n ew deep-sea hydroth erm al ven t com m un ities in th e south ern ocean an d im plication s for biogeography. PLoS Biol. 10, e10 01234. Ron a, P.A., 20 08. Th e ch an gin g vision of m arin e m in erals. Ore Geol. Rev. 33, 618e 666. Rubin , K.H., Soule, S.A., Forn ari, D.J., Clague, D.A., Em bley, R.W., Caress, D.W., 2012. Volcan ic eruption s in th e deep sea. Ocean ography 25, 142e 147. Ruh l, H.A., 20 07. Abun dan ce an d size distribution dyn am ics of abyssal epiben th ic m egafaun a in th e North east Pacific. Ecology 88, 1250e 1262. Sarrazin , J., Robigou, V., Jun iper, S.K., Delan ey, J.R., 1997. Biological an d geological dyn am ics over four years on a h igh -tem perature sulfide structure at th e Juan de Fuca ridge hydroth erm al observatory. Mar. Ecol. Prog. Ser. 153, 5e 24. Sarrazin , J., Levesque, C., Jun iper, S.K., Tivey, M.K., 20 02. Mosaic com m un ity dyn am ics on Juan de Fuca Ridge sulph ide edifices: substratum , tem perature an d im plication s for troph ic structure. Cah . Biol. Mar. 43, 275e 279. Sch eirer, D.S., Sh an k, T.M., Forn ari, D.J., 20 06. Tem perature variation s at diffuse an d focused flow hydroth erm al ven t sites alon g th e n orth ern East Pacific Rise. Geoch em . Geophys. Geosyst. 7. Sh an k, T.M., Forn ari, D.J., Von Dam m , K.L., Lilley, M.D., Haym on , R.M., Lutz, R.A., 1998. Tem poral an d spatial pattern s of biological com m un ity developm en t at n ascen t deep-sea hydroth erm al ven ts (9 50 0N, East Pacific Rise). Deep Sea Res. Part II 45, 465e 515. Sh ort, J., Metaxas, A., 2010. Gregarious settlem en t of tubew orm s at deep-sea hydroth erm al ven ts on th e Ton gae Kerm adec Arc, South Pacific. J. Mar. Biol. Assoc. U. K. 91, 15e 22. 71 Sm ith , C.R., Baco, A., 20 03. Ecology of w h ale falls at th e deep-sea floor. Ocean ogr. Mar. Biol. An n u. Rev. 41, 311e 354. Sm ith , G., Sm ith , S., 2010e 2011. Min eral production h eads to th e deep. Ch em . En g. 834-835, 30e 32. Sm ith , C.R., Berelson , W., DeMaster, D.J., 1997. Latitudin al variation s in ben th ic processes in th e abyssal equatorial pacific: con trol by biogen ic particle flux. Deep-Sea Res. Part II 44, 2295e 2317. Soule, S.A., Forn ari, D.J., Perfit, M.R., Rubin, K.H., 20 07. New in sigh ts in to m id-ocean ridge volcan ic processes from th e 20 05e 20 06 eruption of th e East Pacific Rise, 9 46 0Ne 9 56 0N. Geology 35, 1079e 1082. Stein berg, P.D., de Nys, R., Kjelleberg, S., 20 02. Ch em ical cues for surface colon ization . J. Ch em . Ecol. 28, 1935e 1951. Ston er, A.W., Ryer, C.H., Parker, S.J., Auster, P.J., Wakefield, W.W., 20 08. Evaluatin g th e role of fish beh avior in surveys con ducted w ith un derw ater veh icles. Can . J. Fish . Aquat. Sci. 65, 1230e 1243. Takai, K., Mottl, M.J., Nielsen , S.H.H., th e IODP Expedition 331 Scien tists, 2012. IODP expedition 331: stron g an d expan sive subseafloor hydroth erm al activities in th e Okin aw a Trough . Sci. Drill. 13, 19e 27. Taran to, G.H., Kvile, K.Ø., Pitch er, T.J., Morato, T., 2012. An ecosystem evaluation fram ew ork for global seam oun t con servation an d m an agem en t. PLoS On e 7, e42950. TEC, In c, 2011. Site-Specific Environ m en tal Assessm en t for th e National Scien ce Foun dation -fun ded Ocean Observatories In itiative (OOI). TEC, In c. Bain bridge WA. h ttp://w w w.n sf.gov/geo/oce/en vcom p/ooi/ooi-fin al-ssea-31jan 11.pdf (accessed 13.06.13.). Teixeira, S., Cam bon -Bon avita, M.-A., Serrão, E.A., Desbruyéres, D., Arn audHaon d, S., 2011. Recen t population expan sion an d con n ectivity in th e hydroth erm al sh rim p Rimicaris exoculata alon g th e Mid-Atlan tic Ridge. J. Biogeogr. 38, 564e 574. Th iel, H., 20 03. An th ropogen ic im pacts on th e deep sea. In : Tyler, P.A. (Ed.), Ecosystem s of th e World, Ecosystem s of th e Deep Ocean , vol. 28. Elsevier, Am sterdam , pp. 427e 472. Th iem , Ø., Ravagn an , E., Fosså, J.H., Bern tsen , J., 20 06. Food supply m ech an ism s for cold-w ater corals alon g a con tin en tal sh elf edge. J. Mar. Syst. 60, 207e 219. Th om son , R.E., Mih ály, S.F., Rabin ovich , A.B., 20 03. Con strain ed circulation at en deavour ridge facilitates colon ization by ven t larvae. Nature 424, 545e 549. Th orn burg, C.C., Zabriskie, T.M., McPh ail, K.L., 2010. Deep-sea hydroth erm al ven ts: poten tial h ot spots for n atural products discovery? J. Nat. Prod. 73, 489e 499. Tivey, M.K., Bradley, A.M., Joyce, T.M., Kadko, D., 20 02. In sigh ts in to tide-related variability at sea floor hydroth erm al ven ts from tim e-series tem perature m easurem en ts. Earth Plan et. Sci. Lett. 202, 693e 707. Tryon, M.D., Hen ry, P., Hilton, D.R., 2012. Quantifyin g subm arin e fluid seep activity along the n orth Anatolian fault zon e in the Sea of Marm ara. Mar. Geol. 315e 318, 15e 28. Tun n icliffe, V., 1990. Observation s on th e effects of sam plin g on hydroth erm al ven t h abitat an d faun a of Axial Seam oun t, Juan De Fuca Ridge. J. Geophys. Res. 95, 12961e12966. Tun n icliffe, V., Em bley, R.W., Holden , J.F., Butterfield, D.A., Massoth , G.J., Jun iper, S.K., 1997. Biological colon ization of n ew hydroth erm al ven ts follow in g an eruption on Juan De Fuca Ridge. Deep Sea Res. Part 44, 1627e 164 4. Tun n icliffe, V., Davies, K.T.A., Butterfield, D.A., Em bley, R.W., Rose, J.M., Ch adw ick, W.W., 20 09. Survival of m ussels in extrem ely acidic w aters on a subm arin e volcan o. Nat. Geosci. 2, 34 4e 348. Tyler, P.A., Youn g, C.M., 1999. Reproduction an d dispersal at ven ts an d cold seeps. J. Mar. Biol. Assoc. U. K. 79, 193e 208. US En viron m en tal Protection Agen cy & US Departm en t of th e Arm y (US EPA an d DA), 1990. Mem oran dum of Agreem en t Betw een th e En viron m en tal Protection Agen cy an d th e Departm en t of th e Arm y Con cern in g th e Determ in ation of Mitigation Un der th e Clean Water Act Section 404(B)(1) Guidelin es. van den Hove, S., Moreau, V., 20 07. Deep-sea Biodiversity an d Ecosystem s: a Scopin g Report on th eir Socio-econ om y, Man agem en t an d Govern an ce. UNEP Cam bridge, UK, 77 pp. Van Dover, C.L., 20 0 0. Th e Ecology of Deep-sea Hydroth erm al Ven ts. Prin ceton Un iversity Press. Van Dover, C.L., 20 02. Com m un ity structure of m ussel beds at deep-sea hydroth erm al ven ts. Mar. Ecol. Prog. Ser. 230, 137e 158. Van Dover, C.L., 20 07. Th e biological en viron m en t of polym etallic sulph ides deposits, th e potential im pact of exploration an d m in in g on th is en viron m en t, an d data required to establish en viron m en tal baselin es in exploration areas. In : Polym etallic Sulph ides an d Cobalt-rich Ferrom an gan ese Crusts Deposits: Establish m en t of En viron m en tal Baselin es an d an Associated Mon itorin g Program m e durin g Exploration . Proceedin gs of th e In tern ation al Seabed Auth ority’s Worksh op h eld in Kin gston , Jam aica, 6e 10 Septem ber 20 04. Prepared by Offices of Resources an d En viron m en tal Mon itorin g (OREM), pp. 169e 190. In tern ation al Seabed Auth ority, Kin gston , Jam aica: h ttp://w w w.isa.org.jm /files/ docum en ts/EN/Worksh ops/20 04/Proceedin gs-ae.pdf. (accessed 13.06.13.). Van Dover, C.L., 2011a. Min in g seafloor m assive sulph ides an d biodiversity: w h at is at risk? ICES J. Mar. Sci. 68, 341e 348. Van Dover, C.L., 2011b. Tigh ten regulation s on deep-sea m in in g. Nature 470, 31e 33. Van Dover, C.L., Trask, J.L., 20 0 0. Diversity at deep-sea hydroth erm al ven t an d in tertidal m ussel beds. Mar. Ecol. Prog. Ser. 195, 169e 178. Van Dover, C.L., Szuts, E.Z., Ch am berlain, S.C., Can n , J.R., 1989. A n ovel eye in ‘eyeless’ sh rim p from hydroth erm al ven ts of th e Mid-Atlan tic Ridge. Nature 337, 458e 460. Van Dover, C.L., Jen kin s, C.D., Turn ipseed, M., 20 01. Corrallin g of larvae in th e deep sea. J. Mar. Biol. Assoc. U. K. 81, 823. 72 C.L. Van Dover / Marine Environmental Research 102 (2014) 59e 72 Van Dover, C.L., Germ an , C.R., Speer, K.G., Parson , L.M., Vrijen h oek, R.C., 20 02. Evolution an d biogeography of deep-sea ven t an d seep in vertebrates. Scien ce 295, 1253e 1257. Van Dover, C.L., Ward, M.E., Scott, J.L., Underdow n , J., An derson , B., Gustafson , C., W h alen , M., Carn egie, R.B., 20 07. A fun gal epizootic in m ussels at a deep-sea hydroth erm al ven t. Mar. Ecol. 28, 54e 62. Van Dover, C.L., Sm ith , C.R., Ardron , J., Arn aud-Haon d, S., Beaudoin , Y., Bezaury, J., Bolan d, G., Billett, D., Carr, M., Ch erkash ov, G., Cook, A., DeLeo, F., Dun n , D., Fish er, C.R., Godet, L., Gjerde, K., Halpin , P., Levin , L., Lodge, M., Men ot, L., Miller, K., Milton , D., Naudts, L., Nugen t, C., Pen dleton , L., Plouviez, S., Row den , A., San tos, R., Sh an k, T., Sm ith , S., Tao, C., Tawake, A., Th urn h err, A., Treude, T., 2011. En viron m en tal Man agem en t of Deep-Sea Ch em osyn th etic Ecosystem s: Justification of an d Con sideration s for a Spatially Based Approach. In tern ation al Seabed Auth ority, Kin gston Jam aica, 90 pp. Van Dover, C.L., Sm ith , C.R., Ardron , J., Dun n , D., Gjerde, K., Levin , L., Sm ith , S., 2012. Design atin g n etw orks of ch em osyn th etic ecosystem reserves in th e deep sea. Mar. Policy 36, 378e 381. Van Dover, C.L., Aron son , J., Pen dleton , L., Sm ith , S., Arn aud-Haon d, S., Moren oMateos, D., Barbier, E., et al., 2014. Ecological restoration in th e deep sea: Desiderata. Mar. Pol 44, 98e 106. Voigh t, J.R., Lee, R.W., Reft, A.J., Bates, A.E., 2012. Scien tific gear as a vector for n on n ative species at deep-sea hydroth erm al ven ts. Con serv. Biol. 26, 938e 942. Von Dam m , K.L., 1995. Con trols on th e ch em istry an d tem poral variability of seafloor hydroth erm al fluids. In : Hum ph ris, S.E., Zieren berg, R.A., Mullin eaux, L.S., Th om son , R.E. (Eds.), Seafloor Hydroth erm al System s: Physical, Ch em ical, Biological, an d Geoch em ical In teraction s, Geophysical Mon ograph Series, 91. AGU, Wash in gton , D.C, pp. 222e 247. Vrijen h oek, R.C., 2010. Gen etic diversity an d con n ectivity of deep-sea hydroth erm al ven t m etapopulation s. Mol. Ecol. 19, 4391e 4 411. Weddin g, L.M., Friedlan der, A.M., Kittin ger, J.N., Watlin g, L., Gain es, S.D., Ben n ett, M., Hardy, S.M., Sm ith , C.R., 2013. From prin ciples to practice: a spatial approach to system atic con servation plan n in g in th e deep sea. Proc. Royal Soc. B 280, 20131684. W h ittaker, R.J., Trian tis, K.A., Ladle, R.J., 2010. A gen eral dyn am ic th eory of ocean ic islan d biogeography: exten din g th e MacArth ur-Wilson Th eory to accom m odate th e rise an d fall of volcan ic islan ds. In : Losos, J.B., Ricklefs, R.E. (Eds.), Th e Th eory of Islan d Biogeography Revisited. Prin ceton Un iversity Press, pp. 88e 115. Woodw ell, G.M., 2011. Curb deep-sea m in in g n ow. Nature 471, 36. Yam azaki, T., 2011. Im apcts of upcom in g deep-sea m in in g. In : Brun n , S.D. (Ed.), En gin eerin g Earth : th e Im pacts of Megaen gin eerin g Projects. Sprin ger, pp. 275e 296. Zielin ski, F.U., Gen n erich , H.-H., Borow ski, C., Wen zh öfer, F., Dubilier, N., 2011. In situ m easurem en ts of hydrogen sulfide, oxygen , an d tem perature in diffuse fluids of an ultram afic-h osted hydroth erm al ven t field (Logatch ev, 14 45 0N, Mid-Atlan tic Ridge): im plication s for ch em osym biotic bathym odiolin m ussels. Geoch em . Geophys. Geosyst. 12, 1e 21.
© Copyright 2026 Paperzz