Name: Date: Period

Name:
Date:
Secondary Math I – 5.5 Assignment: Properties of Rational Exponents
Period:
Mr. Heiner
Name of Formula
Formula
Definition of Variables
Volume of a Sphere
4
𝑉 = πœ‹π‘Ÿ 3
3
π‘Ÿ = π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ 
Period of a Pendulum
𝐿
𝑇 β‰ˆ 2πœ‹βˆš
𝑔
𝐿 = π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘π‘’π‘›π‘‘π‘’π‘™π‘’π‘š
𝑔 = π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› 𝑑𝑒𝑒 π‘‘π‘œ π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘¦
Wingspan of a Bird
𝐿 = 2.43𝑀 5000
1663
𝑀 = π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘π‘–π‘Ÿπ‘‘
1. Use the formulas in the table to answer the questions.
a. Determine the radius of a sphere with a volume of 904.32 cubic feet. Use 3.14 for Ο€. Show your work.
b. Trevor and Yasmine have rewritten the formula for the period of a pendulum using rational exponents.
Their answers are shown below. Determine which student rewrote the formula correctly, and explain
the mistake the other student made.
1
1
𝐿 βˆ’2
𝐿 2
Trevor: 𝑇 β‰ˆ 2πœ‹ (𝑔)
Yasmine: 𝑇 β‰ˆ 2πœ‹ (𝑔)
c. Rewrite the formula for the length of the wingspan of a bird using radicals and exponents. Explain how
you determined your answer.
8 βˆ’3
2. Mr. Ashman writes the expression (27) on the board and asks his students to simplify the expression
completely. The work of three students is shown below. Analyze each students work and determine who
simplified the expression correctly. Explain the mistakes the other students made.
Simplify each expression completely.
Ex. √75π‘₯ 3 𝑦 = 5π‘₯ √3π‘₯𝑦
5. 8π‘₯ 3 βˆ™ (2π‘₯ 2 )4
Evaluate each expression.
3
Ex. √216 = 6
3. √81π‘Ž5
3
4. √256𝑔7 β„Ž2
24𝑔2 β„Žβˆ’3
(2𝑔)4 β„Ž0
7. (2π‘₯ 3 )2 βˆ™ π‘₯ 4
3
9. βˆšβˆ’125
3
12. βˆšβˆ’8
7
15. βˆšβˆ’1024
16. √5
3
17. √31
19. 6βˆšπ‘¦
20. βˆšπ‘§
6.
8. √64
3
11. √729
4
14. βˆšβˆ’128
10. βˆšβˆ’343
13. √645
4
3
3
5
Write each radical as a power.
1
4
Ex. √15 = 154
3
18. √π‘₯
Write each power as a radical.
1
3
Ex. 123 = √12
1
21. 75
1
1
23. π‘Ž2
24. 𝑑5
Write each expression in radical form.
2
3
3
Ex. 53 = √52 = √25
3
28. π‘₯ 5
2
26. 85
4
29. 𝑦 3
Write each expression in rational exponent form. Simplify when possible.
3
5
4
31. √84
Ex. √63 = 64
33. βˆšπ‘›5
4
34. βˆšπ‘7
4
1
22. 184
1
25. 𝑐 6
3
27. 184
1
30. 𝑐 6
3
32. √122