HOMEWORK #5 – SOLUTIONS Page 920 2 3 6 f ( x, y, z ) = x + yz, P (1, 3,1) , u = , , 7 7 7 10) 1 1 1 iˆ + ⋅ zĵ + ⋅ yk̂ 2 x + yz 2 x + yz 2 x + yz a) ∇f = b) ∇f ](1,3,1) = c) 2 + 3 + 18 23 fu = ∇f ⋅ u = = 28 28 26) 1 ˆ 1 3 1 1 3 i+ ĵ + k̂ = iˆ + ĵ + k̂ 4 4 4 2 4 2 4 2 4 f ( x, y, z ) = tan ( x + 2y + 3z ) , ( −5,1,1) ∇f = sec 2 ( x + 2y + 3z ) , 2 sec 2 ( x + 2y + 3z ) , 3sec 2 ( x + 2y + 3z ) ∇f ]( −5,1,1) = sec 2 0, 2 sec 2 0, 3sec 2 0 = 1, 2, 3 = direction ∇f ( −5,1,1) = 14 = max. rate of change 34) z = 1000 − 0.005x 2 − 0.01y 2 , ( 60, 40, 966 ) a) u = − ĵ south ∇f = −.01xiˆ − .02yĵ ⎤⎦ ( 60,40 ) = −.6, −.8 m fu = ∇f ⋅ u = +.8 ascending m b) −1 1 v = −iˆ + ĵ ( NW ) ⇒ u = , 2 2 .8 −.2 m .6 fu = ∇f ⋅ u = − = , descending 2 2 2 m c) ∇f = −.6, −.8 is the direction of largest slope 44) −.6, −.8 = 1 m ⇒ tan θ = 1 ⇒ θ = 45 m yz = ln ( x + z ) , ( 0, 0,1) F ( x, y, z ) = ln ( x + z ) − yz ∇F = 1 1 , −z, − y ⇒ ∇F ( 0, 0,1) = 1, −1,1 x+z x+z a) 1( x − 0 ) − 1( y − 0 ) + 1( z − 1) = 0 ⇒ x − y + z = 1 b) n = 1, −1,1 or x = t, y = −t, z = 1 + t Page 931 6) f ( x, y ) = x 3 y + 12x 2 − 8y fx = 3x 2 y + 24x = 0 fy = x 3 − 8 = 0 ⇒ x = 2 ∴ fx = 3 ⋅ 2 2 y + 24 ⋅ 2 = 0 ⇒ y = −4 critical point is ( 2, −4 ) . fxx = 6xy + 24 ]( 2,−4 ) = −48 + 24 = −24 < 0 fyy = 0; fxy = 3 x 2 ⎤⎦ 2,−4 = 12 ( ) D = fxx fyy − fxy2 = −24 ⋅ 0 − 12 2 = −144 ⇒ ( 2, −4 ) is a saddle point. 8) f ( x, y ) = e4 y− x 2 − y2 fx = e4 y− x 2 − y2 ⋅ ( −2x ) = 0 ⇒ x = 0 fy = e4 y− x 2 − y2 ⋅ ( 4 − 2y ) = 0 ⇒ y = 2 fxx = −2e4 y− x 2 − y2 + ( −2x ) e4 y− x fyy = −2e4 y− x 2 − y2 + ( 4 − 2y ) e4 y− x fxy = −2x ⋅ e4 y− x ( 2 − y2 2 2 − y2 ) ( 0, 2 ) ⋅ ( −2x ) ⎤⎦( 0,2 ) = −2e4 < 0 2 − y2 4 ⎤ ⎦( 0,2 ) = −2e ( 4 − 2y )⎤⎦(0,2) = 0 D = −2e4 −2e4 − 0 2 = 4e8 > 0 ∴( 0, 2 ) is a local maximum. f ( 0, 2 ) = e4 ≈ 54.6 10) f ( x, y ) = 2x 3 + xy 2 + 5x 2 + y 2 fx = 6x 2 + y 2 + 10x = 0 fy = 2xy + 2y = 0 ⇒ y ( 2x + 2 ) = 0 ⇒ y = 0 or x = −1 y = 0 : 6x 2 + 10x = 0 ⇒ x = 0, − 5 ⎛ 5 ⎞ ⇒ ( 0, 0 ) , ⎜ − , 0 ⎟ ⎝ 3 ⎠ 3 x = −1 : 6 + y 2 − 10 = 0 ⇒ y = ±2 ⇒ ( −1, ±2 ) ⎛ −5 ⎞ fxx = 12x + 10 ]( 0,0 ) = 10; ⎜ , 0 ⎟ = −10; ( −1, ±2 ) = −2 ⎝ 3 ⎠ ⎛ −5 ⎞ −4 fyy = 2x + 2 ]( 0,0 ) = 2; ⎜ , 0 ⎟ = ; ( −1, ±2 ) = 0 ⎝ 3 ⎠ 3 ⎛ −5 ⎞ fxy = 2 y ]( 0,0 ) = 0; ⎜ , 0 ⎟ = 0; ( −1, ±2 ) = 4 or − 4 ⎝ 3 ⎠ D ( 0, 0 ) = 10 ( 2 ) − 0 2 = 20 > 0 ⇒ local min, f = 0 40 ⎛ −5 ⎞ ⎛ −4 ⎞ D ⎜ , 0 ⎟ = −10 ⎜ ⎟ − 0 2 = > 0 ⇒ local max, f = 4.6 ⎝ 3 ⎠ ⎝ 3⎠ 3 D ( −1, 2 ) = −2 ( 0 ) − 4 2 = −16 < 0 ⇒ saddle point 2 D ( −1, −2 ) = −2 ( 0 ) − ( −4 ) = −16 < 0 ⇒ saddle point 18) f ( x, y ) = sin x sin y, − π < x < π , − π < y < π fx = cos x sin y = 0 fy = sin x cos y = 0 ⇒ sin x = 0 or cos y = 0 ⇒ π π ⇒x=± 2 2 ⎛ π π⎞ (0, 0) ⎜⎝ ± , ± ⎟⎠ 2 2 ⎛π π⎞ fxx = − sin x sin y ]( 0,0 ) = 0; ⎜ , ⎟ = −1 < 0 ⎝ 2 2⎠ ⎛ π −π ⎞ ⎛ −π π ⎞ ⎛ −π −π ⎞ , ⎟ = 1 > 0; ⎜ , = −1 < 0 ⎜⎝ , ⎟⎠ = 1 > 0; ⎜⎝ ⎝ 2 2 ⎟⎠ 2 2 2 2⎠ fyy = − sin x sin y ⇒ same as above. x=0⇒y=0 y=± fxy = cos x cos y ]( 0,0 ) = 1; ]± ⎛⎜⎝ π ,± π ⎞⎟⎠ 2 =0 2 D ( 0, 0 ) = 0 ⋅ 0 − 12 = −1 < 0 ⇒ saddle po int ⎛ π π⎞ D⎜ ± ,± ⎟ = 1− 0 = 1> 0 ⇒ ⎝ 2 2⎠ ⎛π π⎞ ⎛ π π⎞ ⎜⎝ , ⎟⎠ and ⎜⎝ − , − ⎟⎠ local maxima, f = 1 2 2 2 2 ⎛ π −π ⎞ ⎛ π π⎞ ⎜⎝ , ⎟⎠ and ⎜⎝ − , ⎟⎠ local minima, f = −1 2 2 2 2 46) V = 1000 cm 3 = xyz ⇒ z = 1000 xy min S = 2xy + 2xz + 2yz ⎛ 1000 ⎞ ⎛ 1000 ⎞ 2000 2000 f ( x, y ) = 2xy + 2x ⎜ + 2y ⎜ = 2xy + + ⎟ ⎟ ⎝ xy ⎠ ⎝ xy ⎠ y x 2000 1000 fx = 2y − 2 = 0 ⇒ y = 2 x x 2000 x4 fy = 2x − 2 = 0 ⇒ ( from above) x − =0⇒ y 1000 x 3 = 1000 ⇒ x = 10 x = 10 ⇒ y = 10, z = 10cm and S = 600cm 2 4000 4000 fxx = 3 , fyy = 3 , fxy = 2 x y D (10,10 ) = 4 ⋅ 4 − 2 = 14 > 0 and fxx > 0 ⇒ local minimum.
© Copyright 2026 Paperzz