1011微 微乙 01-05班 班期 末 考 解 答 和 評 分 標 準 sin x − x cos x . x→0 tan−1 x − sin x 1. (10%) 求 lim Solution: 由定理4.3(l’Hopital 法則): ( sinx x ) + cos x sin x − x cos x cos x − cos x + x sin x sin x + x cos x lim = lim = lim = lim = 1 −2 x→0 tan−1 x − sin x x→0 x→0 −2x x→0 + sin x ( 1+x + ( sinx x ) 2 ) − cos x (1+x2 )2 (1+x2 )2 1+1 = −2 −2 + 1 評分標準: (1)使用l’Hopital法則:第一次微對3分,第二次對3分,接下來的運算及答案4分。 (2)使用泰勒展式:一個展式對3分共9分,接下來的運算及答案1分。 Page 1 of 8 2. (10%) 計算 Z x2 1 dx. + 3x + 2 Solution: Z Z x + 1 dx 1 1 +C[5%] = ln |x+1|−ln |x+2|+C. 2. = − dx[5%] = ln x2 + 3x + 2 x+1 x+2 x + 2 Note. 1. No constant C or absolute value for ln ⇒ −2% 2. Other methods: partial grades, 3% or 5%. Page 2 of 8 3. (10%) 計算 Z x2 sin x dx. Solution: Z Z Z 2 2 2 x sin xdx = − x d(cos x) = −[x cos x − 2 cos x(dx2 )].......................(6 pts) Z Z 2 2 = −x cos x + 2 x cos xdx = −x cos x + 2 x(d sin x) Z 2 = −x cos x + 2[x sin x − sin xdx]...........................................(3 pts) = −x2 cos x + 2x sin x + 2 cos x + C, C ∈ R...............................(1 pt) Page 3 of 8 4. (10%) 求函數 y = sin x, y = cos x 的曲線在 x = 0 到 x = π 之間所夾的面積大小. Solution: The area is equal to the following integration. Z π | sin x − cos x|dx 0 π π and sin x ≥ cos x if ≤ x ≤ π, the area is equal to 4 4 Z π Z π 4 (cos x − sin x)dx + (sin x − cos x)dx Because cos x ≥ sin x if 0 ≤ x ≤ (1) π 4 0 Then Z π π 4 Z | sin x − cos x|dx = 0 Z π (cos x − sin x)dx + (sin x − cos x)dx π 4 0 π = (sin x + cos x) |04 +(− cos x − sin x) |ππ 4 √ √ = ( 2 − 1) + (1 + 2) √ = 2 2 Grading evaluation: 1. If you write down the equation (1), you will get 2 points. 2. If one of the two integrations in the equation (1) is right, you will get 4 points, respectively. Page 4 of 8 1 5. (15%) 求函數 f (x) = x2 由 x = 0 到 x = 1 的曲線長度. 2 Solution: f 0 (x) = x Z 1√ length l = 1 + x2 dx (7 pts) 0 Z πp 4 π π 1 + tan2 θ sec2 θdθ (if we let x = tan θ,θ ∈ (− , ), then dx = sec2 θdθ) = 2 2 0 Z π 4 = sec3 θdθ (3 pts) 0 Z π 4 sec θd tan θ = 0 Z π π 4 4 = sec θ tan θ|0 − sec θ tan2 θdθ 0 Z π π 4 4 = sec θ tan θ|0 − sec θ(sec2 θ − 1)dθ 0 Z π Z π π 4 4 3 4 = sec θ tan θ|0 − sec θdθ + sec θdθ 0 0 Z π π 4 4 = (sec θ tan θ + ln | sec θ + tan θ|)|0 − sec3 θdθ 0 Z π π 4 1 ⇒l= sec3 θdθ = (sec θ tan θ + ln | sec θ + tan θ|)|04 2 0 √ √ 2 ln ( 2 + 1) + (5 pts) = 2 2 Page 5 of 8 √ 6. (15%) 求 x = 2y , y = 1 及 x = 0 所圍成的區域繞 y 軸旋轉之體積. 1 + y2 Solution: Z y=1 x2 dy 2 Zy=0 1 √ 2y π dy (10 points) 1 + y2 Z0 1 2y π dy (1 + y 2 )2 0 Z 1 du (3 points) π 2 0 (1+ u) 1 π − 1 + u 0 π (2 points) 2 The volume = π = = = = = Page 6 of 8 7. (10%) 求 y = tan x 4 , y = 及 x = 0 所圍成的區域繞 y 軸旋轉之體積. x π Solution: We have the following simple observations: tan x =1 x→0 x 0 tan x 2x − sin(2x) π (ii ) = > 0, ∀x ∈ (0, ) =⇒ 2 2 x 2x cos x 2 (i ) lim tan x π % on (0, ) x 2 4 π tan x = has a unique solution which is x = clearly. x π 4 4 π tan x ≤ on (0, ] (iv ) x π 4 (iii ) From (ii ), Hence, Area = = = = = π/4 4 tan x 2π x − dx π x 0 Z π/4 4 2π x − tan x dx π 0 h iπ/4 2 h iπ/4 2π x2 + 2π ln | cos x| π 0 0 2 π − π ln 2 4 1 π2 + 2π ln √ 4 2 Z Grade: • 10 points if you have the right answer like (2) or (3) for example. • 5 points if you have a mistake(s) with +/− in the coefficients. • 0 points otherwise. Remark. tan x 4 π π = on (0, ). You don’t have to claim that x = is the unique solution to 4 x π 2 Page 7 of 8 (2) (3) 2 8. 令函數f (x) = e−x . (a) (10%) 求 f (x) 對 x = 0 的泰勒展開式, 並寫出一般項. Z 1 2 (b) (10%) 以(a)中非零的前三項估計積分 f (x) dx, 誤差忽略不計. 0 Solution: a. We know x e = ∞ X xn 0 n! Therefore, 2 e−x = ∞ X (−x2 )n 0 n! b. Z 1 2 e 0 −x2 1 2 x4 dx ≈ (1 − x + )dx 2! 0 443 = 960 Z Page 8 of 8 2
© Copyright 2026 Paperzz