Perpendicular lines: equations 1 H * 1 Here are two perpendicular lines. Point P has coordinates (1, 3) y 2 Here are two perpendicular lines. Point P has coordinates (1, 4) y y = 2x + 1 Line A P y= 1 x 4 Line A P x O 1a 2a Calculate the gradient of Line A. 2 × x O Calculate the gradient of Line A. 1 = –1 1 Gradient of Line A y = 2x + 1 1b Use your answer to 1a to find the equation of Line A. Gradient of Line A 1 × + x × + Equation of Line A: Mind The Gap Toolbox = –1 4 Gradient of x × y= Gradient of y= Gradient of Line A 1 x 4 2b Use your answer to 1a to find the equation of Line A. Gradient of Line A y x 3 1 × + x × + Equation of Line A: © Toticity Limited y 4 y= 1 Perpendicular lines: equations 2 H * 1 Here are two perpendicular lines. Point P has coordinates (1, 4) 2 Here are two perpendicular lines. Point P has coordinates (1, 2) y y P Line A P Line A x O 1a Calculate the gradient of OP. x y – – 0 0 2a Calculate the gradient of OP. y – – = ÷ 1b Calculate the gradient 2b Calculate the gradient of Line A. of Line A. × = –1 × 1c Find the equation y 1 × 4 of Line A. x y= y × x × Equation of Line A: = –1 2c Find the equation of Line A. x Mind The Gap Toolbox x = ÷ x x O × Equation of Line A: © Toticity Limited y= 2 Perpendicular lines: equations 3 H * 1 Here are two perpendicular lines. Point P has coordinates (2, 1) 2 Here are two perpendicular lines. Point P has coordinates (6, 2) y y Line A P P x O Line A 1a Calculate the gradient of OP. x y – – 0 0 2a Calculate the gradient of OP. y – – = ÷ 1b Calculate the gradient 2b Calculate the gradient of Line A. of Line A. × = –1 × 1c Find the equation y 2 × 1 of Line A. x y= y × x × Equation of Line A: = –1 2c Find the equation of Line A. x Mind The Gap Toolbox x = ÷ x x O × Equation of Line A: © Toticity Limited y= 3 Perpendicular lines: equations Test H * 1 Here are two perpendicular lines. Point P has coordinates (4, 2) y Line A P x O 1a Calculate the gradient of OP. Answer 1b Calculate the gradient Line A. Answer 1c Find the equation of Line A. Answer Mind The Gap Toolbox © Toticity Limited 4 Perpendicular lines: equations Answers H * Perpendicular lines: equations 1 2a x 1–0=1 y 2–0=2 2÷1=2 2 1 1 a × − = −1 1 2 2b The gradient of line A is − 1 b 1× − x×− 1 2 2 c 1× − x×− 1 1 1 1 1 → – x → +3 → – x + 3 2 2 2 2 2 1 1 y= – x+2 2 2 1a x 2–0=2 y 1–0=1 1 4 × − = −1 4 1 1÷2= 1b 2b 1➝ ×–4 ➝ –4 ➝ +8 ➝ 4 x ➝ × – 4 ➝ – 4x ➝ + 8 ➝ – 4x + 8 1 2 × − = −1 2 1 x ➝ × – 2 ➝ – 2x ➝ + 5 ➝ – 2x + 5 y = – 2x + 5 Perpendicular lines: equations 2 2a x 6–0=6 1a x 1–0=1 y 2–0=2 y 4–0=4 4÷1=4 2÷6= 4 1 × − = −1 1 4 x×− 1 2 1c 2➝ ×–2 ➝ –4 ➝ +5 ➝ 1 y = – 4x + 8 1 c 1× − 1 1 1 1 1 → – x → +2 → – x + 2 2 2 2 2 2 Perpendicular lines: equations 3 The gradient of line A is – 4 1b 1 1 1 → – → +2 → 2 2 2 2 1 1 1 → – → +3 → 4 2 2 2 1 1 y= – x+3 2 2 2a 2 1 × − = −1 1 2 2b 1 1 1 → – → +4 → 4 4 4 4 1 3 1 3 × − = −1 3 1 2 c 6 ➝ × – 3 ➝ – 18 ➝ + 20 ➝ 2 1 1 1 1 1 → – x → +4 → – x + 4 4 4 4 4 4 x ➝ × – 3 ➝ – 3x ➝ + 20 ➝ – 3x + 20 y = – 3x + 20 1 1 y= – x+4 4 4 Mind The Gap Toolbox © Toticity Limited 5 Perpendicular lines: equations Answers H * Perpendicular lines: equations Test 1a x 4–0=4 y 2–0=2 2÷4= 1b 1 2 1 2 × − = −1 2 1 1 c 4 ➝ × – 2 ➝ – 8 ➝ + 10 ➝ 2 x ➝ × – 2 ➝ – 2x ➝ + 10 ➝ – 2x + 10 y = – 2x + 10 Mind The Gap Toolbox © Toticity Limited 6
© Copyright 2026 Paperzz