ALGEBRA Sec. 05 MathHands.com Márquez FAMOUS LOG PROPERTIES THE IDEA In the last section, we introduced some of the motivation behind the log functions, roughly speaking, these were invented to ease computation. At the heart of such utility is, for example, the fact that to multiply numbers with the same base it is enough [and it is easier] to just add the exponents. Here we formally state this and other famous log properties. We prove at lease some cases of these properties and we consider many examples which make use of such properties. We will assume the domain for all our log functions1 is R>0 , the co-domain is R, and all bases are non-negative real numbers, and we will assume all variables come from the corresponding sets. Famous Log Properties Some properties about logs, assume a, b, c, k ∈ R>0 and n ∈ R: • Log of a Product [LP=SL] : • Change of Base Property [CBP] : logc (ab) = logc a + logc b logb k = • Bring It Down [BID] : logc an = n logc a logc k logc b • Composition Inverses [CInv.] : • Log of a Quotient [LQ=DL] : a = logc a − logc b logc b logb (b)k = k and blogb k = k EXAMPLEs Using [LP=SL] to EXPAND Often it is useful to have full command of all log properties to expand expression into simpler terms. Assume all input values on all log functions represent positive real numbers. 1. Expand using [LP=SL]: log2 (4 · x) Solution: log2 (4 · x) = log2 (4) + log2 (x) (LP=SL) 2. Expand using [LP=SL]: log2 (4 · 32) Solution: 1 1 It is possible to extend the domain to complex numbers, but such extension is beyond the scope of our class math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez log2 (4 · 32) = log2 (4) + log2 (32) (LP=SL) EXAMPLEs Using [LP=SL] to CONDENSE 1. Condense using [LP=SL]: log2 (4) + log2 (x) Solution: log2 (4) + log2 (x) = log2 ((4) · (x)) = log2 4x (LP=SL) (BI) 2. Condense using [LP=SL]: log2 (4) + log2 (32) Solution: log2 (4) + log2 (32) = log2 ((4) · (32)) = log2 128 (LP=SL) (BI) 3. Condense log(x2 − 1) − log(x − 1) solution: x2 −1 x−1 log (x−1)(x+1) x−1 log(x2 − 1) − log(x − 1) = log = = log (x + 1) LQ=DL alg alg, so long as x 6= 1 EXAMPLEs Using [BID] to Simplify 1. Expand using [LP=SL]: log2 (4 · x) Solution: log2 (4 · x) = log2 (4) + log2 (x) 2 math hands (LP=SL) c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 2. Expand using [LP=SL]: log2 (4 · 32) Solution: log2 (4 · 32) = log2 (4) + log2 (32) (LP=SL) EXAMPLE calculate NON-FAMOUS logs Suppose we wanted to calculate ln 23, the natural way to do this is by using calculator with a built in ln function. Similarly for any common-base log such as log 57. However, it get more interesting when we need to calculate a log to some other non-famous base such as base 3. The key to calculate any log base 3 is to convert it to base 10 or base e using the change of base formula. log3 100 = ln 100 ln 3 CBP ≈ 4.605 1.099 calc. ≈ 4.191 3 math hands calc. c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Assume a, b, c, k ∈ R>0 and n ∈ R: 1. Expand using [LP=SL]: log3 (6 · x) Solution: log3 (6 · x) = log3 (6) + log3 (x) (LP=SL) 2. Expand using [LP=SL]: log12 (4 · 32) Solution: log12 (4 · 32) = log12 (4) + log12 (32) (LP=SL) 3. Expand using [LP=SL]: log5 x3 · y 7 Solution: log5 x3 · y 7 = log5 x3 + log5 y 7 (LP=SL) 4. Expand using [LP=SL]: loge 5 · y 2 Solution: loge 5 · y 2 = loge (5) + loge y 2 (LP=SL) (recall notation: loge x = ln x) 4 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 5. Expand using [LP=SL]: log3 23 · 57 Solution: log3 23 · 57 = log3 23 + log3 57 (LP=SL) 6. Expand using [LP=SL]: log5 4 · x2 Solution: log5 4 · x2 = log5 (4) + log5 x2 (LP=SL) 7. Use CBF and a scientific calculator to compute log3 (10) Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (10) log10 (3) log(10) = log(3) 1 ≈ 0.4771 ≈ 2.0959 log3 (10) = (CBF) (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, 5 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez We could also use the natural base e since the ln function is also on most scientific calculators... loge (10) loge (3) ln(10) = ln(3) 2.3026 ≈ 1.0986 ≈ 2.0959 log3 (10) = (CBF) (def of ln) (Calc) (Calc) 8. Use CBF and a scientific calculator to compute log5 (10) Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (10) log10 (5) log(10) = log(5) 1 ≈ 0.699 ≈ 1.4307 log5 (10) = (CBF) (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, We could also use the natural base e since the ln function is also on most scientific calculators... loge (10) loge (5) ln(10) = ln(5) 2.3026 ≈ 1.6094 ≈ 1.4307 log5 (10) = (CBF) (def of ln) (Calc) (Calc) 9. Use CBF and a scientific calculator to compute log3 (1000) 6 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (1000) log10 (3) log(1000) = log(3) 3 ≈ 0.4771 ≈ 6.2878 log3 (1000) = (CBF) (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, We could also use the natural base e since the ln function is also on most scientific calculators... loge (1000) loge (3) ln(1000) = ln(3) 6.9078 ≈ 1.0986 ≈ 6.2878 log3 (1000) = (CBF) (def of ln) (Calc) (Calc) 10. Use CBF and a scientific calculator to compute log2 (500) Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (500) log10 (2) log(500) = log(2) 2.699 ≈ 0.301 ≈ 8.9664 log2 (500) = (CBF) (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, 7 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez We could also use the natural base e since the ln function is also on most scientific calculators... loge (500) loge (2) ln(500) = ln(2) 6.2146 ≈ 0.6931 ≈ 8.9664 log2 (500) = (CBF) (def of ln) (Calc) (Calc) 11. Use CBF and a scientific calculator to compute log7 (10) Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (10) log10 (7) log(10) = log(7) 1 ≈ 0.8451 ≈ 1.1833 log7 (10) = (CBF) (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, We could also use the natural base e since the ln function is also on most scientific calculators... loge (10) loge (7) ln(10) = ln(7) 2.3026 ≈ 1.9459 ≈ 1.1833 log7 (10) = (CBF) (def of ln) (Calc) (Calc) 12. Use CBF and a scientific calculator to compute log30 (10) 8 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (10) log10 (30) log(10) = log(30) 1 ≈ 1.4771 ≈ 0.677 (CBF) log30 (10) = (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, We could also use the natural base e since the ln function is also on most scientific calculators... loge (10) loge (30) ln(10) = ln(30) 2.3026 ≈ 3.4012 ≈ 0.677 log30 (10) = (CBF) (def of ln) (Calc) (Calc) 13. Use CBF and a scientific calculator to compute log5 (1000) Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (1000) log10 (5) log(1000) = log(5) 3 ≈ 0.699 ≈ 4.2922 log5 (1000) = (CBF) (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, 9 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez We could also use the natural base e since the ln function is also on most scientific calculators... loge (1000) loge (5) ln(1000) = ln(5) 6.9078 ≈ 1.6094 ≈ 4.2922 log5 (1000) = (CBF) (def of ln) (Calc) (Calc) 14. Use CBF and a scientific calculator to compute log7 (500) Solution: We could use the natural base 10 since the log function is on most scientific calculators... log10 (500) log10 (7) log(500) = log(7) 2.699 ≈ 0.8451 ≈ 3.1937 log7 (500) = (CBF) (def of natural log ’log’) (Calc) (Calc) ALTERNATIVELY, We could also use the natural base e since the ln function is also on most scientific calculators... loge (500) loge (7) ln(500) = ln(7) 6.2146 ≈ 1.9459 ≈ 3.1937 log7 (500) = (CBF) (def of ln) (Calc) (Calc) 15. Expand using [LP=SL]: log3 10 math hands 2 x2 c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: log3 2 x2 = log3 (2) − log3 x2 (LQ=dL) 16. Expand using [LP=SL]: 5 log3 7 Solution: 5 = log3 (5) − log3 (7) log3 7 (LQ=dL) 17. Expand using [LP=SL]: log3 x3 y2 Solution: log3 x3 y2 = log3 x3 − log3 y 2 18. Expand using [LP=SL]: log3 (LQ=dL) xr z5 Solution: log3 xr z5 = log3 (xr) − log3 z 5 (LQ=dL) 19. Expand using [LP=SL]: log3 11 math hands 5 11 c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: log3 5 11 = log3 (5) − log3 (11) (LQ=dL) 20. Expand using [LP=SL]: log3 x y6 Solution: log3 x y6 = log3 (x) − log3 y 6 (LQ=dL) 21. Expand using [LP=SL]: R log3 z Solution: R log3 = log3 (R) − log3 (z) z (LQ=dL) 22. Expand using [LP=SL]: log5 (4 · 1) Solution: log5 (4 · 1) = log5 (4) + log5 (1) (LP=SL) 23. Expand using [LP=SL]: log5 (1 · 4) 12 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: log5 (1 · 4) = log5 (1) + log5 (4) (LP=SL) 24. Expand using [LP=SL]: log2 x5 · y 2 Solution: log2 x5 · y 2 = log2 x5 + log2 y 2 (LP=SL) 25. Expand using [LP=SL]: log6 5 · x2 Solution: log6 5 · x2 = log6 (5) + log6 x2 (LP=SL) 26. Expand using [LP=SL]: log3 (6 · xy) Solution: log3 (6 · xy) = log3 (6) + log3 (xy) (LP=SL) 27. Expand using [LP=SL]: log5 4 · x2 y 3 Solution: log5 4 · x2 y 3 = log5 (4) + log5 x2 y 3 13 math hands (LP=SL) c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 28. Expand using [LP=SL]: log5 4x2 · y 3 Solution: log5 4x2 · y 3 = log5 4x2 + log5 y 3 (LP=SL) 29. Expand using [LP=SL]: log3 23 · 57 Solution: log3 23 · 57 = log3 23 + log3 57 (LP=SL) 30. Expand using [LP=SL]: log2 x5 · y 2 Solution: log2 x5 · y 2 = log2 x5 + log2 y 2 (LP=SL) 31. Expand using [LP=SL]: log6 5 · x2 Solution: log6 5 · x2 = log6 (5) + log6 x2 (LP=SL) 32. Expand using [LP=SL]: log6 ((x − 2) · (x + 2)) 14 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: log6 ((x − 2) · (x + 2)) = log6 ((x − 2)) + log6 ((x + 2)) (LP=SL) 33. Expand using [LP=SL]: log6 x2 · (x + 2) Solution: log6 x2 · (x + 2) = log6 x2 + log6 ((x + 2)) (LP=SL) 34. Expand using [LP=SL]: log2 x5 · (3x + 1) Solution: log2 x5 · (3x + 1) = log2 x5 + log2 ((3x + 1)) (LP=SL) 35. Condense using [LP=SL]: log3 23 + log3 22 Solution: log3 23 + log3 22 = log3 (23 ) · (22 ) = log3 32 (LP=SL) (BI) 36. Condense using [LP=SL]: log3 25 + log3 25 15 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: log3 25 + log3 25 = log3 (25 ) · (25 ) = log3 1024 (LP=SL) (BI) 37. Condense using [LP=SL]: log3 x3 + log3 x2 Solution: log3 x3 + log3 x2 = log3 (x3 ) · (x2 ) = log3 x5 (LP=SL) (BI) 38. Condense using [LP=SL]: log3 x5 + log3 x5 Solution: log3 x5 + log3 x5 = log3 (x5 ) · (x5 ) = log3 x10 (LP=SL) (BI) 39. Condense using [LP=SL]: log5 x2 − 1 + log5 x2 + 1 Solution: log5 x2 − 1 + log5 x2 + 1 = log5 (x2 − 1) · (x2 + 1) = log5 x4 − 1 16 math hands (LP=SL) (BI) c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 40. Condense using [LP=SL]: log3 (2x + 3) + log3 (2x − 3) Solution: log3 (2x + 3) + log3 (2x − 3) = log3 ((2x + 3) · (2x − 3)) = log3 4x2 − 9 (LP=SL) (BI) 41. Condense using [LP=SL]: log5 (x − 1) + log5 (x + 3) Solution: log5 (x − 1) + log5 (x + 3) = log5 ((x − 1) · (x + 3)) = log5 x2 + 2x − 3 (LP=SL) (BI) 42. Condense using [LP=SL]: log5 (2x − 1) + log5 (5x + 3) Solution: log5 (2x − 1) + log5 (5x + 3) = log5 ((2x − 1) · (5x + 3)) = log5 10x2 + x − 3 (LP=SL) (BI) 43. Condense using [LP=SL]: log5 (x − 1) + log5 x3 + x2 + x + 1 Solution: log5 (x − 1) + log5 x3 + x2 + x + 1 = log5 (x − 1) · (x3 + x2 + x + 1) = log5 x4 − 1 17 math hands (LP=SL) (BI) c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 44. Condense using [LP=SL]: log5 (x − 1) + log5 x4 + x3 + x2 + x + 1 Solution: log5 (x − 1) + log5 x4 + x3 + x2 + x + 1 = log5 (x − 1) · (x4 + x3 + x2 + x + 1) (LP=SL) (BI) = log5 x5 − 1 45. Condense using [LP=SL]: loge (x − 1) + loge x2 + x + 1 Solution: loge (x − 1) + loge x2 + x + 1 = loge (x − 1) · (x2 + x + 1) = loge x3 − 1 (LP=SL) (BI) (recall notation: loge x = ln x) 46. Condense using the log properties where appropriate: log2 x2 y 3 + log2 x2 y 3 Solution: log2 x2 y 3 + log2 x2 y 3 = log2 x2 y 3 · x2 y 3 = log2 x2 x2 y 3 y 3 = log2 x2+2 y 3+3 4 6 = log2 x y (LP=SL) (CoLM, ALM) (JAE) (BI) OR an alternative idea that helps practice BID... 18 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez (LP=SL) log2 x2 y 3 + log2 x2 y 3 = log2 x2 + log2 y 3 + log2 x2 + log2 y 3 = 2 log2 (x) + 3 log2 (y) + 2 log2 (x) + 3 log2 (y) (BID) = 2 log2 (x) + 2 log2 (x) + 3 log2 (y) + 3 log2 (y) (ALA, CoLA) = (2 + 2) log2 (x) + (3 + 3) log2 (y) (DL) = 4 log2 (x) + 6 log2 (y) (BI) (BID, ’backwards’) = log2 x4 + log2 y 6 4 6 (LP=SL) = log2 x y 47. Condense using the log properties where appropriate: log2 x2 y 2 + log2 x5 y −3 Solution: log2 x2 y 2 + log2 x5 y −3 = log2 x2 y 2 · x5 y −3 = log2 x2 x5 y 2 y −3 = log2 x2+5 y 2+−3 7 −1 = log2 x y (LP=SL) (CoLM, ALM) (JAE) (BI) OR an alternative idea that helps practice BID... (LP=SL) log2 x2 y 2 + log2 x5 y −3 = log2 x2 + log2 y 2 + log2 x5 + log2 y −3 = 2 log2 (x) + 2 log2 (y) + 5 log2 (x) + −3 log2 (y) (BID) = 2 log2 (x) + 5 log2 (x) + 2 log2 (y) + −3 log2 (y) (ALA, CoLA) = (2 + 5) log2 (x) + (2 + −3) log2 (y) (DL) = 7 log2 (x) + − 1 log2 (y) (BI) (BID, ’backwards’) = log2 x7 + log2 y −1 7 −1 (LP=SL) = log2 x y 19 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 48. Condense using the log properties where appropriate: log2 x3 y −5 + log2 x−4 y −4 Solution: log2 x3 y −5 + log2 x−4 y −4 = log2 x3 y −5 · x−4 y −4 = log2 x3 x−4 y −5 y −4 = log2 x3+−4 y −5+−4 −1 −9 = log2 x y (LP=SL) (CoLM, ALM) (JAE) (BI) OR an alternative idea that helps practice BID... (LP=SL) log2 x3 y −5 + log2 x−4 y −4 = log2 x3 + log2 y −5 + log2 x−4 + log2 y −4 = 3 log2 (x) + −5 log2 (y) + −4 log2 (x) + −4 log2 (y) (BID) = 3 log2 (x) + −4 log2 (x) + −5 log2 (y) + −4 log2 (y) (ALA, CoLA) = (3 + −4) log2 (x) + (−5 + −4) log2 (y) = − 1 log2 (x) + − 9 log2 (y) −1 + log2 y −9 = log2 x −1 −9 = log2 x y (DL) (BI) (BID, ’backwards’) (LP=SL) 49. Condense using the log properties where appropriate: log2 x2 y −2 + log2 x2 y 4 Solution: log2 x2 y −2 + log2 x2 y 4 = log2 x2 y −2 · x2 y 4 = log2 x2 x2 y −2 y 4 = log2 x2+2 y −2+4 4 2 = log2 x y 20 math hands (LP=SL) (CoLM, ALM) (JAE) (BI) c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez OR an alternative idea that helps practice BID... (LP=SL) log2 x2 y −2 + log2 x2 y 4 = log2 x2 + log2 y −2 + log2 x2 + log2 y 4 = 2 log2 (x) + −2 log2 (y) + 2 log2 (x) + 4 log2 (y) (BID) = 2 log2 (x) + 2 log2 (x) + −2 log2 (y) + 4 log2 (y) (ALA, CoLA) = (2 + 2) log2 (x) + (−2 + 4) log2 (y) (DL) = 4 log2 (x) + 2 log2 (y) (BI) (BID, ’backwards’) = log2 x4 + log2 y 2 4 2 (LP=SL) = log2 x y 50. Condense using the log properties where appropriate: log2 x4 y 3 + log2 x2 y −5 Solution: log2 x4 y 3 + log2 x2 y −5 = log2 x4 y 3 · x2 y −5 = log2 x4 x2 y 3 y −5 = log2 x4+2 y 3+−5 6 −2 = log2 x y (LP=SL) (CoLM, ALM) (JAE) (BI) OR an alternative idea that helps practice BID... (LP=SL) log2 x4 y 3 + log2 x2 y −5 = log2 x4 + log2 y 3 + log2 x2 + log2 y −5 = 4 log2 (x) + 3 log2 (y) + 2 log2 (x) + −5 log2 (y) (BID) = 4 log2 (x) + 2 log2 (x) + 3 log2 (y) + −5 log2 (y) (ALA, CoLA) = (4 + 2) log2 (x) + (3 + −5) log2 (y) (DL) = 6 log2 (x) + − 2 log2 (y) (BI) (BID, ’backwards’) = log2 x6 + log2 y −2 6 −2 (LP=SL) = log2 x y 21 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 51. Condense using the log properties where appropriate: log2 x8 y −3 + log2 x−7 y 4 Solution: log2 x8 y −3 + log2 x−7 y 4 = log2 x8 y −3 · x−7 y 4 = log2 x8 x−7 y −3 y 4 = log2 x8+−7 y −3+4 1 1 = log2 x y (LP=SL) (CoLM, ALM) (JAE) (BI) OR an alternative idea that helps practice BID... (LP=SL) log2 x8 y −3 + log2 x−7 y 4 = log2 x8 + log2 y −3 + log2 x−7 + log2 y 4 = 8 log2 (x) + −3 log2 (y) + −7 log2 (x) + 4 log2 (y) (BID) = 8 log2 (x) + −7 log2 (x) + −3 log2 (y) + 4 log2 (y) (ALA, CoLA) = (8 + −7) log2 (x) + (−3 + 4) log2 (y) (DL) = 1 log2 (x) + 1 log2 (y) (BI) (BID, ’backwards’) = log2 x1 + log2 y 1 1 1 (LP=SL) = log2 x y 52. PROVE LS=SL If a, b > 0 log(ab) = log a + log b 22 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: let x = log a then 10x = a let y = log a then 10y = b then 10x · 10y = a · b then 10x+y = ab then log(ab) = x + y then log(ab) = log a + log b (can can call log a anything) (def B of logs) (can can call log b anything) (def B of logs) (sub) (JAE) (def B of logs) (substitute x and y) 53. Although BID is true when n is any rational number, and a > 0, prove the special case of the BID when n = 2. log an = n log a Solution: log(a2 ) = log(a · a) = log a + log a = 2 log a therefore, log(a2 ) = 2 log a (algebra) (LP=SL) (algebra) (done!) 54. Although BID is true when n is any rational number, and a > 0, prove the special case of the BID when n = 5. log an = n log a 23 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: log(a5 ) = log(a · a · a · a · a) = log a + log a + log a + log a + log a = 5 log a therefore, log(a5 ) = 5 log a (algebra) (LP=SL) (algebra) (done!) 55. Although BID is true when n is any rational number, and a > 0, prove the special case of the BID when n = 8. log an = n log a 56. PROVE LQ=DL Assume b 6= 0: log(a/b) = log a − log b Solution: let x = log a then 10x = a let y = log a then 10y = b 10x a then = 10y b a x−y then 10 = a b =x−y then log ab then log = log a − log b b (can can call log a anything) (def B of logs) (can can call log b anything) (def B of logs) (sub) (exponent properties) (def B of logs) (substitute x and y) 57. PROVE CBP If b, k, c > 0 logb k = 24 math hands logc k logc b c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez Solution: let x = logb k then bx = k then logc bx = logc k then x logc b = logc k logc k then x = logc b logc k finally logb k = logc b (can can call logb k anything) (def B of logs) 1 (logc (t) is well defined , ie slap a logc on each side) (BID) (algebra) (sub) 58. Prove If b, k > 0 logb bk = k 59. Prove If b, k > 0 blogb k = k 60. Use the log properties to condense the following expression as much as possible: log x log 5 Solution: maybe log 5log x log xlog 5 could also be 61. Use the log properties to condense the following expression as much as possible: log(x − 1) + log(x2 + x + 1) 62. Use the log properties to condense the following expression as much as possible: log(x3 − 1) − log(x2 + x + 1) 63. Use the log properties to condense the following expression as much as possible: 3 log x − 5 log(x + 1) + 2 log x2 25 math hands c 2007-2009 MathHands.com ALGEBRA Sec. 05 MathHands.com Márquez 64. Use the log properties to condense the following expression as much as possible: 3 log9 x + log3 x 65. Use the log properties to condense the following expression as much as possible: 5 log2 x + log16 x + 4 log4 x 26 math hands c 2007-2009 MathHands.com
© Copyright 2026 Paperzz