Section 3.2 Synthetic Division Long Division of a polynomial

Section 3.2
Synthetic Division
Long Division of a polynomial
Example 1: Divide using Long Division.
a)
b)
12π‘₯ 3 βˆ’π‘₯ 2 βˆ’π‘₯
3π‘₯βˆ’1
3π‘₯ 4 βˆ’π‘₯ 3 βˆ’15
π‘₯ 2 +5
Section 3.2 Synthetic division
1|Page
c)
5π‘₯ 3 βˆ’6π‘₯ 2 βˆ’28π‘₯βˆ’2
π‘₯+2
Example 2: Use Synthetic Division to divide.
5π‘₯ 3 βˆ’ 6π‘₯ 2 βˆ’ 28π‘₯ βˆ’ 2
π‘₯+2
Section 3.2 Synthetic division
2|Page
Example 3: Let 𝑓(π‘₯) = βˆ’π‘₯ 4 + 3π‘₯ 2 βˆ’ 4π‘₯ βˆ’ 5. Use the remainder theorem to find 𝑓(βˆ’3).
Section 3.2 Synthetic division
3|Page
Example 4: Decide whether the given number k is a zero of 𝑓(π‘₯).
a) 𝑓(π‘₯) = π‘₯ 3 βˆ’ 4π‘₯ 2 + 9π‘₯ βˆ’ 6; π‘˜ = 1
b) 𝑓(π‘₯) = π‘₯ 4 + π‘₯ 2 βˆ’ 3π‘₯ + 1; π‘˜ = βˆ’1
Section 3.2 Synthetic division
4|Page