MATH 2260 - 41514 MIDTERM EXAM 3 MODEL SOLUTION SPRING 2013 - MOON (1) (6 pts) Evaluate the series ∞ X 3 . 4n n=2 n X n ∞ ∞ ∞ X X 3 1 1 3 = 3 3 = −3− n 4 4 4 4 n=2 n=2 n=0 = 3 1− 1 4 −3− 3 3 1 =4−3− = 4 4 4 1 • Describing the series as a geometric series with a = 3 and r = : 2 pts. 4 • Using a geometric series runs from n = 0 and first two terms, writing it as n ∞ X 1 3 3 − 3 − : 4 pts. 4 4 n=0 1 • Evaluating the sum : 6 pts. 4 Date: April 11, 2013. 1 MATH 2260 - 41514 Midterm Exam 3 Spring 2013 - Moon (2) (8 pts) Evaluate the limit 1 lim (en + n) n . n→∞ 1 1 1 (en ) n ≤ (en + n) n ≤ (2en ) n 1 lim (en ) n = lim e = e n→∞ n→∞ 1 n 1 1 n 1 lim (2en ) = lim 2 (en ) n = lim 2 n e = e n→∞ n→∞ n→∞ 1 ⇒ lim (en + n) n = e n→∞ 1 1 • Making two appropriate sequences (en ) n and (2en ) n which give an upper and lower bound of given sequence: 3 pts. 1 • Evaluating the limit of one side lim (en ) n = e: +2 pts. n→∞ 1 • Evaluating the limit of the other side lim (2en ) n = e: + 2 pts. n→∞ 1 • By using the sandwich theorem, obtaining the conclusion lim (en + n) n = n→∞ e: 8 pts. (3) (7 pts) Determine the convergence or divergence of the series ∞ X n2 + 3 . n3 + 4n n=1 n2 + 3 n2 n2 1 ∼ ∼ = , 3 3 3 n + 4n n + 4n n n ∞ ∞ X X 1 n2 + 3 =∞⇒ should diverge 3 + 4n n n n=1 n=1 n2 + 3 n2 n2 1 ≥ ≥ = 3 3 3 n + 4n n + 4n 2n 2n ∞ ∞ ∞ X X 1 1X1 n2 + 3 = =∞⇒ =∞ 3 + 4n 2n 2 n n n=1 n=1 n=1 n≥2⇒ • With appropriate reason, guessing the divergence : 3 pts. n2 + 3 1 • Showing an inequality 3 ≥ : 5 pts. n + 4n 2n ∞ X n2 + 3 • Proving = ∞: 7 pts. 3 + 4n n n=1 2 MATH 2260 - 41514 Midterm Exam 3 Spring 2013 - Moon (4) (9 pts) Determine the convergence or divergence of the series ∞ X 1 . n ln n n=2 1 1 is a positive decreasing function and f (n) = x ln x n ln n Z ∞ ∞ X 1 1 <∞⇔ dx < ∞ n ln n x ln x 2 n=2 Z ∞ Z b 1 1 dx = lim dx b→∞ 2 x ln x x ln x 2 1 u = ln x ⇒ du = dx, u(2) = ln 2, u(b) = ln b x Z b Z ln b 1 1 b dx = du = [ln |u|]ln ln 2 = ln | ln b| − ln | ln 2| 2 x ln x ln 2 u Z b 1 lim dx = lim ln | ln b| − ln | ln 2| = ∞ b→∞ 2 x ln x b→∞ Z ∞ ∞ X 1 1 dx = ∞ ⇒ =∞ x ln x n ln n 2 n=2 Z ∞ ∞ X 1 1 Writing the precise statement of integral test <∞⇔ dx < n ln n x ln x 2 n=2 ∞ correctly: 2 pts. Z b 1 Showing the definition of an improper integral lim dx: 3 pts. b→∞ 2 x ln x Z b 1 By using substitution, evaluating the integral dx = ln | ln b| − 2 x ln x ln | ln 2|: 5 pts. Evaluating the limit limb→∞ ln | ln b| − ln | ln 2| = ∞: 7 pts. ∞ X 1 Concluding = ∞: 9 pts. n ln n n=2 f (x) = • • • • • 3 MATH 2260 - 41514 Midterm Exam 3 (5) Let Spring 2013 - Moon ∞ X xn f (x) = . n3n n=1 (a) (6 pts) Find the radius of convergence. ∞ n ∞ X x X |x|n = n3n n3n n=1 |x|n+1 (n+1)3n+1 |x|n n→∞ n3n lim n=1 |x|n+1 n3n |x|n |x| |x|n |x|n3n = lim = = lim n n+1 n n n→∞ |x| (n + 1)3 n→∞ 3(n + 1) n→∞ |x| (n + 1)3 3 3 = lim |x| < 1 ⇔ |x| < 3 ⇒ radius of convergence = 3 3 • Taking the absolute value correctly and obtaining ∞ X |x|n n=1 • For the ratio test, setting up the limit |x|n+1 (n+1)3n+1 lim |x|n n→∞ n3n n3n : 1 pt. : 3 pts. |x| • Evaluating the limit and getting : 5 pts. 3 • From the limit, obtaining the radius of convergence 3: 6 pts. (b) (4 pts) Determine the convergence at endpoints. ∞ ∞ ∞ X X X xn 3n 1 x=3⇒ = = =∞ n n n3 n3 n n=1 n=1 n=1 ∞ ∞ X X xn (−3)n x = −3 ⇒ = n3n n3n n=1 n=1 = ∞ X (−1)n n=1 n converges by alternating series test ∞ X 1 • Finding and stating the divergence of it: +2 pts. n n=1 ∞ X (−1)n • Finding and stating the convergence of it with appropriate n n=1 reason: +2 pts. (c) (2 pts) Write down the interval of convergence. [3, −3) 4 MATH 2260 - 41514 Midterm Exam 3 (6) (a) (7 pts) For f (x) = √ 3 Spring 2013 - Moon x, find Taylor polynomial of f (x) of order 2 at x = 1. √ 3 f (1) = 1 = 1 1 1 2 f 0 (x) = x− 3 ⇒ f 0 (1) = 3 3 5 2 2 5 2 1 x− 3 = − x− 3 ⇒ f 00 (1) = − f 00 (x) = · − 3 3 9 9 f 00 (1) P2 (x) = f (1) + f (1)(x − 1) + (x − 1)2 2! 0 − 92 1 1 1 = 1 + (x − 1) + (x − 1)2 = 1 + (x − 1) − (x − 1)2 3 2! 3 9 • Finding f (1) = 1: +1 pt. 1 • Getting f 0 (1) = : +1 pt. 3 2 00 • Obtaining f (1) = − : +1 pt. 9 • Stating the definition of order 2 Taylor polynomial at x = 1 P2 (x) = f 00 (1) f (1) + f 0 (1)(x − 1) + (x − 1)2 : + 2 pts. 2! 1 1 • Evaluating the answer 1 + (x − 1) − (x − 1)2 : 7 pts. 3 9 √ (b) (3 pts) By using (a), find an approximation of 3 1.1. √ 3 1.1 = f (1.1) 1 1 1 1 P2 (1.1) = 1 + (1.1 − 1) − (1.1 − 1)2 = 1 + (0.1) − (0.1)2 3 9 3 9 5 MATH 2260 - 41514 Midterm Exam 3 Spring 2013 - Moon (7) (8 pts) The following table is a list of Taylor series of several functions. function Taylor series ∞ X xn x2 x3 ex =1+x+ + + ··· n! 2! 3! n=0 ∞ X xn+1 x2 x3 ln(1 + x) (−1)n =x− + − ··· n + 1 2 3 n=0 ∞ X x2n+1 x3 x5 sin x (−1)n =x− + − ··· (2n + 1)! 3! 5! n=0 ∞ X x2n x2 x4 cos x (−1)n =1− + − ··· (2n)! 2! 4! n=0 ∞ X 1 xn = 1 + x + x2 + x3 + · · · 1−x n=0 Compute Taylor polynomial of f (x) = e2x sin x of order 3 at x = 0. ex = 1 + x + ⇒ e2x = 1 + (2x) + x2 x3 + + ··· 2! 3! (2x)2 (2x)3 4x2 8x3 + + · · · = 1 + 2x + + + ··· 2! 3! 2! 3! x3 x 5 + − ··· 3! 5! 4x2 8x3 x3 x5 2x f (x) = e sin x = 1 + 2x + + + ··· x− + − ··· 2! 3! 3! 5! 4x2 8x3 x3 4x2 8x3 = x 1 + 2x + + + ··· − 1 + 2x + + + ··· + ··· 2! 3! 3! 2! 3! 4x3 8x4 x3 2x4 4x5 8x6 = x + 2x2 + + + ··· − − − − − ··· + ··· 2! 3! 3! 2!3! 3!3! 3! 4 1 = x + 2x2 + − x3 + · · · 2! 3! 4 1 11 2 P3 (x) = x + 2x + − x3 = x + 2x2 + x3 2! 3! 6 sin x = x − 4x2 8x3 + + · · ·: 2 pts. 2! 3! • By multiplyingpower series, evaluating the Taylor series of f (x) and get 4 1 ting x + 2x2 + − x3 + · · ·: 6 pts. 2! 3! 11 • Computing the Taylor polynomial P3 (x) = x + 2x2 + x3 : 8 pts. 6 • Finding the Taylor series of e2x 1 + 2x + 6
© Copyright 2026 Paperzz