Rafeindatækni fastra efna Djelloul Seghier Haynes – Shockley experiment Marel Helgason, Ólafur Davíð Bjarnason and Valdemar Örn Erlingsson Setup The Haynes-Shockley experiment describes the motion of minority carriers in a semiconductor. By measuring the time it takes for a LED to ionize a Silicon bar applied with a known drift voltage, we can calculate using an oscilloscope and a voltmeter the drift velocity, electric field, mobility and lifetime of minority carriers (in our n-type bar, holes). Measurement of drift velocity By measuring the time t1 it takes for a light pulse to ionize a Si n-type bar (length 23 mm) and travel along the bar to a known distance d, we can calculate the drift velocity of holes (the minority carriers in an n-type semiconductor). We plot d as a function of t1 for 4 different voltages. 1 Rafeindatækni fastra efna Djelloul Seghier 16,1 V 1,6E-02 y = 33,3x - 0,00 1,4E-02 d [m] 1,2E-02 1,0E-02 8,0E-03 6,0E-03 4,0E-03 2,0E-03 0,0E+00 0,0E+00 1,0E-04 2,0E-04 3,0E-04 4,0E-04 5,0E-04 6,0E-04 t1 [s] 14,0 V 1,4E-02 y = 28,8x - 0,00 1,2E-02 d [m] 1,0E-02 8,0E-03 6,0E-03 4,0E-03 2,0E-03 0,0E+00 0,0E+00 1,0E-04 2,0E-04 3,0E-04 4,0E-04 5,0E-04 t1 [s] 12,0 V 1,2E-02 y = 25,8x - 0,00 1,0E-02 d [m] 8,0E-03 6,0E-03 4,0E-03 2,0E-03 0,0E+00 0,0E+00 1,0E-04 2,0E-04 3,0E-04 4,0E-04 5,0E-04 t1 [s] 2 Rafeindatækni fastra efna Djelloul Seghier d [m] 9,0 V 1,0E-02 9,0E-03 8,0E-03 7,0E-03 6,0E-03 5,0E-03 4,0E-03 3,0E-03 2,0E-03 1,0E-03 0,0E+00 y = 19,1x - 0,00 0,0E+00 1,0E-04 2,0E-04 3,0E-04 4,0E-04 5,0E-04 6,0E-04 t1 [s] Voltage [V] 16,1 14,0 12,0 9,0 Electric field can be found with the equation is the applied voltage to the bar. Voltage [V] 16,1 14,0 12,0 9,0 Drift velocity vd [m/s] 33,3 28,8 25,8 19,1 where l is the length of the Si bar (23 mm) and V Electric field ϵ [V/cm] 698 609 522 391 Mobility of the minority carriers can be found with the equation velocity of holes and ϵ is the electric field. Voltage [V] 16,1 14,0 12,0 9,0 where vp is the drift Mobility μp [cm2/V⋅ s] 477 473 490 488 This is close to the expected value of 480 cm2/V⋅ s for Si type semiconductor. 3 Rafeindatækni fastra efna Djelloul Seghier Diffusion constant Diffusion constant can be found with the equation . where Δ t is the width of half maximum of the peak; t1 is the time for a light pulse to travel along the bar. These values should satisfy the Einstein equation as the function of 11.1# where is roughly 0.0259 V at T = 300K. We plot Δ! 16,1 V 3E-12 ( d Δ t1)2 [m2s2] 2,5E-12 y = 1,977E-03x - 2,019E-14 2E-12 1,5E-12 1E-12 5E-13 0 0 2E-10 4E-10 6E-10 8E-10 1E-09 1,2E-09 1,4E-09 1,6E-09 11.1 t13 [s3] ( d Δ t1)2 [m2s2] 14,0 V 2E-12 1,8E-12 1,6E-12 1,4E-12 1,2E-12 1E-12 8E-13 6E-13 4E-13 2E-13 0 y = 1,582E-03x + 3,279E-14 0 2E-10 4E-10 6E-10 8E-10 1E-09 1,2E-09 11.1 t13 [s3] 4 Rafeindatækni fastra efna Djelloul Seghier 12,0 V 1,6E-12 ( d Δ t1)2 [m2s2] 1,4E-12 y = 1,313E-03x + 2,011E-14 1,2E-12 1E-12 8E-13 6E-13 4E-13 2E-13 0 0 2E-10 4E-10 6E-10 8E-10 1E-09 1,2E-09 11.1 t13 [s3] 9,0 V 2,5E-12 ( d Δ t1)2 [m2s2] 2E-12 y = 1,414E-03x - 5,241E-14 1,5E-12 1E-12 5E-13 0 0 5E-10 1E-09 1,5E-09 2E-09 11.1 t13 [s3] By dividing the slope of each graph with μp we should get roughly 0.0259. Voltage [V] 16,1 14,0 12,0 9,0 Dp / μp [ V ] 0.0414 0.0334 0.0268 0.0290 As we can see these values are very close to correct value at low voltages but differ a bit at higher voltages. 5 Rafeindatækni fastra efna Djelloul Seghier Lifetime of holes By measuring the height of the peak V, and the width at the half maximum Δt, we can get approximation of the peak area $ % ⋅ Δ . The area can also be expressed exactly as $ Δ&' exp +, . Or as ln$ lnΔ&' , And by plotting ln(S) against t we get the slope , - 1 and we can find out τp 16,1 V ln(S) 0,0E+00 -12,2 -12,4 -12,6 -12,8 -13 -13,2 -13,4 -13,6 -13,8 -14 -14,2 -14,4 1,0E-04 2,0E-04 3,0E-04 4,0E-04 5,0E-04 6,0E-04 y = -4.960x - 11,69 t1 [s] 14,0 V ln(S) 0,0E+00 -12,2 -12,4 -12,6 -12,8 -13 -13,2 -13,4 -13,6 -13,8 -14 1,0E-04 2,0E-04 3,0E-04 4,0E-04 5,0E-04 y = -5.405x - 11,40 t1 [s] 6 Rafeindatækni fastra efna Djelloul Seghier 12,0 V ln(S) 0,0E+00 1,0E-04 -12 -12,2 -12,4 -12,6 -12,8 -13 -13,2 -13,4 -13,6 -13,8 -14 2,0E-04 3,0E-04 4,0E-04 5,0E-04 y = -5.764x - 11,17 t1 [s] 9,0 V ln(S) 0,0E+00 -12 -12,2 -12,4 -12,6 -12,8 -13 -13,2 -13,4 -13,6 -13,8 -14 1,0E-04 2,0E-04 3,0E-04 4,0E-04 5,0E-04 6,0E-04 y = -4.832x - 11,32 t1 [s] Voltage [V] 16,1 14,0 12,0 9,0 τp [µs] 202 185 173 207 From these results we get the average lifetime of holes is approximately τp = 192µs Conclusion Our result shows that the mobility of minority carriers does not change with different electric fields which the drift velocity is proportional to. The diffusion constant should be the same but in our observation we found minor inconsistencies but probably within range. We calculated the lifetime of holes but got a large variance. 7
© Copyright 2026 Paperzz