M 312 D T S P x2 z2 dS where S is the surface of the sphere x2 + y2 + z2 = a2 . 1. Verify the divergence theorem for 2. Calculate the surface integral S v · n dS where v = x − z2 , 0, xz + 1 and S is the surface that S encloses the solid region x2 + y2 + z 2 ≤ 4, z ≥ 0. (a) directly, (b) by the divergence theorem. 3. A closed surface is made up of S1 the part of the paraboloid z = 1 − x2 − y2 with z ≥ 0, together with S2 , the circular disc x2 + y2 ≤ 1, z = 0. Verify the divergence theorem for this closed surface for F = 2x, 2y, 1 . 3 2 y2 4. Verify the divergence theorem for 0 0 0 div F dz dy dx where F = x2 , 2y, 0 . 5. Verify the divergence theorem for F = x, y, 0 and for the closed surface S = S1 ∪ S2 ∪ S3 consisting of • S1 : half of a circular disc x2 + y2 ≤ 1, x ≤ 0, z = 0, √ • S2 : the part of the plane z = − 3x with x2 + y2 ≤ 1 and z ≥ 0, and √ • S3 : the part of the cylinder x2 + y2 = 1 with x ≤ 0 and 0 ≤ z ≤ − 3x. 6. Calculate the surface integral F · n dS where F = xyz, 0, 1 and S is the surface that encloses the S solid region x2 + y2 ≤ z, y ≥ 0, 1 ≤ z ≤ 4 (a) directly, (b) by the divergence theorem. 2 + y2 = z2 , above the hemisphere 7. Let F below the cone x = xz, yz, 0 and let V be the solid region 2 2 2 2 z = 4 − x − y , and inside the cylinder x + y = 4. Calculate div F dV V (a) directly, (b) by the divergence theorem. 8. Let V be the pyramid with the rectangular base z = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1 and the vertex above the div F dV where F = 3, y3 , 1 . base (apex) at (0, 0, 2). Verify the divergence theorem for V 9. Calculate the surface integral F · n dS where F = 1, 0, z2 and S is the surface that encloses the S solid region x2 + y2 + z2 ≤ 9, x, y, z ≤ 0 (a) directly, (b) by the divergence theorem. 10. Let F = x, y, z and let D be the circular disc x2 + y2 ≤ 4, z = 0. Verify the divergence theorem for 4−x−y div F dz dy dx. D 0 Divergence Theorem Supplementary Problems - SOLUTION KEY x2 z2 dS where S is the surface of the sphere x2 + y2 + z2 = a2 . 1. Verify the divergence theorem for S z a V x S y Using spherical ρ = a, dS = a2 sin φdφdθ; coordinateswith 2π π LHS = F · n dS = x2 z 2 dS = 0 0 (a sin φ cos θ)2 (a cos φ)2 a2 sin φdφdθ S π 2π S = a6 0 cos2 θdθ 0 sin3 φ cos2 φdφ 2θ The first integral is evaluated by the power-reducing formula: cos2 θ = 1+cos 2 In second integral, we substitute u = cos φ, du = − sin φ dφ so that the sin3 φ cos2 φdφ = (1 − cos2 φ) cos2 φ sin φdφ = − (1 − u2 )u2 du = u4 − u2 du = π 2π 5 3 1 1 1 4 6 LHS = a6 12 θ + 14 sin 2θ 0 cos5 φ − cos3 φ = a6 (π) −1 5 + 3 − 5 + 3 = 15 πa u5 5 − u3 3 +C 0 The surface S is a level surface of g(x, y, z) = x2 + y2 + z2 . √±2x,2y,2z Its unit normal vector is ±∇g = ± xa , ya , za |∇g| = 2 2 2 4x +4y +4z To ensure the outward normal orientation, we pick the “+” sign: n = xa , ya , za . An example of a vector field F such that F · n = x2 z2 is F = axz2 , 0, 0 . ∂ ∂ ∂ axz2 + ∂y divF = ∂x (0) + ∂z (0) = az 2 Using spherical coordinates with dV = ρ2 sin φ dρ dφ dθ we have π a 4 2π π a 2π 2 2 2 RHS = 0 0 (ρ cos φ) ρ sin φ dρ dφ dθ = a 0 dθ 0 cos φ sin φdφ 0 ρ dρ V divF dV = a 0 Using substitution in the middle integral u = cos φ, we obtain π 5 a 5 3 2π φ ρ 1 1 a 4 = 15 = a(2π)( + ) πa6 RHS = a [θ]0 − cos 3 5 3 3 5 0 0 2. Calculate the surface integral v · ndS where v = x − z2 , 0, xz + 1 and S is the surface that S encloses the volume x2 + y2 + z2 ≤ 4, z ≥ 0 (a) directly, (b) by the divergence theorem. z z 2 2 z S1 2 V x y 2 2 x x y 2 2 2 2 y S2 v · ndS = Part (a): S v · ndS + S1 v · ndS S2 S1 g(x, y, z) = x2 + y2 + z2 ; ±∇g |∇g| = ±2x,2y,2z 2 2 4x + 4y + 4z 2 2 2 16 2 =± x y z 2, 2, 2 ; choose “+” sign: n = 2 v · n = (x − z2 ) x2 + (xz + 1) z2 = x2 − xz2 + xz2 + z2 = x2 + z2 Using spherical coordinates with ρ = 2, we have dS = 22 sin φ dφ dθ : 2π π/2 (2 sin φ cos θ)2 +2 cos φ (4) sin φ dφ dθ S1 v · ndS = 0 2 2π π/20 3 2π π/2 2 = 8 0 cos θdθ 0 sin φdφ + 4 0 dθ 0 cos φ sin φ dφ The integral sin3 φdφ is evaluated by substitution u = cos φ so that it becomes 3 − (1 − u2 )du = −u + u3 + C 2 π/2 θ sin 2θ 2π π/2 sin φ − cos φ + 13 cos3 φ 0 + 4 [θ]2π 0 S1 v · ndS = 8 2 + 4 2 0 0 1 4 3 1 28 = 8π 1 − 3 + 8π 2 = 8π 6 + 6 = 3 π z = 0; n = −k; z = 0; v · n = −1; (−1)dS = −(area of S2 ) = −4π S2 LHS = v · ndS = v · ndS + v · ndS = S2 S S1 28 π 3 − 4π = 16π 3 S2 ∂ ∂ ∂ Part (b): divv = ∂x (0) + ∂z (xz + 1) = 1 + x x − z2 + ∂y Using spherical coordinates with dV = ρ2 sin φ dρ dφ dθ 2π π/2 2 RHS = divv dV = 0 0 (1 + ρ sin φ cos θ) ρ2 sin φ dρ dφ dθ 0 V 2π 2π π/2 2 2 π/2 = 0 dθ 0 sin φdφ 0 ρ2 dρ + cos θdθ 0 sin2 φdφ 0 ρ3 dρ 0 π/2 = [θ]2π 0 [− cos φ]0 3 2 ρ 3 0 [sin θ]2π 0 =0 = (2π) (0 + 1)( 83 ) = 16 3 π x y z 2, 2, 2 ; 3. A closed surface is made up of S1 the part of the paraboloid z = 1 − x2 − y2 with z ≥ 0, together with S2 , the circular disc x2 + y2 ≤ 1, z = 0. Verify the divergence theorem for this closed surface for F = 2x, 2y, 1 . z z 1 z 1 S1 1 V x 1 1 x y 1 1 y x 1 1 y S2 LHS = F · ndS = F · ndS + S S1 2 2 S1 g(x, y, z) = x + y + z; F · ndS S2 4x +4y +1 4x +4y +1 Projecting onto the xy-plane, then switching to polar coordinates we have F · ndS = S1 = S2 [θ]2π 0 r4 + r2 2 S2 1 0 2 √4x 2 +4y +1 4x2 +4y 2 +1 2 +4y 2 +1 4x2 +4y 2 +1 = √±2x,2y,1 ; choose “+”: n = √2x,2y,1 ; F · n = √4x 2 2 2 2 ∇g |∇g| = 3π 1/|n3 | 2π 1 4x2 + 4y2 + 1dx dy = 0 0 (4r2 + 1)r dr dθ z = 0; n = −k; F · n = −1; F · ndS = S2 (−1)dS = −1(area of S2 ) = −π S2 LHS = 3π − π = 2π ∂ ∂ ∂ divF = ∂x (2x) + ∂y (2y) + ∂z (1) = 4 Using cylindrical coordinates with dV = r dz dr dθ, we obtain 2π 1 1−r2 2π 1 2 RHS = divF dV = 4 0 0 0 r dz dr dθ = 4 0 0 r [z]z=1−r dr dθ z=0 V 1 1 2π 1 2π r 2 r4 2 = 4 0 0 r(1 − r )dr dθ = 4 [θ]0 2 − 4 = 4(2π) 4 = 2π 0 3 2 y2 4. Verify the divergence theorem for 0 0 0 div F dz dy dx where F = x2 , 2y, 0 . z z z z z 4 4 4 4 4 S4 S1 S3 V x 3 y 2 LHS = x 3 2 F · ndS = S F · ndS + S1 S1 g(x, y, z) = y − z = 0; F · n = √−4y2 2 4y +1 F · ndS = y S2 x 3 F · ndS + 4y 2 +1 x 3 2 F · ndS + S3 ±0,2y,−1 = √ y 2 S2 ∇g |∇g| 2 F · ndS + x 3 F · ndS S4 S5 −0,2y,−1 . Choose “−”: n = √ y 4y 2 +1 0,−2y,1 = √ 4y 2 +1 ; ; project onto the xy-plane: 3 2 0 0 1/|n3 | √−4y2 2 4y +1 2 3 2 3 −4y 3 2 4y2 + 1dy dx = 0 dx −4y dy = [x] = −32 0 0 3 0 S1 S2 z = 0; n = −k; F · n = 0; F · ndS = 0 S3 x = 3; n = i; . F · n = 9; S2 F · ndS = 2 y2 0 0 9 dz dy = 2 0 2 [9z]z=y z=0 dy = 2 0 2 9y2 dy = 3y3 0 = 24 S3 S4 x = 0; n = −i; F · n = 0; F · ndS = 0 S4 S5 y = 2; n = j; F · n = 4; F · ndS = 4 (Area of the rectangle S5 ) = 4(3)(4) = 48 S5 LHS = −32 + 0 + 24 + 0 + 48 = 40 2 ∂ ∂ x + ∂y (2y) + ∂z (0) = 2x + 2 2 32 y 3 2 y2 3 2 2 RHS = 0 0 0 div F dz dy dx = 0 0 0 (2x + 2) dz dy dx = 0 (2x + 2) 0 [z]z=y z=0 dy dx 3 3 y=2 3 2 2 y dy = x2 + 2x 0 y3 = (15)( 83 ) = 40 = 0 (2x + 2) dx 0 div F = S5 ∂ ∂x y=0 2 y 5. Verify the divergence theorem for F = x, y, 0 and for the closed surface S = S1 ∪ S2 ∪ S3 consisting of • S1 : half of a circular disc x2 + y2 ≤ 1, x ≤ 0, z = 0, √ • S2 : the part of the plane z = − 3x with x2 + y2 ≤ 1 and z ≥ 0, and √ • S3 : the part of the cylinder x2 + y2 = 1 with x ≤ 0 and 0 ≤ z ≤ − 3x. z z z z √⎯3 √⎯3 √⎯3 √⎯3 S2 S3 V x −1 −1 1 −1 −1 y x y 1 x −1 −1 1 y x −1 −1 1 S1 LHS = F · ndS + S S1 z = 0; n = −k; F · n = 0; S1 S2 F · ndS = S2 3 , 0, 12 2 F · ndS S3 F · ndS = 0 ; S1 √ √ F · ndS + √ ; F · n = 23 x; 3x + z = 0; n = Projecting onto the xy-plane, then switching to polar coordinates yields 3| √ 1/|n √ 3π/2 1 3 F · ndS = x (2) dy dx = 3 π/2 0 r cos θ r dr dθ 2 S2 = √ S1 3π/2 3 [sin θ]π/2 2 r3 3 1 0 2 S3 g(x, y, z) = x + y ; = √ 3 (−1 − 1) ( 13 ) = ∇g |∇g| √ −2 3 3 ±2x,2y,0 =√ = ± x, y, 0 . Choose “+” : n = x, y, 0 ; F · n = x2 + y2 = 1. 2 2 4x +4y Integrating directly in cylindrical coordinates with dS = r dz dθ we have √ 3π/2 √ √ √ 3π/2 −√3 cos θ F · ndS = π/2 0 1 dz dθ = − 3 π/2 cos θ dθ = − 3 [sin θ]3π/2 = − 3(−1 − 1) = 2 3 π/2 S3 LHS = 0 − √ 2 3 3 √ +2 3 = √ 4 3 3 ∂ ∂ ∂ div F = ∂x (x) + ∂y (y) + ∂z (0) = 2 Using cylindrical coordinates with dV √ = r dz dr dθ, we obtain √ 3π/2 1 3π/2 1 − 3r cos θ RHS = divF dV = 2 π/2 0 0 r dz dr dθ = −2 3 π/2 0 r2 cos θ dr dθ V √ √ 3 1 √ 3π/2 = −2 3 r3 [sin θ]π/2 = −2 3( 13 )(−1 − 1) = 4 3 3 0 y F · ndS where F = xyz, 0, 1 and S is the surface that encloses the 6. Calculate the surface integral S solid region x2 + y2 ≤ z, y ≥ 0, 1 ≤ z ≤ 4 (a) directly, (b) by the divergence theorem. z z S2 4 z z z 4 4 4 S4 1 x V 1 y 1 2 x y 1 S x F · ndS + S1 F · ndS + 2 1 y 1 x 2 1 F · ndS + S3 F · ndS S4 F · n dS = −1(Area of S1 ) = − π2 S1 z = 1; n = −k; F · n = −1; S2 z = 4; n = k; F · n = 1; x S2 y 2 F · ndS = Part (a): 1 S1 S3 S1 F · n dS = (Area of S2 ) = 2π S2 ±2x,2y,−1 ∇g S3 satisfies x2 + y2 = z, i.e., g(x, y, z) = x2 + y2 − z = 0; |∇g| =√ ; 2 2 2 choose “+” : n = √2x,2y,−1 ; F · n = √ 2x2 yz−12 2 2 4x +4y +1 4x +4y +1 4x +4y +1 ; Denote D to be the projection of S3 onto the xy-plane. Switching to polar coordinates yields F · ndS = 1/|n 3 | 2 D 2 2x y(x √ +y )−1 2 + 4y 2 + 1dy dx = π 2 2r 2 cos2 θ r sin θ r 2 − 1 r dr dθ 4x 0 1 2 2 4x2 +4y +1 S3 2 6 π 2 2 cos θ sin θ dθ r dr − dθ r dr = 0 1 0 1 128 1 3π 508 3π = −2 3 (−1 − 1) 7 − 7 − 2 = 21 − 2 S4 y = 0; n = −j; F · n = 0; F · ndS = 0 2 π −2 3 2 2 3 π r 7 2 π cos θ 0 7 − [θ]0 r2 1 1 S4 F · ndS = − π2 + 2π + 508 21 − 3π 2 +0= 508 21 S ∂ ∂ ∂ Part (b): div F = ∂x (xyz) + ∂y (0) + ∂z (1) = yz Using cylindrical coordinates with dV = r dr dz dθ, we obtain √ 2 7/2 4 π 4 √z π 4 r3 r= z divF dV = r sin θ zr dr dz dθ = sin θ z dz dθ = [− cos θ]π0 21 z V 3 0 1 0 0 1 1 r=0 = (−(−1) − (−1))( 256 21 − 2 ) 21 = 508 21 y 2 7. Let F below the cone x + y2 = z2 , above the hemisphere = xz, yz, 0 and let V be the solid region 2 2 2 2 div F dV z = 4 − x − y , and inside the cylinder x + y = 4. Calculate V (a) directly, (b) by the divergence theorem. z z z z 2 2 √⎯2 2 S2 S1 S3 V x y 2 2 x 2 2 y x y 2 √⎯2 x 2 2 y ∂ ∂ ∂ Part (a): div F = ∂x (xz) + ∂y (yz) + ∂z (0) = 2z Using cylindrical coordinates with dV = r dr dz dθ, we obtain 2π 2 r 2π 2 z=r √ √ divF dV = 2zr dz dr dθ = 0 √2 r z2 z=√4−r2 dr dθ 2 0 V 2 4−r 4 2 2π 2 2π = 0 √2 r(r2 − (4 − r2 )) dr dθ = [θ]0 r2 − 2r2 √ = (2π)(8 − 8 − 2 + 4) = 4π 2 (Note that divF dV can also be evaluated using spherical coordinates with dV = ρ2 sin φ dρ dφ dθ as V 2π π/2 2/ sin φ 2ρ cos φ ρ2 sin φ dρ dφ dθ) 0 π/4 2 F · ndS = Part (b): S F · ndS + S1 F · ndS + S2 F · ndS S3 √±2x,2y,2z S1 g(x, y, z) = x2 + y2 + z2 = 4; ±∇g = ± x2 , y2 , z2 ; |∇g| = 4x2 +4y 2 +4z 2 2 −y −z −x2 z−y 2 z choose “−” sign: n = −x = −r2 z 2 , 2 , 2 ; F·n= 2 Using spherical coordinates with ρ = 2, we have dS = 22 sin φ dφ dθ : π/2 2π π/2 −(2 sin φ)2 (2 cos φ) 2π sin4 φ 1 F·ndS = (4) sin φ dφ dθ = −16 [θ] = −16(2π)( 14 − 16 ) = −6π 0 0 π/4 S1 2 4 π/4 2 2 2 S2 g(x, y, z) = x + y − z = 0; ±∇g |∇g| ±2x,2y,−2z =√ ; choose “−” sign: n = √−2x,−2y,2z . 2 2 2 4x2 +4y2 +4z 2 2 2 2 2 2 −(ρ sin π ) (ρ cos π −2x z−2y z −r z 4 4) √ . F·n = √ 2 2 2 = ρ = = −ρ ρ 2 2 4x +4y +4z Using spherical coordinates with φ = π4 , we have dS = ρ sin π4 2√2 2π 2√2 −ρ2 ρ 2π ρ4 −1 √ √ dρ dθ = F · ndS = 0 2 [θ] 0 4 4 2 2 2 2 S2 4x +4y +4z dρ dθ : = −1 4 (2π)(16 √ ±2x,2y,0 = ± x2 , y2 , 0 ; S3 g(x, y, z) = x2 + y2 = 4; ±∇g |∇g| = 4x2 +4y2 +4z 2 2 2 z choose “+” sign: n = x2 , y2 , 0 ; F · n = x z+y = 2z 2 Using cylindrical coordinates with r = 2, we have dS = 2 dz dθ : 2π 2 2 2 F · ndS = 0 0 (2z) (2) dz dθ = [θ]2π 2z 0 = (2π)(8) = 16π 0 S3 F · ndS = −6π − 6π + 16π = 4π S − 4) = −6π 8. Let V be the pyramid with the rectangular base z = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1 and the vertex above the base (apex) at (0, 0, 2). Verify the divergence theorem for div F dV where F = 3, y3 , 1 . V z z z z z 2 2 2 2 2 S2 S4 S3 S5 V x 1 2 LHS = S y x F · ndS = S1 2 1 S1 F · ndS + S2 S1 z = 0; n = −k; F · n = −1; S2 y = 0; n = −j; F · n = 0; S1 S2 y x F · ndS + 1 2 S3 F · ndS + S4 y x 1 2 F · ndS + S5 y x 2 1 F · ndS F · ndS = −(Area of the rectangle S1 ) = −2 F · ndS = 0 −→ −→ S3 part of the plane containing A(2, 0, 0), B(2, 1, 0), D(0, 0, 2); normal vector AB × AD = 2, 0, 2 . The plane equation is 2(x − 2) + 2z = 0,which simplifies to x + z = 2. √ 1 1 √ = 2 2. The outward unit normal vector is n = √2 , 0, √2 ; F · n = 3+1 2 √ √ √ F · ndS = 2 2(Area of triangle S3 ) = 2 2( 12 ) (1) (2 2) = 4 S3 (same result could also be calculated by projecting onto the yz-plane 1/|n 1 | S3 √ √ 2 2 F · ndS = 2 dy dz = 4(Area of triangle S4 )) S4 S4 x = 0; n = −i; F · n = −3; S4 F · ndS = −3(Area of triangle S4 ) = −3 −→ −→ S5 part of the plane containing B(2, 1, 0), C(0, 1, 0), D(0, 0, 2); normal vector CB × CD = 0, −4, −2 . The plane equation is −4(y − 1) − 2z =0, which simplifies to 2y + z = 2. 3 2 1 The outward unit normal vector is n = 0, √5 , √5 ; F · n = 2y√+1 . 5 Projecting onto the xz-plane we obtain 1/|n 2 | √ z=2−x 2 2−x 2 −2 2(1− z2 )3 +1 5 z 3 1 z 4 z √ 1 − dz dx = 1 − dz dx = F·ndS = + + dx 2 2 4 2 2 0 0 0 5 2 z=0 S5 S2 5 2 2 4 x 1 −x x2 3x = 95 = 0 −x 32 + 1 − 2 + 2 dx = 160 − 4 + 2 0 S F · ndS = −2 + 0 + 4 − 3 + 9 5 = 4 5 3 ∂ ∂ y + ∂z (3) + ∂y (1) = 3y2 1 2−2y 2−z 2 1 2−2y x=2−z RHS = divF dV = 0 0 3y dx dz dy = 3 0 y2 0 [x]x=0 dz dy 0 V 1 2−2y 1 1 2 z=2−2y = 3 0 y2 0 (2 − z) dz dy = 3 0 y2 2z − z2 dy = 3 0 y2 (4 − 4y − 2 + 4y − 2y2 )dy z=0 1 = 2y3 − 65 y5 0 = 45 div F = ∂ ∂x y 9. Calculate the surface integral F · n dS where F = 1, 0, z2 and S is the surface that encloses the S solid region x2 + y2 + z2 ≤ 9, x, y, z ≤ 0. (a) directly, (b) by the divergence theorem. z z −3 −3 −3 −3 y x z −3 −3 y x −3 S −3 F · n dS = S1 z −3 y x F · n dS + S1 x = 0; n = i; F · n = 1; S1 S2 y = 0; n = j; F · n = 0; S2 S3 z = 0; n = k; F · n = 0; −3 S2 F · n dS + y x S4 S3 −3 F · n dS + F · n dS = (Area of S1 ) = S4 −3 F · n dS 9π 4 F · n dS = 0 S3 F · n dS = 0 S4 g(x, y, z) = x2 + y2 + z2 = 9; ±∇g |∇g| = √±2x,2y,2z 2 2 4x +4y 3 +4z 2 =± x y z 3, 3, 3 ; choose “+”: n = x y z 3, 3, 3 F · n = x+z 3 ; Using spherical coordinates with ρ = 3, we have dS = 32 sin φ dφ dθ 3π/2 π 3 cos θ sin φ+(3 cos φ)3 2 F · n dS = π (3 ) sin φ dφ dθ 3 π/2 S4 π 3π/2 π 3π/2 2 3 =9 π cos θ dθ ( π/2 sin φ dφ) + 81 π dθ cos φ sin φ dφ π/2 1−cos(2φ) 2 sub stitute u=cos φ π π 3π/2 φ 3π/2 cos 4 φ = 9 [sin θ]π − sin(2φ) − 81 [θ]π = 9(−1)( π2 − π4 ) − 81( π2 )( 14 ) = − 99 π 2 4 4 8 π/2 S F · n dS = 9π 4 +0+0− 99 π 8 π/2 = − 81 π 8 2 ∂ ∂ ∂ Part (b): div F = ∂x (1) + ∂y (0) + ∂z z = 2z = 2ρ cos φ 3π/2 π 3 divF dV = π 2ρ cos φ ρ2 sin φ dρ dφ dθ π/2 0 V π 3π/2 3 3 dθ cos φ sin φ dφ ρ dρ =2 π 0 = π/2 −3 −3 S2 S1 z −3 y x V Part (a): S3 su bstitu te u=sin φ 2 π 4 3 3π/2 sin φ ρ 81 = 2( π2 )( −1 2 [θ]π 2 4 2 )( 4 ) π/2 0 = − 81 8 π 10. Let F = x, y, z and let D be the circular disc x2 + y2 ≤ 4, z = 0. Verify the divergence theorem for 4−x−y div F dz dy dx. D 0 z z z z S3 S2 V 2 x LHS = S y y 2 D=S1 F · n dS = S1 2 x F · n dS + S2 S1 z = 0; n = −k; F · n = −z = 0; S2 g(x, y, z) = x2 + y2 = 4; 2 2 ±∇g |∇g| F · n dS + S1 y 2 x S3 y 2 2 x 2 2 F · n dS F · n dS = 0 = √ ±2x,2y,0 2 2 4x +4y +4z 2 =± x y 2, 2,0 ; choose “+”: n = x y 2, 2,0 ; 2 = r2 = 2; F · n = x +y 2 using cylindrical coordinates with r = 2, we have dS = 2 dz dθ : 2π 4−2 cos θ−2 sin θ 2π F · n dS = 0 0 (2)(2) dz dθ = 4 0 (4 − 2 cos θ − 2 sin θ) dθ S2 = 4 [4θ − 2 sin θ + 2 cos θ]2π 0 = 32π S3 part of the plane z = 4 − x − y, i.e., x + y + z = 4; a normal vector is ± 1, 1, 1 ; the outward unit normal is n = we project onto the xy-plane √1 , √1 , √1 3 3 3 1/|n3 | S S3 F · n dS = S1 √ √4 3 dy dx = 4(Area of S1 ) = 16π 3 F · n dS = 0 + 32π + 16π = 48π ∂ ∂ (x) + ∂y (y) + ∂z (z) = 3 2π 2 4−r cos θ−r sin θ RHS = divF dV = 0 0 0 3r dz dr dθ 2π 2 r=2 2π 2 V = 0 0 3r (4 − r cos θ − r sin θ) dr dθ = 0 6r − r3 cos θ − r3 sin θ r=0 2π 2π = 0 (24 − 8 cos θ − 8 sin θ) dθ = [24θ − 8 sin θ + 8 cos θ]0 = 48π div F = ∂ ∂x ; F·n= x+y+z √ 3 = √4 3
© Copyright 2026 Paperzz