Angle Addition and bisector

Angle Addition and
Bisector
Homework: Textbook pg 19 #9-11;
pg 20 #26-29; pg 25 #1-7, 15-16
PreAP: Same as above and
Textbook pg 26 #19-23
Example 1
Angle Name
Angle Measure
βˆ π‘€πΏπ‘
60
βˆ π‘€πΏπ‘‚
90
βˆ π‘€πΏπ‘ƒ
130
βˆ π‘€πΏπ‘„
180
βˆ π‘πΏO
30
βˆ π‘πΏP
70
βˆ π‘πΏπ‘„
120
βˆ π‘‚πΏπ‘ƒ
40
βˆ π‘‚πΏπ‘„
90
βˆ π‘ƒπΏπ‘„
50
mAOB = 4x ο€­ 1; mBOC = 2x + 15; mAOC = 8x + 8
Example 2
Work
4π‘₯ βˆ’ 1 + 2π‘₯ + 15 = 8π‘₯ + 8
6π‘₯ + 14 = 8π‘₯ + 8
14 = 2π‘₯ + 8
6 = 2π‘₯
3 = π‘₯ or π‘₯ = 3
π‘šβˆ π΄π‘‚π΅ = 4 3 βˆ’ 1 = 11
π‘šβˆ π΅π‘‚πΆ = 2 3 + 15 = 21
π‘šβˆ π΄π‘‚πΆ = 8 3 + 8 = 32
Example 3
mCOD = 8x + 13; mBOC = 3x ο€­ 10; mBOD = 12x ο€­ 6
Work
8π‘₯ + 13 + 3π‘₯ βˆ’ 10 = 12π‘₯ βˆ’ 6
11π‘₯ + 3 = 12π‘₯ βˆ’ 6
3=π‘₯βˆ’6
9 = π‘₯ or π‘₯ = 9
π‘šβˆ πΆπ‘‚π· = 8 9 + 13 = 85
π‘šβˆ π΅π‘‚πΆ = 3 9 βˆ’ 10 = 17
π‘šβˆ π·π‘‚π΅ = 12 9 βˆ’ 6 = 102
If mRZT = 110, mRZS = 3s, and mTZS = 8s, what are
mRZS and mTZS?
Work
3𝑠 + 8𝑠 = 110
11𝑠 = 110
𝑠 = 10
π‘šβˆ π‘…π‘π‘† = 3 10 = 30
π‘šβˆ π‘‡π‘π‘† = 8 10 = 80
Example 4
mOZP = 4r + 2, mPZQ = 5r ο€­ 12, and mOZQ = 125. What are
mOZP and mPZQ?
Example 5
Work
4π‘Ÿ + 2 + 5π‘Ÿ βˆ’ 12 = 125
9π‘Ÿ βˆ’ 10 = 125
9π‘Ÿ = 135
π‘Ÿ = 15
π‘šβˆ π‘‚π‘π‘ƒ = 4 15 + 2 = 62
π‘šβˆ π‘ƒπ‘π‘„ = 5 15 βˆ’ 12 = 63
QS bisects PQR. Solve for x and find mPQR
mPQR = 3x ο€­ 12; mPQS = 30
Work
Bisects means congruent angles
2 30 = 3π‘₯ βˆ’ 12
60 = 3π‘₯ βˆ’ 12
72 = 3π‘₯
24 = π‘₯ or x = 24
π‘šβˆ π‘ƒπ‘„π‘… = 3 24 βˆ’ 12 = 60
Example 6
QS bisects PQR. Solve for x and find mPQR
mPQS = 2x + 10; mSQR = 5x ο€­ 17
Work
Bisects means congruent angles
2π‘₯ + 10 = 5π‘₯ βˆ’ 17
10 = 3π‘₯ βˆ’ 17
27 = 3π‘₯
9 = π‘₯ or x = 9
π‘šβˆ π‘ƒπ‘„π‘† = 2 9 + 10 = 28
π‘šβˆ π‘ƒπ‘„π‘… = 2 28 = 56
Example 7
QS bisects PQR. Solve for x and find mPQR
mPQS = 3x; mSQR = 5x ο€­ 20
Work
Bisects means congruent angles
3π‘₯ = 5π‘₯ βˆ’ 20
βˆ’2π‘₯ = βˆ’20
π‘₯ = 10
π‘šβˆ π‘ƒπ‘„π‘† = 3 10 = 30
π‘šβˆ π‘ƒπ‘„π‘… = 2 30 = 60
Example 8
QS bisects PQR. Solve for x and find mPQR
mPQS = 2x + 1; mRQS = 4x ο€­ 15
Work
Bisects means congruent angles
2π‘₯ + 1 = 4π‘₯ βˆ’ 15
1 = 2π‘₯ βˆ’ 15
16 = 2π‘₯
8 = π‘₯ or x = 8
π‘šβˆ π‘ƒπ‘„π‘† = 2 8 + 1 = 17
π‘šβˆ π‘ƒπ‘„π‘… = 2 17 = 34
Example 9