Conic Sections Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(4, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -9), find M 3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A 7. Find the distance from A(4, 2) to B(3, -8). 8. Find the distance from A(5, 7) to B(-2, -9). 9. Find the distance from A(2,0) to B(6, -2). 10. The distance from A(2, 3) to B(-6, y) is 10, find y. 11. The distance from A(-4, 7) to B(x, 9) is 7, find x. Homework M is the midpoint of A and B. Use the given information to find the missing point. 12. A(4, -2) and B(5, 6), find M 13. A(9, 4) and B(-3, -7), find M 14. A(1, 10) and B(6, -2), find M 15. A( 4, 8) and M(4,-3), find B 16. M(8, 7) and B( -10, 11) find A 17. B(-5, 10) and M(-2, 5), find A 18. Find the distance from A(-3, 9) to B(3, -8). 19. Find the distance from A(5, -9) to B(-2, -9). 20. Find the distance from A(-2,10) to B(-6, 0). 21. The distance from A(2, -3) to B(5, y) is 10, find y. 22. The distance from A(4, 6) to B(2x, 9) is 7, find x. Parabolas Class Work What is the vertex of the parabola? 23. π¦ = (π₯ β 2)2 + 4 24. π¦ = β3(π₯ + 5)2 + 5 25. π₯ = 5(π¦ β 7)2 β 6 26. π₯ = 2(π¦ + 4)2 + 9 27. π¦ = 2(π₯ β 7)2 β 9 3 28. π¦ = 4 (π₯)2 + 4 29. π¦ = β(π₯ β 7)2 5 3 30. π₯ = (π¦ + 8)2 β 3 Write the following equations in standard form. 31. π¦ = π₯ 2 + 4π₯ 32. π₯ = π¦ 2 β 8π¦ 33. π¦ = π₯ 2 β 6π₯ + 8 Geometry - Conics ~1~ NJCTL.org 34. π₯ = π¦ 2 + 2π¦ + 10 35. π¦ = π₯ 2 + 10π₯ β 12 36. π₯ = π¦ 2 β 8π¦ + 16 37. π¦ = 2π₯ 2 + 12π₯ 38. π₯ = 3π¦ 2 β 6π¦ 39. π¦ = β4π₯ 2 + 8π₯ + 6 40. π₯ = β6π¦ 2 β 12π¦ + 15 Graph each of the following. State the direction of the opening. Identify vertex and the focus and give the equations of the directrix and axis of symmetry. 41. π¦ = 2(π₯ β 4)2 β 3 42. π₯ = β3(π¦ + 2)2 β 6 1 43. π¦ = 2 (π₯ + 6)2 + 5 3 44. π₯ = 4 (π¦ β 5)2 + 7 45. π¦ = β(π₯ β 6)2 β 8 1 46. π₯ = β 8 (π¦ + 5)2 Homework What is the vertex of the parabola? 47. π¦ = (π₯ + 3)2 + 7 48. π¦ = β2(π₯ + 4)2 + 8 49. π₯ = 6(π¦ β 3)2 β 5 2 50. π₯ = 3 (π¦ + 8)2 β 10 51. π¦ = (π₯ β 12)2 β 11 52. π¦ = 2(π₯ β 3)2 53. π¦ = β4(π₯)2 + 5 2 3 54. π₯ = (π¦)2 Write the following equations in standard form. 55. π¦ = π₯ 2 + 6π₯ 56. π₯ = π¦ 2 β 10π¦ 57. π¦ = π₯ 2 β 4π₯ + 11 58. π₯ = π¦ 2 + 8π¦ + 12 59. π¦ = π₯ 2 + 16π₯ + 49 60. π₯ = βπ¦ 2 β 8π¦ + 8 61. π¦ = 2π₯ 2 + 8π₯ 62. π₯ = 3π¦ 2 β 9π¦ 63. π¦ = β5π₯ 2 + 10π₯ + 16 64. π₯ = β2π¦ 2 β 12π¦ β 30 Graph each of the following. State the direction of the opening. Identify vertex and the focus and give the equations of the directrix and axis of symmetry. 65. π¦ = 8(π₯ β 2)2 β 4 66. π₯ = β5(π¦ + 1)2 β 7 1 67. π¦ = β 4 (π₯ + 9)2 β 8 Geometry - Conics ~2~ NJCTL.org 68. π₯ = 69. π¦ = 70. π₯ = β3 (π¦ β 2)2 12 (2π₯)2 +1 β8 3 (π¦ 8 + 6)2 Circles Class Work What are the center and the radius of the following circles? 71. (π₯ + 2)2 + (π¦ β 4)2 = 16 72. (π₯ β 3)2 + (π¦ β 7)2 = 25 73. (π₯)2 + (π¦ + 8)2 = 1 74. (π₯ β 7)2 + (π¦ + 1)2 = 17 75. (π₯ + 6)2 + (π¦)2 = 32 Write the standard form of the equation for the given information. 76. center (3,2) radius 6 77. center (-4, -7) radius 8 78. center (5, -9) radius 10 79. center (-8, 0) diameter 14 80. center (4,5) and point on the circle (3, -7) 81. diameter with endpoints (6, 4) and (10, -8) 82. center (4, 9) and tangent to the x-axis 83. π₯ 2 + 4π₯ + π¦ 2 β 8π¦ = 11 84. π₯ 2 β 10π₯ + π¦ 2 + 2π¦ = 11 85. π₯ 2 + 7π₯ + π¦ 2 = 11 Homework What are the center and the radius of the following circles? 86. (π₯ β 9)2 + (π¦ + 5)2 = 9 87. (π₯ + 11)2 + (π¦ β 8)2 = 64 88. (π₯ + 13)2 + (π¦ β 3)2 = 144 89. (π₯ β 2)2 + (π¦)2 = 19 90. (π₯ β 6)2 + (π¦ β 15)2 = 40 Write the standard form of the equation for the given information. 91. center (-2, -4) radius 9 92. center (-3, 3) radius 11 93. center (5, 8) radius 12 94. center (0 , 8) diameter 16 95. center (-4,6) and point on the circle (-2, -8) 96. diameter with endpoints (5, 14) and (11, -8) 97. center (4, 9) and tangent to the y-axis 98. π₯ 2 β 2π₯ + π¦ 2 + 10π¦ = 11 99. π₯ 2 + 12π₯ + π¦ 2 + 20π¦ = 11 100. 4π₯ 2 + 16π₯ + 4π¦ 2 β 8π¦ = 12 Geometry - Conics ~3~ NJCTL.org Ellipses Class Work Identify the ellipseβs center and foci. State the length of the major and minor axes. Graph the ellipse. 101. 102. 103. 104. 105. (xβ2)2 4 (xβ1)2 9 (x)2 + 25 (x+4)2 16 (x+1)2 6 (π¦+3)2 + 16 (π¦β4)2 + 1 (π¦+5)2 + =1 =1 36 (π¦+2)2 + =1 8 (π¦β1)2 20 =1 =1 Write the equation of the ellipse in standard form with the following properties. 106. x 2 + 4x + 2y 2 β 8y = 20 107. 4x 2 β 8x + 3y 2 + 18y = 5 108. Center (1,4), a horizontal major axis of 10 and a minor axis of 6. 109. Foci (2,5) and (2,11) with a minor axis of 10 110. Foci (-2,4) and (-6,4) with a major axis of 18 Homework Identify the ellipseβs center and foci. State the length of the major and minor axes. Graph the ellipse. 111. 112. 113. 114. 115. (x+5)2 16 (xβ7)2 4 (xβ2)2 25 (x)2 + 1 (x+1)2 36 + + + (π¦β4)2 9 (π¦+1)2 49 (π¦)2 64 (π¦)2 4 + =1 =1 =1 =1 (π¦β1)2 18 =1 Write the equation of the ellipse in standard form with the following properties. 116. x 2 + 10x + 2y 2 β 12y = β1 117. 3x 2 β 12x + 4y 2 + 16y = 8 118. Center (-1,2), a vertical major axis of 8 and a minor axis of 4. 119. Foci (3, 5) and (3,11) with a minor axis of 8 120. Foci (-2, 6) and (-8, 6) with a major axis of 14 Hyperbolas Class Work Graph each of the following hyperbolas. Write the equations of the asymptotes. 121. 122. 123. (y+5)2 16 (xβ7)2 4 (yβ2)2 25 Geometry - Conics β β β (π₯β4)2 9 (π¦+1)2 49 (π₯)2 64 =1 =1 =1 ~4~ NJCTL.org 124. 125. (x)2 β 1 (y+1)2 36 (π¦)2 4 β =1 (π₯β1)2 18 =1 Write the equation of the hyperbola in standard form. 126. x 2 + 4x β 2y 2 β 8y = 20 127. 3y 2 + 18yβ4x 2 β 8x = 1 128. Opens horizontally, with center (3,7) and asymptotes with slope π = ± 129. Opens vertically, with asymptotes π¦ = 2 π₯ + 8 and π¦ = β 2 π₯ β 4 3 2 5 3 Homework Graph each of the following hyperbolas. Write the equations of the asymptotes. 130. 131. 132. 133. 134. (xβ2)2 4 (yβ1)2 9 (x)2 β 25 (y+4)2 16 (yβ6)2 9 β β (π¦+3)2 16 (π₯β4)2 1 (π¦+5)2 β β =1 =1 36 (π₯+2)2 8 (π₯+5)2 30 =1 =1 =1 Write the equation of the hyperbola in standard form. 135. 4y 2 β 24y β 5x 2 + 20x = 4 136. 6y 2 + 36yβx 2 β 14x = 1 3 137. Opens vertically, with center (-4,1) and asymptotes with slope π = ± 7 138. Opens horizontally, with asymptotes π¦ = 9 π₯ + 10 and π¦ = β 9 π₯ β 14 4 4 Recognizing Conic Sections from the General Form Class Work Identify the conic section and state its eccentricity. Write the equation in standard form. 139. π¦ 2 + 6π¦ + π₯ 2 + 10π₯ = 12 140. π¦ 2 + 8π¦ β π₯ 2 + 12π₯ = 25 141. 4π¦ 2 + 16π¦ + 3π₯ 2 β 18π₯ = 7 142. π¦ 2 + 2π¦ β π₯ 2 + 8π₯ = π¦ 2 + 12 143. 2π₯ 2 β 20π₯ + 2π¦ 2 + 16π¦ = β6 144. 4π₯ 2 β 24π₯ β 2π¦ 2 + 8π¦ = β4 Homework Identify the conic section and state its eccentricity. Write the equation in standard form. 145. 4π¦ 2 + 8π¦ + 2π₯ 2 + 12π₯ = 10 146. π¦ 2 + 2π¦ β π₯ 2 + 8π₯ = 16 147. 4π¦ 2 + 16π¦ + 4π₯ 2 β 24π₯ = 12 148. π¦ 2 + 2π¦ + π₯ 2 + 12π₯ = 2π¦ 2 + 12 149. π₯ 2 β 20π₯ β 2π¦ 2 + 16π¦ = β6 150. 6π₯ 2 β 24π₯ + 4π¦ 2 + 8π¦ = β4 Geometry - Conics ~5~ NJCTL.org Multiple Choice 1. The distance from A(2,y) to B(-1,7) is 5. Find y. a. 2 b. 3 c. 12 d. A and C 2. M is the midpoint of EF. Find F given E(3,4) and M(5, -2). a. (4,1) b. (4,3) c. (7,-8) d. (1,10) 3. What is the vertex of the parabola π₯ = β2 (π¦ 3 β 9)2 + 2 a. (9,-2) b. (-2,2) c. (2,-2) d. (2,9) 4. Write the following equations in standard form π₯ = 2π¦ 2 + 12π¦ + 2 a. π₯ = 2(π₯ + 6)2 + 2 b. π₯ = 2(π₯ + 3)2 β 7 c. π₯ = 2(π₯ + 3)2 β 10 d. π₯ = 2(π₯ + 3)2 β 16 5. Identify the focus of π₯ = β2 (π¦ 16 β 3)2 + 2 a. F(0,3) b. F(4,3) c. F(2,1) d. F(2,5) 6. Write the equations of the directrix and axis of symmetry of a parabola with vertex (4,-2) and focus (4,4). a. Directrix: y= -8; Axis of Symmetry: x=4 b. Directrix: y= -10; Axis of Symmetry: x=4 c. Directrix: x= -8; Axis of Symmetry: y=4 d. Directrix: x= -10; Axis of Symmetry: y=4 7. Write the equation of the parabola with vertex (4,-2) and focus (4,4). 1 a. π¦ = 16 (π₯ β 4)2 β 2 1 b. π¦ = 8 (π₯ β 4)2 β 2 1 c. π¦ = 24 (π₯ β 4)2 β 2 d. π₯ = 1 (π¦ 12 Geometry - Conics + 2)2 + 4 ~6~ NJCTL.org 8. What are the center and the radius of the following circle: (π₯ β 7)2 + (π¦ + 6)2 = 4 a. (-7,6); r=4 b. (7,-6); r=16 c. (-7,6); r= 8 d. (7,-6); r= 2 9. Write the equation of the circle with a diameter with endpoints (6, 12) and (17, -8). a. (x β 11)2 + (y β 6)2 = 521 b. (x β 11)2 + (y + 6)2 = 22.8 c. (x β 11)2 + (y β 2)2 = 521 d. (x β 11)2 + (y β 2)2 = 22.8 10. Identify the ellipseβs center and foci: (x+4)2 16 + (π¦β1)2 36 =1 a. C(-4,1); Foci: (β4 ± β20, 1) b. C(4,-1); Foci: (4 ± β20, β1) c. C(-4,1); Foci: (β4,1 ± β20) d. C(4,-1); Foci: (4,1 ± β20) 11. State the length of the major and minor axes of (x+4)2 16 + (π¦β1)2 36 =1 a. Major: 4; Minor: 6 b. Major: 6; Minor: 4 c. Major: 36; Minor: 16 d. Major: 12; Minor: 8 12. Write the equation in standard form 4y 2 β 24y β 2x 2 + 20x = 22 a. b. c. d. (yβ3)2 2 (yβ3)2 2 (yβ3)2 27 (yβ3)2 27 β β β β (xβ5)2 4 (x+5)2 4 (xβ5)2 54 (x+5)2 54 =1 =1 =1 =1 13. What is the slope of the asymptotes for the hyperbola (y+4)2 16 β (π₯+2)2 8 =1 a. π¦ = ±2 1 b. π¦ = ± 2 c. π¦ = ± β2 2 d. π¦ = ±2β2 14. Write the equation in standard form x 2 + 12x + 3y 2 β 12y = β1 a. (π₯ + 6)2 + 3(π¦ β 2)2 = 47 b. (π₯+6)2 45 + (π¦β2)2 15 = 45 2 c. (π₯ + 6) + 3(π¦ β 2)2 = 23 d. (π₯+6)2 23 + Geometry - Conics 3(π¦β2)2 23 = 47 ~7~ NJCTL.org 15. Identify the conic sectionβs eccentricity: π¦ 2 β 4π¦ β π₯ 2 + 6π₯ = 12 a. e=0 b. 0<e<1 c. e=1 d. e>1 16. Identify the conic sectionβs eccentricity. 4π¦ 2 + 16π¦ + 4π₯ 2 β 24π₯ = 12 a. e=0 b. 0<e<1 c. e=1 d. e>1 Extended Response 1. A parabola has vertex (3, 4) and focus (4, 4) a. What direction does the parabola open? b. What are the equations of the axis of symmetry and the directrix? c. Write the equation of the parabola. 2. Given the general form of a conic section as π΄x 2 + Bx + πΆπ¦ 2 + π·π¦ + πΈ = 0 a. What do A & C tell us about the conic? b. What is center of the conic if π΄ β 0 & πΆ β 0? c. If A, B, C, D are 2 and E is 0, what is eccentricity? 3. Consider a circle and a parabola. a. At how many points can they intersect? b. If the circle has equation x 2 + y 2 = 4 and the parabola has equation π¦ = π₯ 2, what are the point(s) of intersection? c. If the parabola were reflected over the x-axis, what would be the point(s) of intersection? Geometry - Conics ~8~ NJCTL.org Answers 38. X=3(y-1)2 -3 39. Y=-4(x-1)2 +10 40. X=-6(y+1)2 +21 41. Up; v(4,-3); F(4,-2 7/8); Dir: y=-3 1/8; AOS x=4 42. Left; v(-6,-2) F (-6 ½, -2); dir x=-5 11/12; AOS y=-2 43. Up v (-6, 5 ½); dir y=4 ½; AOS x=-6 44. right; v(7,5); F(7 1/3, 5) Dir x=6 2/3; AOS y=5 45. Down; V (6,-8) F(6, -8 ¼) dir y=-7 3/4 ; AOS x=6 46. Left; v (0,-5); F (-2,-5); dir x=2; AOS y=-5 47. (-3,7) 48. (-4,8) 49. (-5,3) 50. (-10,-8) 51. (12,-11) 52. (3,0) 53. (0,-5) 54. (0,0) 55. Y=(x+3)2 -9 56. X= (Y-5)2 -25 57. Y= (x-2)2 +7 58. X= (y+4)2 -4 59. Y= (x+8)2 -15 60. X=-(Y+4)2 +24 61. Y=2(x+2)2 -8 62. X=3 (y-1.5)2 -3.75 63. Y=-5(x-1)2 +21 64. X=-2(Y+3)2 -12 65. Up v(2,-4) F (2, -3 31/32) Dir y=-4 1/32; AOS x=2 66. Left; V (-7,-1); F (-7 1/20, -1) Dir x= -6 19/20; AOS y=-1 67. Down; V (-9,-8); F (-9,-9); dir y=-7; AOS x=-9 1. (3.5, -3) 2. (1.5, -1) 3. (4,-1) 4. (5,-13) 5. (18,-29) 6. (-8,2) 7. 10.05 8. 17.46 9. 4.47 10. -3 or 9 11. -4+/-3β5 12. (4.5, 2) 13. (3, -1.5) 14. (3.5, 4) 15. (4,-14) 16. (26,3) 17. (1,0) 18. 18.03 19. 7 20. 10.77 21. -3 +/-β91 22. 2 +/β β10 23. (2,4) 24. (-5,5) 25. (-6,7) 26. (9,-4) 27. (7,-9) 28. (0,4) 29. (7,0) 30. (-3,-8) 31. Y=(x+2)2 -4 32. S=(y-4)2 -16 33. Y= (x-3)2 -1 34. (y+1)2+9=x 35. Y=(x+5)2 -37 36. X= )y-4)2 37. Y=2(x+3)2-18 Geometry - Conics ~9~ NJCTL.org 68. Left; v (-1,2); F (-2,2); dir x=0; AOS y=2 69. Up; V (0,-8); F (), -7 ¾); dir y=-8 ¼; AOS x=0 70. Right; V (0,-6); F (2/3, -6) Dir x=-2/3; AOS y=-6 71. C (-2,4) r=4 72. C (3,7); r=5 73. C (0,-8); r=1 74. C (7,-1); r= β17 2); maj=8; min =4β2 105. C (-1,1); F1 (-1,4.74); f2 (-1, 2.74); maj =4β5; min =2β6 106. 75. C (-6,0); r =4β2 76. (x-3)2 + (x-2)2 =36 77. (x+4)2 + (Y+7)2 =64 78. (x-5)2 + (y+9)2 = 100 79. (x+8)2 + y2 =49 80. (x-4)2 + (y-5)2 =145 81. (x-8)2 + (y+2)2 =40 82. (x-4)2 + (y-9)2 =81 83. (x+2)2 + (y-4)2 =31 84. (x-5)2 + (y+1)2 =37 85. (x+3.5)2 + y2 =23.25 86. C (9,-5) r=3 87. C -11, 8) r=8 88. C(-13, 3) r=12 107. 108. 109. 110. (π₯+2)2 32 (π₯β1)2 9 (π₯β1)2 25 (π₯β2)2 25 (π₯+4)2 81 + + + + + (π¦β2)2 16 (π¦+3)2 12 (π¦β4)2 9 (π¦+8)2 34 (π¦β4)2 37 =1 =1 =1 =1 =1 111. C (-5,4); F1(-7.65, 4); F2 (-2.35, 4); Maj=8 min =6 112. C (7,-1); F1 (&, 5.71); F2 (&,7.71); maj=14; min=4 113. C (2,0); F1 (2, 6.25); F2 (2, 6.25); Maj=16; min=10 114. C(0,0); F1 (),3.8); f1 (), -3.87); maj=4; min=2 115. C(-1,1); F (3.23, 1); F2 (-5.24, 1); 89. C(2,0) r= β19 90. C (6,15) r=2β10 91. (x+2)2 +(Y+4)2 =81 92. (x+3)2 + (y-3)2 =121 93. (x-5)2 + (y-8)2 =144 94. X2 + (y-8)2 =64 95. (x+4)2 + (y-6)2 =200 96. (x-8)2 + (y-3)2 = 130 97. (x-4)2 + ( y-9)2 =16 98. (x-1)2 + (y+5)2 =37 99. (x+6)2 + (y+10)2 =147 100. (x+2)2 + (y-1)2 =8 101. C (2,-3); F1(2,-6.46) F2 (2, .46); maj=8; min =4 Geometry - Conics 102. C (1,4); F1 (3.83, 4) F2(-1.83, 4); maj=6; min=2 103. C (0,-5); f1 (0,-8.32) F2 (0, -1.68); maj=12; min=10 104. C (-4,-2); F1 (-6.83, -2) F2(-1.17, - maj =12; min =6β2 116. 117. 118. 119. 120. ~10~ (π₯+5)2 42 (π₯β2)2 12 (π₯+1)2 4 (π₯β3)2 16 (π₯+5)2 49 + + + + + (π¦β3)2 21 (π¦+2)2 9 (π¦β2)2 16 (π¦β8)2 25 (π¦β6)2 40 121. 122. 123. 124. M = +/- 4/3 M= +/- 7/2 M= +/- 5/8 M= +/- 2 125. M= +/- β2 =1 =1 =1 =1 =1 NJCTL.org (π₯+2)2 126. 16 (π¦+3)2 127. 8 (π₯β3)2 128. 25 (π¦β2)2 129. (π¦+2)2 β 8 (π₯+1)2 β 6 (π¦β7)2 β 4 (π₯+4)2 + 9 4 M= +/- β2 134. M = +/- β30/10 5 (π¦+3)2 136. 6 (π₯+4)2 β 9 (π₯+27)2 138. 4 (π₯+7)2 β 1 (π¦β1)2 137. (π₯β2)2 81 β =1 =1 =1 49 (π¦+2)2 16 =1 Circle; x=0; (x+5)2 + (Y+3)2=46 Hyperbola; e>1: 139. 140. (π¦+4)2 5 β 141. (π₯β6)2 5 =1 50 + 2(π¦+2)2 25 =1 6 β (π¦β2)2 12 1 c. π₯ = 4 (π¦ β 4)2 + 3 =1 (π₯+3)2 + (π¦+1)2 145. Ellipse; x<e<4; 146. 147. 148. Hyperbola; e>1 (Y+1)2 β(x-4)2=1 circle; e=0; (x-3)2+ (y+2)2 =16 hyperbola; e>1; (π₯+6)2 47 149. β (π¦β1)2 47 16 8 =1 62 β (π¦β4)2 Geometry - Conics 31 2. a. A and C identify the type of conic π΅ π· b. (2π΄ , 2πΆ) c. e=0 3. =1 a. 0, 1, or 2 points b. (-1.25,1.56) and (1.25, 1.56) c. (-1.25,-1.56) and (1.25, -1.56) hyperbola; e>1; (π₯β1)2 =1 a. Right b. Axis of symmetry: y=4, directrix: x=2 Parabola; e=1; -2 2 2 Circle; e=0; (x-5) + (y+4) =38 Hyperbola; e>1; (π₯β3)2 6 1. y=1/2(x-4)2 142. 143. 144. (π¦+1)2 Extended Response Answers Ellipse; o<e<1; 3(π₯β3)2 + Multiple Choice Answers 1. B 2. A 3. D 4. D 5. A 6. A 7. C 8. D 9. C 10. C 11. D 12. D 13. D 14. A 15. D 16. A =1 133. β 4 =1 M = +/- 2 M= +/- 3 M+ +/- 6/5 (π¦β3)2 (π₯β2)2 =1 130. 131. 132. 135. 150. ellipse; 0<e<4; =1 =1 ~11~ NJCTL.org
© Copyright 2026 Paperzz