Professor David L. Van Vranken Chemistry 201: Organic Reaction Mechanisms I Topic 14: Alkali Organometallics X X Li OR 2 E+ Read: F. A. Carey & R. J. Sundberg Advanced Organic Chemistry, Part A: Structure and Mechanisms. 5th Ed. Ch. 6 M. Schlosser, Ed. Organometallics in Synthesis: A Manual Wiley, 1994. "Chapter 1. Organoalkali Reagents" Misconception ■ Consider these two resonance forms: covalent M M+ R 3C - .. R 3C ionic ■ Electronegativity determines ionic character & basicity Electronegativity: 2.2 R-M Covalent character: H (Ionic character) Basicity: 1.3 > Mg 0.98 > Li 0.93 Na > 0.82 > 0.82 K > Rb R-MgBr < R-Li < R-Na < R-K R MgBr R Li R Na R K 0.79 > Cs < R-Cs R ■ Avoid ionizing R-M bonds; just use the bond as the base/nucleophile. like this H 3C Li .. H 3C not this Li + O ■ COMPLETE FICTION: Li, Na, K, Mg, Ca, etc. want no electrons They want 8 valence electrons! Here’s what H3CLi does in hexane. H 3C + Li Li Li - Li + H 3C CH3 Li H C HH HH C H + Li HH C H H 3C Li - H H -2 +2 H C Li +2 Li CH3 -2 +2 Li H C H H +2 C H H Li H -2 Lewis structure Formal charges: Li 2-, C 2+ 3 bonds to each Li 6 bonds to each C Cs Aggregation of Alkali Organometallics ■ Alkyllithiums aggegrate to form tetramers, hexamers, etc. to help lithium satisfy the octet. Sterics often prevents Li from achieving an octet. Bulkier alkyl groups lead to less aggregation. Using dative bond representations reduces the complexity of these structures. H H -2 +2 H C Li +2 Li CH3 -2 +2 C H H Li H Li +2 H H H C Li Li CH3 H C H H Li H C H H -2 Lewis structure C H H Li H dative bonds crystal structures of (MeLi)n ■ Metal alkoxides also aggregate t-BuOK t-Bu -2 K t-Bu +2 +2 O K OLi -2 +2 O t-Bu O K K -2 = +2 O t-Bu ■ You don’t have to draw these aggregrates; but never be afraid to form additional bonds to alkali metals. Dos and Don’ts for Drawing Mechanisms with Organoalkali Species in Chem 201 ■ Draw arrow-pushing mechanisms that avoid ionizing anions and cationic metals H 3C MgBr H 3C +MgBr .. Don't do this: O Do this: H 3C MgBr O Don't do this: Do this: t-BuO t-BuO t-BuO .. K t-BuO .. O - t-BuO - K H H H R K R K H +K t-BuO H I'll accept.. + MgBr .. Don't do this: H 3C R + K t-BuO H :R - + K t-BuO H :R - R +K - : R R K + t-BuO H +K t-BuO H K R t-BuO H K R :R - t-BuO H Metal Hydrides Na-H ■ Na—H = cubic lattice K-H (Arrow pushers: pretend M—H is a monomer) Dyck, W.; Jex, H. J. of Physics C 1981, 14, 4193 ■ Example: metal hydride basicity Na–H + H–OR + MH + H H Li-H NaH KH OM O M H + H H Na–OR H 2C R Ph krel 1 1,000 1,000,000 ■ Basicity (vs nucleophilicity) increases from RMg to RK. O H H H M π∗ OM Ph-M Ph Ph M CH3 Ph Ph Ph Ph MgBr Li Na K Grovenstein, E. JACS 1959, 4842 Ph 97 14 4 0 Ph σ∗ OM CH 2 Ph 0 75 60 67 more negative charge = more basic Synthesis of Organometallics ■ We don’t have arrow pushing representations for electron transfers, nor good Lewis representations for the radical anion intermediates. + 2Na Cl Na+ e- R Cl NaCl + • – Na+ -NaCl ■ Rates depend on R-X: Na R Cl M R• RI > RBr > RCl n-BuM E2 + SN 2 Wurtz coupling Formation of R-Na requires special conditions: (finely dispersed Na, high speed stirrer, vortical fluid motion, special glass, -10 °C) ■ Always make R–Li from R––Cl but not R –– I. Here’s why… n-BuX X Cl Br I + n-BuLi t1/2 40 h 30 min < 5 min Et 2O σ*C-Cl = EMO σC-Cl Why don’t we make n-BuNa? ■ Kronos behaviour (children swallowed by creator) Cl • – E2 + SN 2 t1/2 >100 h 40 h 3h in C6H 6... Why rel. order? Step 1 = e- into σ* orb E σ*C-Cl σ*C—Br σ*C——I Preparation of Alkyllithiums by Reductive Lithiation ■ Reductive lithiation of thiophenyl ethers. Li + naphthalene = LiNp, but it is a pain to remove one equivalent of naphthalene after the reaction is over. Dimethylaminonaphthylamine is readily removed with an acid wash. Li+ O NMe 2 .. -. -78 °C SPh O Li "LDMAN" ■ LiNp efficiently adds an electron to the pi* antibonding orbital of PhS groups. Rates of reductive lithiation correlate with the ease of radical formation. Li + e- many, many res. structs. radical S+ Li . .. . - Li + e- rate of reductive lithiation: SPh SPh SPh R Cohen, T. J. Am. Chem. Soc. 1984, 106, 1130. Preparation of Alkyllithiums by Exchange Reactions ■ Metal/halogen exchange Rates depend on R-X: n-Bu—Li + RI > RBr > RCl X—Ph n-Bu—X + With R-I, instantaneous at -80 °C Mechanisms: Newcomb, M. TL, 1989, 26, 1183 R-I, low temp - iodate; R-Br, high temp = e- transfer Li—Ph -70 °C Rates: I >> Me 3Sn > Me 3Sn Kanda, T J. Phys. Org. Chem. 1996, 9, 29. 80 : 1 ■ Sn-Li exchange (same with lithium-iodide exchange) R MeO SnMe3 n-BuLi Et 2O Me Bu – R Sn Me Me MeO Li+ stann-ate R Li Bu—SnMe 3 Mechanism = stann"ate" MeO Sn: MacDonald, T. J. Am. Chem. Soc. 1988, 110, 842. I: Farnham, W. B. J. Am. Chem. Soc, 1986, 108, 2449. ■ Sn-Li exchange proceeds with retention at carbon Reich, H J. Am. Chem. Soc. 1992, 114, 6577-9. Metal-Halogen Exchange Driven by Thermodynamics ■ Metal-halogen exchange is faster than SN2 (at low temp.) R Li + Ph I -70 °C Compound R I + Ph Li Keq R Li Li 0.004 Li 1 R Li n-BuLi ~ s-BuLi ~ I - R' Li+ I R' 10 Li 7,500 Li 10,000,000 R I Li R' way faster than S N2 Li >10,000,000 R Li R' I Applequist, D.E.; O'Brien, D. F. “Equilibria in Halogen-Lithium Interconversions” J. Am. Chem. Soc., 1963, 85, 743-748. Formation of Organometallics by Metalation ■ Recall: pKa' 50 H 3C CH 2Li Basicity: 41 H 2C CHLi > >> 10 9 24 HC CLi 10 17 < 36 R 2NLi 10 12 ■ Direct metalation (deprotonation) of benzene is too slow to be useful Li slow! Li + H + ...also with BuLi ■ Alkynes can be directly metalated R C C H + fast Et-MgBr + R C C MgBr Et-H ■ Recall: deprotonation of alkyne C-H is relatively fast Cl NaOEt H OEt EtOH H Ph Cl C C EtO - C .. .. C- (w/ t-BuOK) Shiner, V. J.; Humphrey, J. S., Jr. J. Am. Chem. Soc. 1967, 89, 622. See also… Sonogashira couplings C C Ph Directed Ortho Metalation ■ Chelation of R-Li speeds up metalation and stabilizes Ar-Li OH OCONEt 2 Me OH Me ? NaOH CH3I NEt 2 O O H ‡ NEt 2 O n-BuLi THF -78 °C,1 h NEt 2 O+ Li H O O+ Li + C 4H10 ■ Relative directing power; (you keep the chelate in the aryllithium) NEt 2 O O Li O t-Bu O S O Li > N LiO Li Me N Li N > O Li OMe Li V. Snieckus “Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics” Chem. Rev. 1990, 90, 879. Metalation of Strained Rings ■ Epoxides undergo two competing reactions with bases ■ Lithium amide bases convert epoxides to allylic alcohols. The base removes the proton syn to the epoxide. LiNR 2 O O OLi H .. NR 2 Li Thummel, R.P.; Rickborn, B. J. Am. Chem. Soc., 1970, 92, 2064 ■ Very aggressive bases deprotonate epoxides and generate lithium carbenoids. H Li O H NEt 2 16% H OLi 70% it's an electrophile empty p OLi Li it's a filled σC-Li nucleophile H O R-Li Li O H + H Li Ocarbenoid Cope, A. C.; Lee, H.-H.; Petree, H. E. JACS 1958, 80, 2849. Hodgson, D.M.; Bray, C.D.; Humphreys, P.G. Synlett 2006,1. Aggregation of R-Li ■ Ether solvents coordinate to alkali metals. n-BuLi forms a tetramer in THF + some dimer . Br Li C C Li C Li O Li C O Li O C Li C Li wants octet Ph THF Li = Li•THF C = n-Bu H ~1% OLi " " i-Pr2N–Li Ar OEt 2 OEt 2 Ph + Mg OEt 2 wrong! O Bn-Br Ar THF, -78 °C Mg dative bonds to metals don't draw charges don't use for arrow pushing ■ Li enolates = 99% dimer in THF, but reacts via monomer. O – .. ..OEt 2 Br Ar 25 °C Ph Streitwieser JOC 1995, 4688 Ar O Li Li 25 °C O Ar SLOW 99% ■ C=O Addition: Me—Li / n-Bu—Li add as dimer! + - R O Li Li R C + O Li C R R Li IMPORTANT RULE: Arrow Pushers: Pretend RM is monomer M = Li, MgBr O + M R But never forget aggregation Kaufmann, E.; Schleyer, P. v. R.; Houk, K. N.; Wu, Y. D. JACS 1985, 107, 5560. Nakamura, M.; Nakamura, E.; Koga, N; Morokuma, K. JACS 1993, 115, 110167. M O R Organocuprates ■ Organocopper, R-Cu is not very nucleophilic or basic ■ Cuprates, R2CuLi are ARE nucleophilic. They do all the things you wished RLi could do: substn with R-X, opening epoxides, 1,4-addn., etc. Require exquisite technique and involve complex mechanisms. "Me 2CuLi" + LiI 2 MeLi + Cu-I cuprate " Li+ Me " LiI Me Cu actually, aggregated 1. nucleophilic C 2. low charge on C i.e., SOFT borate H -B H H H (Me 2CuLi = Gilman reagent) aluminate silicate H H - Al - Si Et Et H H Et H OR other "-ate" complexes not soft The true structures are complex X-ray struct. PhCu • 1/2Me 2S ■ Cross-coupling Br Ph Ph 2CuLi Me 2S Cu Cu Cu Cu SMe2 = Et 2O 0 °C, 5 h Ph 2CuLi•Et 2O ■ Cuprates favor SN2' Cu X Me Bu 2CuLi X = Cl, OAc Bu Et 2O Li Li Cu OEt 2 = 1,4 - Addition by Organocuprates ■ 1,4-Addition LiO Me MeLi O O Me 2CuLi CuMe Li + - OLi Cu–R R Me O OLi R Cu R Li R Cu R Canisius, J.; Gerold, A.; Krause, N. Angew. Chem. Int. Ed. 1999, 38, 1644. ■ TMS-Cl accelerates 1,4 addn. + Me 3SiCl O SiMe3 silyl enol ether Me Bu 99% no rxn at -70 °C w/o TMSCl O Bu 2CuLi •LiI Me added last -70 °C < 1 sec Nakamura, E.-I.; Kuwajima, I. JACS 1984, 3368 ■ Cuprates add 1,4- to α,β-unsaturated aldehydes. All other organometallics would add to C=O. O + Me 3SiCl R 2CuLi H Me O SiMe3 H Bu Me Zinc Homoenolates ■ Nucleophilic cyclopropane bonds EtO OSiMe3 ZnCl2 Et 2O EtO O O Zn OEt EtO .. OSiMe3 ZnCl2 Nakamura, E.-I.; Kuwajima, I. JACS 1986, 27,83 EtO SiMe3 O+ ZnCl2 –
© Copyright 2026 Paperzz