TWK2A Variation of parameters (Section 4.6) Solutions 1. y 00 + y = sin x Homogeneous equation: y 00 + y = 0 ) m2 + 1 = 0 ) m1 = i; m2 = i So yc = c1 cos(x) + c2 sin(x) For particular solution: cos(x) sin(x) sin(x) cos(x) W = W1 = 0 sin(x) sin(x) cos(x) W2 = = cos2 (x) + sin2 (x) = 1 sin2 (x) = cos(x) 0 sin(x) sin(x) = cos(x) sin(x) So u01 = sin2 (x) ) u1 = x 2 u02 = cos(x) sin(x) ) u2 = 1 1 sin(2x) = sin(x) cos(x) 4 2 1 x 2 1 cos2 (x) 2 Hence y p = u1 y 1 + u 2 y 2 = = 1 sin(x) cos2 (x) 2 1 x cos(x) 2 1 x cos(x) 2 So y(x) = yc + yp = c1 cos(x) + c2 sin(x) (valid for 1 cos2 (x) sin(x) 2 1 < x < 1). 1 x cos(x) 2 2. x x y e2 e 2 x + y = cosh = 2 2 2 00 Homogeneous equation: y 00 y = 0 ) m2 1 = 0 ) m= 1 ) yc = c1 ex + c2 e x Particular solution: W = ex e x ex e W1 = 0 cosh W2 = = x e x 2 x e ex 0 ex cosh x 2 2 = x = x e 3x 2 x 2 e +e 2 x 2 = e x 2 e 2 2 x 2 e e + 2 2 So x 3 e2 e2 W1 = = + W 4 4 x 3x e2 e 2 ) u1 = 2 6 3x x W2 e2 e2 u02 = = W 4 4 3x x e2 e2 ) u2 = 6 2 u01 Thus y(x) = yc + yp = yc + u1 y1 + u2 y2 x x (valid for all x). = c1 e + c2 e x = c1 ex + c2 e x e2 2 x 2e 2 3 e x 2 6 x 2e 2 3 x e2 6 3x 2 e x 2 2 3. x 4y 00 y = xe 2 y 0 (0) = 0 y(0) = 1; Homogeneous case: 4y 00 y = 0 ) 4m2 1=0 1 2 ) m= So x yc = c1 e 2 + c2 e x 2 : Particular solution: x x W = W1 = e2 e2 1 x2 1 e e 2 2 0 e x xe 2 4 W2 = e x 2 1 e 2 x 2 1 e 2 0 x 2 x xe 2 4 = 1 2 = x 4 x 2 x 2 = 1 = 2 1 xex 4 Hence, y(x) = yc + yp = y c + u 1 y 1 + u2 y 2 x x ( x x2 x xex + ex ) = c1 e 2 + c2 e 2 + e 2 + e 2 8 4 x x x x x x2 e 2 xe 2 e2 + = c1 e 2 + c2 e 2 + 8 4 4 Now, y(0) = c1 + c2 + y 0 (0) = c1 2 c2 2 1 =1 4 1 =0 8 So 3 4 1 = 4 1 1 = ; c2 = 2 4 c1 + c2 = c1 c2 ) c1 Thus, x x x x e2 e2 x2 e 2 + + y(x) = 2 4 8 x x x 3e 2 e2 x2 e 2 + + = 4 4 8 4. 1 4 x2 y 00 + xy 0 + x2 Standard form: W = = = x 1 2 x cos x 1 23 x cos x 2 1 x 2 1 1 4 x2 1 y 00 + y 0 + x x2 2 x x 1 2 sin x cos x sin x + x 1 cos2 x + sin2 x = 1 2 x xe 2 e2 + 4 4 x xe 2 4 x y = x2 1 2 y=x sin x 3 2 sin x + x 1 x 2 1 x 2 cos2 x 1 2 cos x 2 cos x sin x 1 sin x 1 x 1 W1 = W2 = 0 x 2 sin x 1 1 23 x2 x sin x + x 2 x 1 2 cos x 3 2 cos x 1 x 2 x 1 2 1 2 cos x 0 1 sin x x 2 = =x x 1 cos x Hence, W1 x 1 sin x = = sin x ) u1 = cos(x) W x 1 W2 x 1 cos x = = = cos x ) u2 = sin x W x 1 u01 = u02 x 1 sin2 x So y(x) = yc + yp = yc + u1 y1 + u2 y2 1 1 1 = c1 x 2 cos x + c2 x 2 sin x + x 2 cos2 x + x 1 1 1 = c1 x 2 cos x + c2 x 2 sin x + x 2 5. y 00 2y 0 + y = 4x2 3+ 1 2 sin2 x ex x Homogeneous case: y 00 2y 0 + y = 0 ) m2 2m + 1 = 0 ) m1 = 1; m2 = 1 (repeated real roots) So yc = c1 ex + c2 xex : Now, we have Ly = y 00 2y 0 + y = f (x) + g(x) x where f (x) = 4x2 3 and g(x) = ex : Note that, if yp1 is a particular solution of Ly = f (x) and yp2 is a particular solution of Ly = g(x), then yp1 + yp2 is a particular solution of Ly = f (x) + g(x). We use method of undetermined coe¢ cients to solve y 00 2y 0 + y = 4x2 3 and variation of parameters to solve y 00 to get particular solutions. For y 00 2y 0 + y = ex x 2y 0 + y = 4x2 3 assume the form for the solution is Ax2 + Bx + c: So y 00 = 2A; y 0 = 2Ax + B and y = Ax2 + Bx + C which gives (2A) 2(2Ax + B) + (Ax2 + Bx + C) = 4x2 3 ) Ax2 + (B 4A)x + (2A + C 2B) = 4x2 3 ) A = 4; B = 16; C = 21 Hence, yp1 = 4x2 + 16x + 21: For ex y 2y + y = x ex xex W = = xe2x + e2x ex xex + ex 00 W1 = 0 0 ex x x u02 e2x e ex W1 = = 1 ) u1 = x W W2 e2x 1 = = 2x = ) u2 = ln jxj W e x x W2 = u01 xex = xex + ex e2x 0 x = e x x xe2x = e2x So yp2 = u1 y1 + u2 y2 = xex + xex ln jxj General solution: y(x) = yc + yp1 + yp2 = c1 ax + c2 xex + 4x2 + 16x + 21 xex + xex ln jxj: 6. y 00 + y = sec x tan x The complementary function is found by solving the auxiliary equation m2 + 1 = 0: (1) The roots are i, and hence (2) yc = c1 cos x + c2 sin x: We now assume a particular solution of the form (3) yp = u1 (x) cos x + u2 (x) sin x: Then follows that yp0 = u01 cos x + u02 sin x u1 sin x + u2 cos x: If we make the assumption that u01 cos x + u02 sin x = 0; (4) the …rst derivative simpli…es to yp0 = u1 sin x + u2 cos x: From further di¤erentiation we have yp00 = u01 sin x + u02 cos x u1 cos x u2 sin x: (5) We substitute (3) and (5) in (1): yp00 + yp0 = u01 sin x + u02 cos x = sec x tan x (6) We now solve (4) and (6) for u1 and u2 . From (4) we have u01 = u02 tan x: (7) Substitute (7) in (6): cos x : u02 sin x tan x + u02 cos x = sec x tan x (sin2 x + cos2 x)u02 = tan x u02 = tan x = sin x : cos x (8) Integrate w.r.t. x: u2 = ln j cos xj: (9) Substitute (8) in (7): u01 = tan2 x = 1 sec2 x: Integrate w.r.t. x: u1 = x (10) tan x Substituting (9) and (10) in (3), we have the particular solution yp = (x tan x) cos x sin x ln j cos xj = x cos x sin x sin x ln j cos xj: (11) The general solution follows from (2) and (11): sin x sin x ln j cos xj sin x ln j cos xj: y = c1 cos x + c2 sin x + x cos x = c1 cos x + c3 sin x + x cos x 7. 9x : (12) e3x The complementary function is found by solving the auxiliary equation y 00 9y = m2 which has roots 9 = 0: 3, and so yc = c1 e3x + c2 e 3x (13) We assume a particular solution of the form yp = u1 (x)e3x + u2 (x)e 3x (14) : Hence, yp0 = u01 e3x + u02 e 3x + 3u1 e3x 3u2 e 3x : Furthermore, we assume u01 e3x + u02 e 3x = 0; so that yp0 = 3u1 e3x 3u2 e 3x (15) and yp00 = 3u01 e3x 3u02 e 3x + 9u1 e3x + 9u2 e 3x (16) : Substitute (14) and (16) into (12): yp00 9yp0 = 3u01 e3x ) 3u02 e u01 e3x u02 e 3x 9x e3x = 3xe 3x : 3x = (17) We solve (15) and (17) for the ui . From (15 we have u02 = u01 e6x : (18) Substitute (18) into (17): u01 e3x + u01 e3x = 3xe 3x 3 ) u01 = xe 2 Integrate w.r.t. x using integration by parts: Z 3 u1 = xe 6x dx 2 Z 3 x 6x 1 = e e 2 6 ( 6) 3 x 6x 1 6x = e e : 2 6 36 6x 6x (19) dx Hence, u1 = 1 (6x + 1)e 24 6x (20) : Substitute (19) into (18): 3 x: 2 u02 = Integrate w.r.t. x: 3 2 x: 4 We substitute (20) and (21 into (14) to …nd a particular solution: (21) u2 = yp = 1 (6x + 1)e 24 6x 3x e 3 2 xe 4 3x = 1 (18x2 + 6x + 1)e 24 3x : (22) The general solution follows from (13) and (22): y = yc + yp = c1 e3x + c2 e 3x = c1 e3x + c3 e 3x 1 (18x2 + 6x + 1)e 24 1 (3x + 1)xe 3x : 4 3x 8. 2y 00 + y 0 y =x+1 (23) y(0) = 1; y 0 (0) = 0: (24) with the initial conditions The complementary function follows from the auxiliary equation 2m2 + m 1 = 0 ) (2m The roots are m1 = 21 ; m2 = 1)(m + 1) = 0 1 and we have 1 yc = c1 e 2 x + c2 e x : (25) We assume a particular solution of the form 1 yp = u1 (x)e 2 x + u2 (x)e x : (26) Then follows 1 yp0 = u01 e 2 x + u02 e x 1 1 + u1 (x)e 2 x 2 u2 e x : If we make the further assumption that 1 u01 e 2 x + u02 e we have and 1 1 yp0 = u1 e 2 x 2 1 1 yp00 = u01 e 2 x 2 u02 e x x = 0; u2 e x 1 1 + u1 e 2 x + u 2 e x : 4 (27) (28) (29) Substitute (26), (28) and (29) into (23): 1 yp = u01 e 2 x 2yp00 + yp0 x 2u02 e (30) = x + 1: We now solve (27) and (30) for the ui . From (27) we have u02 = 3 u01 e 2 x : (31) Substitute (31) into (30): 1 1 1 u01 e 2 x + 2u01 e 2 x = x + 1 ) u01 = (x + 1)e 3 1 x 2 (32) Integrate by parts: u1 1 = 3 = = and so Z Z 1 e dx + xe 3 1 2 1x 1 e 2 + 2xe 2 x 3 3 1 2 1x 1 h e 2 + 2xe 2 x 3 3 1 x 2 u1 = 1 x 2 2 x+2 e 3 dx Z ( 2)e i 1 4e 2 x : 1 x 2 : 1 x 2 dx (33) Substitute (32) into (31): u02 = 1 (x + 1)ex : 3 Integrate w.r.t. x: u2 = = = = Z Z 1 1 x xe dx ex dx 3 3 Z 1 1 x x xe ex dx e 3 3 1 1 x [xex ex ] e 3 3 1 x xe 3 (34) We substitute (33) and (34) into (26) to obtain a particular solution: 2 x+2 e 3 2 1 x 2 x 3 3 (x + 2) yp = = = 1 x 2 1 e2x 1 x xe e 3 x (35) The general solution follows from (25) and (35): 1 y = c1 e 2 x + c2 e x (x + 2) (36) We now introduce the initial conditions. Firstly, we di¤erentiate (14) to obtain 1 1 y 0 = c1 e 2 x c2 e x 1: (37) 2 Now introduce (24): y(0) = c1 + c2 2 = 1 1 c1 c2 1 = 0 y 0 (0) = 2 We readily solve these equations to obtain 1 8 c1 = ; c2 = : 3 3 The solution (36) now becomes y= 1 1 8e 2 x + e 3 x (x + 2): 9. y 000 + 4y 0 = sec 2x (38) The complementary function follows from the auxiliary equation m3 + 4m = 0 ) m(m2 + 4) = 0 which has roots 0; 2i and so yc = c1 + c2 cos 2x + c3 sin 2x: (39) We assume a particular solution of the form yp = u1 (x) + u2 (x) cos 2x + u3 (x) sin 2x: (40) Hence, yp0 = u01 + u02 cos 2x + u03 sin 2x 2u2 sin 2x + 2u3 cos 2x: Furthermore, we assume that u01 + u02 cos 2x + u03 sin 2x = 0; (41) yp0 = (42) so that 2u2 sin 2x + 2u3 cos 2x and yp00 = 2u02 sin 2x + 2u03 cos 2x 4u2 cos 2x 4u3 sin 2x: Similar to (41) we assume 2u02 sin 2x + 2u03 cos 2x = 0 (43) so that yp00 = 4u2 cos 2x (44) 4u3 sin 2x and yp000 = 4u02 cos 2x 4u03 sin 2x + 8u2 sin 2x 8u3 cos 2x: (45) We substitute (42) and (45) into (38): yp000 + 4yp0 = 4u02 cos 2x 4u03 sin 2x: (46) In (41), (43) and (46) we have three simultaneous equations which may be solved for the three ui . From (43) we have u03 = u02 tan 2x: Substitute (47) into (46): cos 2x : 4u02 cos 2x 4u02 tan 2x sin 2x = sec 2x 4u02 cos2 2x + sin2 2x = 1 (47) and so u02 = 1 : 4 (48) u2 = 1 x: 4 (49) Integrate w.r.t. x: Substitute (48) into (47): 1 tan 2x = 4 u03 = 1 sin 2x : 4 cos 2x (50) Integrate w.r.t. x: 1 ln j cos 2xj: 8 Substitute (48) and (50) into (41): u3 = u01 1 cos 2x 4 (51) 1 tan 2x sin 2x = 0: 4 Hence, u01 = 1 1 sin2 2x 1 cos2 2x + sin2 2x 1 cos 2x + = = sec 2x: 4 4 cos 2x 4 cos 2x 4 Integrate w.r.t. x: 1 ln j sec 2x + tan 2xj: 8 We substitute (49), (51) and (52) into (40): u1 = yp = 1 ln j sec 2x + tan 2xj 8 1 1 x cos 2x + sin 2x ln j cos 2xj: 4 8 (52) (53) The general solution follows from (39) and (53): 1 1 1 y = c1 +c2 cos 2x+c3 sin 2x+ ln j sec 2x+tan 2xj x cos 2x+ sin 2x ln j cos 2xj: 8 4 8 This seems to be a rather long-winded approach. Let us use Wronskians instead to set up the relevant equations for the u’s. Say y1 = 1; y2 = cos 2x; y3 = sin 2x: Using A B C D E F G H I = AEI AF H DBI + DCH + GBF GCE: we …nd W = W1 = y1 y2 y3 y10 y20 y30 y100 y200 y300 0 y2 y3 0 y20 y30 f y200 y300 = 0 0 sec 2x = 1 0 0 cos 2x 2 sin 2x 4 cos 2x cos 2x 2 sin 2x 4 cos 2x sin 2x 2 cos 2x 4 sin 2x sin 2x 2 cos 2x 4 sin 2x =8 = 2 sec 2x cos2 2x + 2 sec 2x sin2 2x = 2 sec 2x W2 = y1 0 y3 y10 0 y30 y100 f y300 W3 = = y1 y2 0 y10 y20 0 y100 y200 f 1 0 0 0 0 sec 2x = 1 0 0 sin 2x 2 cos 2x 4 sin 2x = cos 2x 0 2 sin 2x 0 4 cos 2x sec 2x 2 cos 2x sec 2x = = 2 sin 2x sec 2x Hence, 2 sec 2x sec 2x W1 = = W 8 4 W2 2 1 = = = W 8 4 W3 2 sin 2x sec 2x = = = W 8 u01 = u02 u03 which seems to be a much easier approach. 10. y 00 + y = tan x: Auxiliary equation: m2 + 1 = 0 )m = i sin 2x = 4 cos 2x tan 2x 4 2 Complementary function: yc = c1 cos x + c2 sin x: Assume a particular solution of the form yp = u1 (x) cos x + u2 (x) sin x: Hence, cos x sin x = cos2 x W = ( sin2 x) = 1 sin x cos x 0 sin x W1 = = sin x tan x tan x cos x cos x 0 W2 = = cos x tan x = sin x sin x tan x and so W1 W W2 = W u01 = = u02 = sin x: sin x tan x Integration yields u1 = Z sin x tan x dx Z cos x tan x ( cos x) sec2 x dx Z = cos x tan x sec x dx = = sin x ln j sec x + tan xj: and u2 = Z sin x dx = cos x: (54) Substitute this expression into (54): yp = (sin x ln j sec x + tan xj) cos x = cos x ln j sec x + tan xj: cos x sin x The general solution is thus y = yc + yp = (c1 ln j sec x + tan xj) cos x + c2 sin x: 11. y 00 4y 0 + 4y = 12x2 6x e2x (55) with initial-values y(0) = 1; y 0 (0) = 0: (56) Auxiliary equation: m2 4m + 4 = 0 ) (m 2)2 = 0 ) m = 2 (twice). Complementary function: yc = c1 e2x + c2 xe2x : (57) Assume a particular solution of the form yp = u1 (x)e2x + u2 (x)xe2x : (58) Hence, W = e2x xe2x 2x 2e (1 + 2x)e2x 0 xe2x (1 + 2x)e2x W1 = (12x2 W2 = e2x 0 2x 2 2e (12x 6x)e2x 6x)e2x = (1 + 2x)e4x = = (12x2 and so W1 = 12x3 + 6x2 W W2 = = 12x2 6x: W u01 = u02 2xe4x = e4x (12x3 6x)e4x 6x2 )e4x Integration yields u1 = u2 = Z Z ( 12x3 + 6x2 ) dx = (12x2 3x4 + 2x3 : 6x) dx = 4x3 3x2 : Substitute into (57): yp = ( 3x4 + 2x3 )e2x + (4x3 = (x4 x3 )e2x : 3x2 )xe2x The general solution is thus y = yc + yp = (c1 + c2 x x3 + x4 )e2x : (59) Hence, y0 = = c2 3x2 + 4x3 + 2c1 + 2c2 x 2x3 + 2x4 e2x 2c1 + c2 + 2c2 x 3x2 + 2x3 + 2x4 e2x : Substitute y (0) = 1 into (59) ) c1 = 1: Substitute y 0 (0) = 0 into (60) ) 2c1 + c2 = 0; c2 = Solution to the initial-value problem: y = (x4 12. y y 00 00 x3 2x + 1)e2x : e2x : 4y = x 4y = 0 ) m2 4 = 0 ) m= 2 ) yc (x) = c1 e2x + c2 e 2x ) y1 = e2x and y2 = e 2x ) y10 = 2e2x and y20 = 2e 2x 2c1 = 2: (60) 0 Hence, W1 = e2x x 2x e 2e2x W2 = 2x e 2e2x W = e 2x 2e 2x = = e4x x e 2x 2e 2x = 0 e2x x 1 x 4 W1 1 ln jxj = ) u1 = W 4x 4 Z W2 e4x e4x = = ) u2 = dx W 4x 4x and so u01 = u02 (The above integral is nonelementary and may be left in integral form. See Z&C 6th ed., sec 4.6, example 3.) y p = u 1 y 1 + u2 y 2 e2x ln jxj e = 4 2x ) y(x) = c1 e Note: Z ax Z + c2 e 2x 2x Z e4x dx 4x e2x ln jxj + 4 e 2x Z e4x dx 4x eax dx does have a series solution: x 2 3 e ax (ax) (ax) dx = ln x + + + + x 1 1! 2 2! 3 3! 13. y 00 + 2y 0 + y = e x ln x : y 00 + 2y 0 + y = 0 ) m2 + 2m + 1 = 0 ) m1 = 1; m2 = 1 # ) yc (x) = c1 e x + c2 xe x ) y1 = e x and y2 = xe ) y10 = e x and y20 = e Hence, W1 = 0 xe x e x ln x e x xe W2 = e x 0 e x e x ln x W = e x xe x x x e e xe x x x =e x x xe = 2x xe 2x ln x ln x =e 2x W1 x2 ln x x2 = x ln x ) u1 = + W 2 4 W2 = = ln x ) u2 = x ln x x W and so u01 = u02 y p = u1 y 1 + u 2 y 2 x2 ln x x2 = + 2 4 e x + (x ln x x) xe x 3x2 e x + x2 e 2 4 ln x 3 = c1 e x + c2 xe x + x2 e x : 2 4 ) y(x) = c1 e x + c2 xe x x2 e x ln x x ln x 14. First we solve for the complimentary solution in yc00 + yc = 0 which has the auxiliary equation m2 + 1 = 0 and solutions m1 = i m2 = so that yc = c1 cos x + c2 sin x: i For the particular solution we assume yp = u1 (x) cos x+u2 (x) sin x and using the technique of variation of parameters we obtain (y1 = cos x, y2 = sin x, f (x) = cos2 x) cos x sin x sin x cos x W = 0 sin x 2 cos x cos x W1 = cos x 0 sin x cos2 x W2 = u01 = u1 = W1 = WZ = cos2 x + sin2 x = 1: sin x cos2 x: = = cos3 x = cos x cos x sin2 x: sin x cos2 x: sin x cos2 x dx = 1 cos3 x: 3 u02 = cos x cos x sin2 x: Z u2 = (cos x cos x sin2 x)dx = sin x y p = u1 y 1 + u2 y 2 = 1 3 sin x: 3 1 cos4 x + sin2 x 3 1 4 sin x: 3 Thus the general solution is y(x) = c1 cos x + c2 sin x + 1 cos4 x + sin2 x 3 1 4 sin x: 3 15. The auxiliary equation is m2 + 3m + 2 = (m + 2)(m + 1) = 0 with solutions m1 = 1 and m2 = 2 and so yc = c1 e x + c2 e 2x . For the particular solution yp = u1 e x + u2 e 2x we …nd (y1 = e x , y2 = e 2x , f (x) = sin ex ) W = e x e x e 2x 2e 2x = e 3x W1 = 0 sin ex e 2x 2e 2x = e 2x W2 = e x 0 x e sin ex =e x : sin ex : sin ex : u01 = u1 = u02 = u2 = = W1 = ex sin ex : W Z ex sin ex dx = W1 = WZ cos ex : e2x sin ex : e2x sin ex dx (u = ex ; du = ex dx) Z Z u sin u du = u cos u cos u du = u cos u = ex cos ex sin u sin ex : Thus the general solution is y(x) = c1 e x + c2 e 2x e x cos ex + e x cos ex 2x 2x e 2x sin ex : or y(x) = c1 e x + c2 e e sin ex : 16. In standard form 1 1 1 y 00 + y 0 + 2 y = 2 sec(ln x): x x x Thus we have, with y1 = cos(ln x), y2 = sin(ln x), f (x) = W = W1 = W2 = cos(ln x) sin(ln x) sin(ln x) x cos(ln x) x = 0 sin(ln x) x) sec(ln x) cos(ln x 1 x2 cos(ln x) sin(ln x) x u02 u2 0 sec(ln x) sec(ln x), 1 1 (cos2 (ln x) + sin2 (ln x)) = : x x = = 1 tan(ln x): x2 1 : x2 W1 1 = tan(ln x): WZ x 1 = tan(ln x)dx = ln j cos(ln x)j: x W2 1 = = : x ZW 1 = dx = ln x: x u01 = u1 1 x2 1 x2 So the general solution is y(x) = c1 y1 + c2 y2 + u1 y1 + u2 y2 = c1 cos(ln x) + c2 sin(ln x) + cos(ln x) ln j cos(ln x)j + ln(x) sin(ln x): 17. In standard form we have y 00 2y 0 + 10y = 5 sin x + ex tan 3x: 3 The auxiliary equation is m2 2m + 10 = 0 with solutions m1 = 1 + 3i and m2 = 1 3i and consequently the complimentary solution is yc (x) = c1 ex cos 3x + c2 ex sin 3x: We use yp = yp1 + yp2 where 00 yp1 0 2yp1 + 10yp1 = 5 sin x ex tan 3x 3 and the superposition principle for non-homogeneous linear di¤erential equations. We use undetermined coe¢ cients to …nd yp1 = A cos x + B sin x in 00 yp2 00 yp1 0 2yp2 + 10yp2 = 0 2yp1 + 10yp1 = ( A cos x B sin x) 2( A sin x + B cos x) + 10(A cos x = (9A 2B) cos x + (9B + 2A) sin x = 5 sin x B sin x) 2 and comparing coe¢ cients for cos x and sin x yields B = 29 A and A = 17 9 and B = 17 so that 2 9 yp1 = cos x + sin x: 17 17 For yp2 we use variation of parameters where y1 ex cos 3x, y2 ex sin 3x x and f (x) e3 tan 3x to obtain W = W1 = ex cos 3x ex sin 3x ex (cos 3x 3 sin 3x) ex (sin 3x + 3 cos 3x) ex 3 W2 = 0 ex sin 3x x tan 3x e (sin 3x + 3 cos 3x) ex cos 3x ex (cos 3x 3 sin 3x) ex 3 0 tan 3x = = = 3e2x : e2x sin2 3x = 3 cos 3x e2x sin 3x: 3 e2x (sec 3x 3 cos 3x): u01 = u1 = u02 = u2 = yp2 = = W1 1 = (sec 3x cos 3x): W Z 9 1 1 (sec 3x cos 3x)dx = (ln j sec 3x + tan 3xj sin 3x): 9 27 W2 1 = sin 3x: WZ 9 1 1 sin 3x dx = cos 3x: 9 27 ex ex u1 y 1 + u 2 y 2 = (ln j sec 3x + tan 3xj cos 3x sin 3x cos 3x) cos 3x sin 3x 27 27 ex ln j sec 3x + tan 3xj cos 3x: 27 Thus we …nd the general solution y(x) = yc + yp = yc + yp1 + yp2 = c1 ex cos 3x + c2 ex sin 3x + 2 9 cos x + sin x 17 17 ex ln j sec 3x + tan 3xj cos 3x: 27 18. In standard form on (0; 1) 1 y 00 + y 0 x 4 1 y = 4: 2 x x Since y1 = x2 is a solution to the associated homogeneous equation we can generate a second linearly independent solution y2 = x 2 = x 2 Z Z e R 1 dx x x4 dx x 5 dx = 1 x 4 2 it is simpler, however, to discard the constant and use y2 = x 2 . Thus we have yc = c1 x2 + c2 x 2 : Using variation of parameters we have yp = u1 y1 + u2 y2 and identifying f (x) x 4 we …nd W = x2 2x x 2 2x 3 W1 = 0 x 4 W2 = x2 0 2x x 4 x 2 2x 3 W1 1 = 5: 4x ZW 1 1 = dx = : 5 4x 16x4 W2 1 = = : WZ 4x 1 1 = ln x: = 4x 4 4x 1 : = = x 6: = x 2: u01 = u1 u2 u2 yp = u1 x2 + u2 x 2 = 1 16x2 1 ln x = 4x2 1 4x2 so that the general solution is y(x) = c1 x2 + c2 x 2 1 4x2 1 4 ln x : 1 4 ln x :
© Copyright 2026 Paperzz