Math 335 - Homework Assignment 7 - Due Oct. 16 Turn in the problems with (*) ' 1. Page 501: ' 4, 7, ' 12, 13, ' 16, 17, 21, 22, ' 26, ' 28(extra points) 4. ; =/2,0 0,0 cos x cos ydx 1 " sin x sin y dy, P, Q f x cos x cos y, fx, y cos x cos y, 1 " sin x sin y ; cos x cos y dx sin x cos y Cy f y " sin x sin y C U y 1 " sin x sin y, C U y 1, Cy ; 1dy y C, let C 0 fx, y sin x cos y y So, the line integral ; i. ; =/2,0 =/2,0 0,0 cos x cos ydx 1 " sin x sin y dy is independent of the path. cos x cos ydx 1 " sin x sin y dy f =2 , 0 " f0, 0 sin rt ¡x, 0¢, 0 t x t = ii. C : 0 t x t = , y 0, dy 0 or 2 2 = 2 0,0 =/2,0 ; 0,0 cos x cos ydx 1 " sin x sin y dy =/2 ;0 cos0 0 " 0 1 cos xdx 0 1 x, y 2xy 3 , 3y 2 x 2 1 , 0 12. F i. Check if Check if P y Q x : P y 6xy 2 , Q x 6xy 2 is a gradient field. Find fx, y as in ii. Since P y Q x , F . ii. Determine if there exists fx, y such that f F fx, y ; 2xy 3 dx x 2 y 3 Cy f y 3x 2 y 2 C U y 3y 2 x 2 3y 2 , C U y 3y 2 , Cy ; 3y 2 dy y 3 C, let C 0 fx, y x 2 y 3 y 3 C is a gradient field. F x, y 2e 2y , xe 2y 16. F i. Check if P y Q x : P y 4e 2y , Q x e 2y is not a gradient field. Since P y p Q x , F . ii. Determine if there exists fx, y such that f F fx, y ; 2e 2y dx 2e 2y x Cy U f y 4e 2y x C U y xe 2y , C y "3xe 2y a function of x and y. is not a gradient field. So F 3,4,1 22. ; 2x 1 dx 3y 2 dy 1z dz, P 2x 1, Q 3y 2 , R 1z 1,2,1 fx, y, z ;2x 1 dx Cy, z x 2 x Cy, z f y C y y, z 3y 2 , Cy, z ; 3y 2 dy Cz y 3 Cz , fx, y, z x 2 x y 3 Cz 1 f z C U z 1z , Cz ; 1 dz C ln|z| C, let C 0. z fx, y, z x 2 x y 3 ln|z| 3,4,1 ; 1,2,1 2x 1 dx 3y 2 dy 1 dz f3, 4, 1 " f1, 2, 1 z 3 2 3 4 3 ln 1 " 1 2 1 2 3 ln 1 66 x, y, z 2 " e z , 2y " 1, 2 " xe z , rt t, t 2 , t 3 , from "1, 1, "1 to 2, 4, 8 26. F dr is independent of path: Check to see if the line integral ; F C fx, y, z ;2 " e z dx Cy, z 2x " e z x Cy, z f y C y y, z 2y " 1, Cy, z ;2y " 1 dy Cz y 2 " y Cz fx, y, z 2x " e z x y 2 " y Cz f z "e z x C U z 2 " xe z , C U z 2, Cz ; 2dz 2z C, let C 0 fx, y, z 2x " e z x y 2 " y 2z dr is independent of path. So the line integral ; F ;C C dr f2, 4, 8 " f"1, 1, "1 F 22 " e 8 2 4 2 " 4 28 " 2"1 " e "1 "1 1 2 " 1 2"1 36 " 2e 8 " e "1 "5926. 283 854 x, y, z 8xy 3 z, 12x 2 y 2 z, 4x 2 y 3 , rt 2 cos t, 2 sin t, t from 2, 0, 0 to 1, 3 , = 28. F 3 W ; F dr. Check if ; F dr is independent of path: C C fx, y, z ; 8xy 3 zdx Cy, z 4x 2 y 3 z Cy, z f y 12x 2 y 2 z C y y, z 12x 2 y 2 z, C y y, z 0, Cy, z Cz , fx, y, z 4x 2 y 3 z Cz f z x, y, z 4x 2 y 3 C U z 4x 2 y 3 , C U z 0, Cz C, let C 0. fx, y, z 4x 2 y 3 z dr is independent of path. So the line integral ; F C ;C F dr f2, 0, 0 " f 1, 3 , = 3 3 = 2 3 42 0 0 " 41 3 W ' 2. Page 509: 11, 12, 2 12. ; ; x 2 1 "1 "x 2 ' "21. 765 592 37 ' 18, 19, 20(evaluate the integral exactly), 35, ' 36, ' 40 fx, y dydx 2 4 2 2 R : "1 t x t 2, " x t y t x 1 2 -1 0 -0.5 0.5 x1 1.5 2 -2 -4 18. ; ; x dA, y x 2 1, y 3 " x 2 y R x 2 1 3 " x 2 , 2x 2 2 2.5 2 x 1, x o1 2 3"x 2 1 ; ;R x dA ; "1 ; x 2 1 x y y ; 1 "1 1.5 dydx 1 0.5 2 3 " x 2 x " 2 x 2 1 x dx 0 -1 0 0.2 0.4 x0.6 0.8 1 R : x2 1 t y t 3 " x2, " 1 2 20. ; ; sin =x y dA, x y , x 0, y 1, y 2 R y 1, x 1, y 2, x 4 x, -0.8 -0.6 -0.4 -0.2 2 x 1.8 R : 1 t y t 2, 0 t x t y 2 1.6 1.4 2 2 y =x ; ;R sin =x y dA ; 1 ; 0 sin y dxdy 2 2 cos y= " 1 1 "4 3= ; "y dy = 2 1 =3 0. 412 961 8 1.2 1 0.8 0.6 0.4 0.2 0 1 2x 3 4 1 1 35. ; ; x 2 1 y 4 dydx 0 x R : 0 t x t 1, x t y t 1 1 1 1 y ; 0 ; x x 2 1 y 4 dydx ; 0 ; 0 x 2 1 y 4 dxdy ; 1 0 1 9 1 3 4 1 y y 2 " 1 18 3 dy 0. 101 579 3 0.8 0.6 0.4 0.2 0 0.2 0.4 x 0.6 0.8 1 R 3 1 2 36. ; ; e "y/x dxdy 0 2y R : 0 t y t 1, 2y t x t 2, 1 2 2 x/2 0.8 ; 0 ; 2y e "y/x dxdy ; 0 ; 0 e "y/x dydx ; 2 "xe 0 " 12 x dx "2e " 12 0.6 2 0.4 0. 786 938 7 0.2 0 0.5 1x 1.5 2 R 4 2 40. ; ; 0 y R: x 3 1 dxdy y t x t 2, 0 t y t 4, 3 x 3 1 dydx 52 9 2 2 x2 ;0 ;0 1 0 0.5 1x 1.5 2 R ' 3. Page 514: 25, 26, ' 29, ' 34(extra points) 2 /2 1"y 2 y2 ; 26. ; dxdy 0 y x2 y2 1 R:0tyt y 2 2 , ytxt 1 " y2 , 1 " y 2 , y 2 1 " y 2 , 2y 2 1, y o 0.8 2 2 R : 0 t 2 t =, 0 t r t 1 4 2 2 /2 1"y 2 =/4 1 2 y2 2 rdrd2 ;0 ;y dxdy ; ; r sin r 0 0 2 2 x y ; =/4 1 2 r sin 2 2drd2 0 0 ; 1 = " 1 0. 0476 24 12 0.6 0.4 0.2 0 0.2 0.4 x 0.6 0.8 1 R 4 1 4"x 2 0 1"x 2 29. ; ; 2 2 4"x x2 x2 dydx ; ; dydx 2 2 2 1 0 x y x y2 2 R 1 : 0 t x t 1, 1"x 2 tyt 4"x 1.8 2 1.6 R 2 : 1 t x t 2, 0 t y t 4 " x 2 R : 0 t 2 t =, 1 t r t 2 2 2 2 1 2 4"x 2 4"x x2 ; 0 ; 1"x 2 2 x 2 dydx ; 1 ; 0 dydx x y x2 y2 2 =/2 2 2 2 rdrd2 ; ; r cos 2 0 1 r =/2 2 ; ; r cos 2 2drd2 3 = 1. 178 097 0 1 8 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1x 1.2 1.4 1.6 1.8 2 - R1, - - R2 34. r 2 sin 2, r 2 2 R : 2 sin 2 t r t 2, 0 t 2 t = 2 1 =/2 2 ; ;R x y dA ; 0 ; 2 sin 2 r cos 2 r sin 2 rdrd2 14 3 " 1 2 = -2 -1 0 1 2 -1 -2 ' ' 4. Page 520: 3, 4, ' 7, 9, 10(extra points), 4. > "2y 2 dx 4xydy ; ; 8ydA C ' 12, ' 23, ' 25, ' 30 R the intersection of curves: y x and y "x 2 : x "x 2, x "x 2 2 x 2 " 4x 4 x 2 " 5x 4 0, x " 4 x " 1 0, x 1, and 4 the curve C C 1 : C 2 : C 3 : r 1 t t, 0 , 0 t t t 1, y 0, dy 0 C1 : r 2 t t, " t 2 , t : from 2 to 1 C2 : C 3 : r 3 t t, t , t : from 1 to 0 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1t 1.2 1.4 1.6 1.8 2 C counterclockwise , R > C "2y 2 dx 4xydy ;C ;C ;C 1 0; 2 1 2 3 "2"t 2 2 4t"t 2 "1 dt ; 0 1 "2t 4t t 1 2 t dt 10 3 5 1 2"y ; ;R 8ydA ; 0 ; y 2 8ydxdy 10 3 7. > x 4 " 2y 3 dx 2x 3 " y 4 dy, C : x 2 y 2 4 C 2 P x 4 " 2y 3 , P y "6y 2 Q 2x 3 " y 4 , Q x 6x 2 1 > C x 4 " 2y 3 dx 2x 3 " y 4 dy ; ; 6x 2 " "6y 2 dA R , -2 0 -1 ; ; 6x 2 y 2 dA 1t 2 -1 R 2= 2 ; ; 6r 2 rdrd2 48= 0 -2 0 x2 y2 4 rt 1 2 cos t, 3 3 sin t 10. > e 2x sin 2ydx e 2x cos 2ydy, C : 9x " 1 2 4y " 3 2 36 or C P e 2x sin 2y, P y 2e 2x cos 2y 2x 5 2x Q e cos 2y, Q x 2e cos 2y 4 > C e 2x sin 2ydx e 2x cos 2ydy 3 ; ; 2e 2x cos 2y " 2e 2x cos 2y dA 0 R 2 1 -1 0 1 2 3 12. > e x dx 2 tan "1 xdy, C : 0, 0 v 0, 1 v "1, 1 v 0, 0 C 2 R : "1 t x t 0, "x t y t 1 0.8 x2 P e , Py 0 2 1 x2 Q 2 tan "1 x, Q x 0 1 > C e dx 2 tan "1 xdy ; "1 ; "x x2 " ln 2 1 2 0.6 0.4 2 dydx 1 x2 0.2 = 0. 877 649 1 -1 -0.8 -0.6 t -0.4 -0.2 0 R 23. > 4x 2 " y 3 dx x 3 y 2 dy C 6 P 4x 2 " y 3 , P y "3y 2 2 Q x 3 y 2 , Q x 3x 2 1 Since all P, Q, P y and Q x are continuous on R, and C is smooth simple closed curve, by Green’s Thm: > C 4x 2 " y 3 dx x 3 y 2 dy -2 0 -1 ; ; 3x 2 " 3y 2 dA R 2= 2 2= 2 0 0 1 -2 45 = 70. 685 83 2 25. > C 2 -1 ; ; 3r 2 rdrd2 ; ; 3r 3 drd2 1 1 1 t x2 y2 t 2 "y 3 dx xy 2 dy , C : x 2 4y 2 4 2 2 2 x y 2 Since P and Q are not defined at 0, 0 2 which is in the ellipse R : x y 2 1, 4 Green’s Thm cannot be applied to this problem. C: rt 2 cos t, sin t , 0 t t t 2= 1 -2 -1 0 1 2 -1 U r t "2 sin t, cos t -2 >C "y 3 dx xy 2 dy 2 x 2 y 2 2= ;0 " sin 3 t"2 sin t dt 2 cos t sin 2 t cos tdt 2 4 cos 2 t sin 2 t 2= ;0 2 sin 2 t dt = 2 1 3 cos 2 t "xy 2 , x 2 y 30. F P "xy 2 , Q x 2 y P y "2xy, Q x 2xy R : 0 t 2 t =, 1 t r t 2 2 > C F dr ; ;R 2xy " "2xy dA ; ; =/2 2 1.6 1.4 1.2 1 0.8 ; 4r 2 cos 2 sin 2rdrd2 0.6 ; 1 2r sin 22drd2 15 7. 5 2 0.2 0 1 =/2 2 0 2 1.8 3 0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 7
© Copyright 2026 Paperzz