Poster - University of Arizona Math

Pendulum with Vibrating Base
Energy Manifold
Team Members
Project Description
Thomas Bello
Emily Huang
Fabian Lopez
Kellin Rumsey
Tao Tao
Theoretical Models
Methodology
1. The Pendulum is treated as a point mass at its center.
2. The equations of motion for the vertical, horizontal, and arbitrary cases are
determined by finding the Lagrangian for each case.
3. Determine stability conditions.
4. Using averaging, determine the Effective Potential.
5. Use the Effective Potential to determine ranges of stability.
Results
β€’ Vertical Equations
Experimental Model
3.
4.
Measure the dimensions of the pendulum and find the center of mass.
Using a high speed camera, determine the minimum frequency of stability for
the vertical, horizontal, and arbitrary case.
Compare experimental results with theoretical expectations.
Determine error.
Measurement
Length of Pendulum (m)
Diameter of Pendulum (m)
Amplitude (m)
Minimum
Maximum
Frequency (rad/s)
Angle of Base
Momentum of Inertia
.187
0.009525
0.020
0.010
0.030
275.62
51°
πΏπ‘Žπ‘”π‘Ÿπ‘Žπ‘›π‘”π‘–π‘Žπ‘› 𝐿 = 𝐾𝑖𝑛𝑒𝑑𝑖𝑐 πΈπ‘›π‘’π‘Ÿπ‘”π‘¦ βˆ’ π‘ƒπ‘œπ‘‘π‘’π‘›π‘‘π‘–π‘Žπ‘™ πΈπ‘›π‘’π‘Ÿπ‘”π‘¦
𝑑 πœ•πΏ
πœ•πΏ
πΈπ‘’π‘™π‘’π‘Ÿ βˆ’ πΏπ‘Žπ‘”π‘Ÿπ‘Žπ‘›π‘”π‘’ πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘€π‘œπ‘‘π‘–π‘œπ‘›:
βˆ’
=0
𝑑𝑑 πœ•πœƒ
πœ•πœƒ
1
𝐿 = 𝑙 πœƒ 2 + πœƒ sin πœƒ 𝑑0 πœ”2 cos πœ”π‘‘ + π‘”π‘π‘œπ‘ (πœƒ)
2
𝑑0 πœ”2
𝑔
πœƒβˆ’
cos πœƒ cos πœ”π‘‘ + sin(πœƒ) = 0
𝑙
𝑙
2
𝑔
1 π‘‘π‘œ πœ”2 2
π‘ˆπ‘’π‘“π‘“ = βˆ’ cos πœƒ βˆ’
sin (πœƒ)
𝑙
4 𝑙2
π‘†π‘‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ πΆπ‘œπ‘›π‘‘π‘–π‘‘π‘–π‘œπ‘›: πœ” >
2𝑔𝑙
2𝑔𝑙
βˆ’1
βˆ’ 2 2
2 , πΆπ‘Ÿπ‘–π‘‘π‘–π‘π‘Žπ‘™ 𝐴𝑛𝑔𝑙𝑒: πœƒπ‘ = cos
𝑑0
𝑑0 πœ”
Potential Applications
β€’ Arbitrary Equations
1 2
𝐿 = 𝑙 πœƒ + πœƒ sin πœƒ βˆ’ 𝜌 𝑑0 πœ”2 cos πœ”π‘‘ + π‘”π‘π‘œπ‘ (πœƒ)
2
𝑑0 πœ”2
𝑔
πœƒβˆ’
cos πœƒ βˆ’ 𝜌 cos πœ”π‘‘ + sin(πœƒ) = 0
𝑙
𝑙
2 2
𝑔
1 π‘‘π‘œ πœ”
π‘ˆπ‘’π‘“π‘“ = βˆ’ cos πœƒ βˆ’
sin2 (πœƒ βˆ’ 𝜌)
2
𝑙
4 𝑙
Results and Comparison
Raw Data Table
Theoretical Definitions
β€’ Horizontal Equations
Methodology
1.
2.
1
𝐿 = 𝑙 πœƒ 2 + πœƒ sin πœƒ 𝑑0 πœ”2 sin πœ”π‘‘ βˆ’ π‘”π‘π‘œπ‘ (πœƒ)
2
𝑑0 πœ”2
𝑔
πœƒ+
cos πœ”π‘‘ βˆ’
sin πœƒ = 0
𝑙
𝑙
𝑔
1 π‘‘π‘œ2 πœ”2 2
π‘ˆπ‘’π‘“π‘“ = βˆ’ cos πœƒ +
sin (πœƒ)
𝑙
4 𝑙2
Error Analysis
The theoretical model we used is for a simple pendulum. The
pendulum used in the experiment was a physical pendulum. To
develop a more accurate model, we account for the moment of inertia
of the rod, which is summarized in the table below under the
β€œCorrected Theoretical” column
Measurement
Theoretical
Experimental
Corrected Theoretical
Vertical Stability Angle
Critical Angle
Horizontal Stability Angle
Arbitrary Stability Angle
180°
97°
83°
136°
180°
113°
76°
109°
180°
98°
82°
135°
Error Analysis
Measured Value
Absolute Error
Percent Error
Length of Pendulum (𝑙)
𝑙 = 0.187 meters
δ𝑙 = 0.001 meters
.54%
Amplitude of Base (dΛ³)
dΛ³ = 0.020 meters
Ξ΄dΛ³ = 0.001 meters
5.0%
Period for 60 Oscillations (T*)
T* = 1.35 seconds
Ξ΄T* = 0.05 seconds
3.7%
*Note that angular frequency could not be directly measured. T* is the length of time required for the base of the pendulum to make 60 oscillations. T*
60
can be related to Angular Frequency in the following way:
πœ” = 2πœ‹ βˆ— π‘‡βˆ—
π›Ώπœƒ =
πœ•πœƒ
𝛿𝑙
πœ•π‘™
2
πœ•πœƒ
βˆ—
+
𝛿𝑇
πœ•π‘‡ βˆ—
2
πœ•πœƒ
+
𝛿𝑑0
πœ•π‘‘0
ΞΈc = 97° ± 0.86 ° = 97° ± 0.88%
ΞΈs = 83° ± 0.86 ° = 83° ± 1.04%
2
A Segway is an example of an Inverted Pendulum with an oscillatory base, while Magnetic
Levitation is a system that uses the interaction of two oscillatory forces with different speeds.
Reference
1) Landau L. D. & Lifshitz E. M., Mechanics, Second Edition: Volume 1, (Course of
Theoretical Physics), (Oxford ; New York : Pergamon Press, 1976), pp 665-70. Oscillations of
systems with more than one degree of freedom.
Acknowledgement
This project was mentored by Prof. Ildar Gabitov, whose help is acknowledged with great
appreciation. We would also like to acknowledge support from the Bryant Bannister Tree-Ring
Lab for access to their equipment. Support from a University of Arizona TRIF (Technology
Research Initiative Fund) grant to J. Lega is also gratefully acknowledged.