EPJ Web of Conferences 115, 03004 (2016) DOI: 10.1051/epjconf/201611503004 © Owned by the authors, published by EDP Sciences, 2016 2nd Int. Workshop Irradiation of Nuclear Materials: Flux and Dose Effects November 4-6, 2015, CEA – INSTN Cadarache, France Positron Annihilation Spectroscopy to Characterize Irradiation Induced Vacancy Type Defects in Materials for Nuclear Fission and Fusion Marie-France BARTHE1 1 CEMHTI, CNRS, Université d’Orléans (Orléans, FRANCE) In nuclear reactors, materials are submitted to irradiations and modification of their macroscopic properties such as swelling or hardening is observed… It is of first importance to understand the origin of these evolutions and how damage at the atomic scale such as vacancy and interstitials type defects can interact with each other or with solutes and impurities to make the microstructure evolved. So the properties of defects have to be determined. Positron annihilation spectroscopy (PAS) is a well-established technique to characterize materials [1]. Due to its positive charge, positron is sensitive to the local variations of the Coulomb potential in solids. As the anti-particle of the electron, both particles can annihilate leading to the emission of gamma rays with energy depending on the momentum of the electron positron annihilated pair. The detection of these gamma rays arises original information on the defects because positron can be trapped and annihilate in localized state such as vacancies. Two different and complementary annihilation characteristics can be measured. Firstly Positron Annihilation Lifetime Spectrometer (PALS) allows to measure the positron lifetime which depends on the local electron density at the annihilation site. The second characteristic is the momentum distribution of the electron positron annihilated pairs and is obtained by measuring the energy spectrum of the gamma annihilation rays using a Doppler Broadening Spectrometer (DBS). Both characteristics give the signature of the defects and allow determining some of their properties such as their nature, concentration, chemical environment... By using slow positron accelerators which produce monokinetic positrons beams with energy varying from 0.1 to 30 keV it is possible to study the depth profile of defects in thin layers from 0.1 to about 5 µm depending on the density of materials with a resolution of the order of 0.1xdepth. 22 Na source based beams [2] or user facilities taking advantages of high positrons flux available around nuclear reactor (FRMII, Garching [3]) or LINAC( as in AIST in Japan [4]) are now available to study defects in materials. PAS has numerous advantages among them, it is non-destructive and can be used for conducting as well as insulating materials crystalline or amorphous. This technique is especially useful to probe vacancy defects in metals for which it is one of the only direct characterization. The annihilation characteristics can be predicted by first principle calculations and these data when available can help to identify defects. Sensitive to the single vacancy, PAS can allow to determine the size of the vacancy clusters up to a maximum of 1 nm approximately in the concentration range from 1015 to a few 1018 cm-3. In nuclear science this technique is very powerful to characterize not only damage induced by irradiation but also to determine some fundamental properties of defects that are required for modeling of the microstructural evolution of materials such as formation, migration, agglomeration, interaction with solutes, impurities or transmutation products such as Helium or Hydrogen. PAS has already demonstrated its major role in the study of vacancy defects and material related properties. For example the results obtained by Vehanen et al [6] have had an outmost impact on the knowledge of the role of carbon on vacancy behavior in Fe. They have demonstrated the trapping of vacancy in Carbon Vacancy complexes and the non-localization of C atoms in the center of the vacancy. This attractive interaction and localization has been confirmed by ab initio calculations [7]. It has also to be underlined that positrons can be trapped in precipitates if its affinity for the material of precipitate is higher than the one of the matrix. Nagai et al have demonstrated the complementarity of positron techniques with Atomic Probe Tomography and have recently underlined the effects of matrix damage probed by PAS on the hardening [5]. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2nd Int. Workshop Irradiation of Nuclear Materials: Flux and Dose Effects November 4-6, 2015, CEA – INSTN Cadarache, France 300 300 250 250 200 200 150 150 100 100 45 MeV 50 e- 1 MeV e- 2,5 MeV Virgin 50 0 0 0 2x10 16 4x10 16 18 2x10 -2 4x10 18 6x10 18 Vacancy defects lifetime (ps) Average lifetime (ps) In this work we will report different results on the determination of the properties of vacancy defects in W and UO2 using separate effects irradiation experiments coupled to PAS experimental measurements and theoretical data. Recently the self-consistent two components Density Functional Theory has been implemented in PAW approximation and has allowed circumcising the nature of the detected vacancy defects in UO2 irradiated with electrons or alpha particles [8]. The comparison of the experimental positron lifetime with calculated values show that the Schottky defects made of one uranium vacancy associated to 2 oxygen vacancies seem to be the most detected defects. Due to its properties tungsten has been chosen to cover part of the divertor in ITER and is envisaged for first walls in next tokamak generation such as DEMO. In order to better understand its swelling and embrittlement observed in special irradiation conditions, we use PAS to study the vacancy defects properties in this material. We have first shown the migration and agglomeration of single vacancy in the temperature range from 473 to 600K [9] and its interaction with helium [10]. More recently we have observed the formation of vacancy clusters in self ion irradiated W and the effect of the temperature on the size of these clusters. Today, the development of positron microbeams is very promising. It has already allowed to show the creation of vacancies in region close to the fracture zone of H charging stainless steel [11]. =310±10 ps Fluence (cm ) Fig. 1 : Positron Lifetime in electron and alpha irradiated UO2 and positron isodensities in Uranium vacancy and complexes with oxygen vacancy as calculated in self-consistent 2 components Density Fonctionnal Theory [8] References [1] M.-F. Barthe et al., Techniques de l’Ingénieur P3(P145) 2610 (2003). [2 ] P Desgardin et al.,” Slow positron beam facility in Orleans”, Materials science Forum 363, 523 (2001). [3] https://www.frm2.tum.de/en/the-neutron-source/secondary-sources-for-neutrons-and-positrons/ positron-source/ [4] https://unit.aist.go.jp/rima/xr-pos/group_detail/facilities/facilities.html [5] A. Kuramoto et al., “Microstructural changes in a Russian-type reactor weld material after neutron irradiation, post-irradiation annealing and re-irradiation studied by atom probe tomography and positron annihilation spectroscopy”, Acta Materialia 61, 5236 (2013). [6] A. Vehanen et al., “Vacancies and carbon impurities in α-Fe- electron irradiation”, Phys. Rev. B 25, 762, (1982). [7] C. Barouh et al.,” Interaction between vacancies and interstitial solutes (C, N, and O) in α -Fe: From electronic structure to thermodynamics”, Phys. Rev. B 90, 054112 (2014). [8] J. Wiktor et al., “Coupled experimental and DFT plus U investigation of positron lifetimes in UO2”, Phys. Rev. B 90, 184101 (2014). [9] P. E. Lhuillier et al., “Positron annihilation studies on the nature and thermal behaviour of irradiation induced defects in tungsten”, Physica Status Solidi C 6, 2329 (2009). [10] P. E. Lhuillier et al., “Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten”, JNM 433, 305 (2013). [11] N. Oshima et al., Rapid three-dimensional imaging of defect distributions using a high-intensity positron microbeam”, Appl. Phys. Lett. 94, 194104 (2009). 2 Positron Annihilation Spectroscopy to Characterize Irradiation Induced Vacancy Type Defects in Materials for Nuclear Fission and Fusion M-F. Barthe CEMHTI, CNRS/Orléans University, 3A Rue de la Férollerie, 45071 Orléans, France FRFCM MF Barthe, MINOS, Cadarache, 4-6/11/2015 www.kit.edu CEMHTI Facilities for the study of irradiation in Materials Light ions : H+, D+, • Energy = 10 - 45 MeV • Temperatures -120° to 1200°C DIAMANT • Neutrons flux a few 1011 neutron/cm2/s Particles beams : Irradiations, and chemical and structural characterization Cyclotron RAMAN / Irradiation / HT DIAMANT Creep (PSI) Radiolysis, corrosion Feb. – Oct. 2014 : Now running Pelletron New Positrons Na22, Slow positron beam (0.5-25 keV) • vacancy defects Positron Lifetime Spectrum 511 keV START STOP Sample 1,28 MeV e+ ee+ 511 keV – Light ions : H+, D+, 3He, • Energies = 0.5 - 3 MeV Temperatures -130°C to 1200°C Positron Annihilation Spectroscopy Positron e+ = antiparticule of electron (opposite charge, same mass) Positron Annihilation Spectroscopy is based on 2 properties of positron In dense solids annihilation leads to emission of 2 : E= 511 keV ± E Trappping in vacancy defects 2/ Implantation, diffusion 3/ Trapping e+ 511 keVE 4/ Annihilation keV-MeV e- 1/ source ANNIHILATION e+ Échantillon Electronic Structure of solids Probe for vacancy defects (negative or neutral) and free volumes MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Positron Source (1) : 22Na 22 Na : fast positrons At CEMHTI 1.0 22 Emax (β+ 0.8 )=0.54 MeV Stopping profile T1/2 = 2.6 ans, Na Source Positrons 3 Positrons Stopping Profile in W (density 19.3 g/cm ) 0.6 70µm 0.4 0.2 0.0 0 20 40 60 80 100 Positron implantation depth [µm] Thick samples Slow positron beam: monokinetic slow positrons (0.5-25 keV) Positron implantation profile in W Moderator 10-4 to 10-5 Surface Energy filter Acceleration 0-25keV a.u. + Positrons (~ 3 eV) 0.7µm Annihilation + e+ Source 22Na e Energy 5 keV 10 keV 12 keV 15 keV 20 keV 25 keV e Sample bulk 0 100 200 300 400 500 600 700 Depth (nm) Thin layers MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 4 800 Doppler broadening spectrometry NaI 511 keV Sample + E = cPL/2 e + - e e Ge PL : e- e+ pair momentum 511 keV ±E coïncidence Annihilation line at 511 keV Momentum distribution of electron- positron annihilated pairs counts 511 keV 0 ΔE # momentum MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Doppler broadening spectrometry NaI 511 keV Sample + e + DE = cPL/2 - e e Ge PL : e- e+ pair momentum 511 keV ±E coïncidence Annihilation line at 511 keV Momentum distribution of electron- positron annihilated pairs counts 511 keV 0 ΔE # momentum MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Momentum Distribution: Al Comparison of theoretical and experimental annihilation probability densities valence electrons 3s and 3p dominate Al 1s2 2s2p6 3s2p1 2p3/2 2p1/2 2s1/2 High momentum : core electrons MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Doppler broadening Experimental Spectra in SiC without vacancies SL, WL Energy (keV) 504 506 508 510 512 514 516 518 Epitaxial layer 6H-SiC, 17 -3 (n = 10 cm , 4 µm) Annihilation characteristics in Lattice (without defects) as-received Count number 10000 1000 100 0 PL (103m0c) MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Doppler broadening Experimental Spectra in SiC with and without vacancies SL, WL Energy (keV) 504 506 508 510 512 Epitaxial layer 6H-SiC, 17 -3 (n = 10 cm , 4 µm) 514 + 516 16 518 + -2 H , 1µm, 4.10 H .cm and 900°C annealed as-received Annihilation characteristics in Lattice (without defects) Count number 10000 1000 100 0 PL (103m0c) MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Doppler broadening Experimental Spectra in SiC with and without vacancies SL, WL Energy (keV) 504 506 508 510 512 Epitaxial layer 6H-SiC, 17 -3 (n = 10 cm , 4 µm) 514 + 516 16 518 + -2 H , 1µm, 4.10 H .cm and 900°C annealed as-received Annihilation characteristics in Lattice (without defects) Count number 10000 Vacancies W ,S Valence electrons 1000 Core electrons 100 0 PL (103m0c) S = annihilation fraction of e- e+ with low momentum, S= AS/AT W = annihilation fraction of e- e+ with high momentum, W= WL+WR= (AWL+AWR)/AT MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Doppler broadening Experimental Spectra in SiC with and without vacancies SL, WL Energy (keV) 504 506 508 510 512 Epitaxial layer 6H-SiC, 17 -3 (n = 10 cm , 4 µm) 514 + 516 16 Annihilation characteristics in Lattice (without defects) 518 + -2 H , 1µm, 4.10 H .cm and 900°C annealed as-received Count number 10000 Vacancies W ,S Valence electrons 1000 Core electrons 100 0 PL (103m0c) S/SL S = annihilation fraction of e- e+ with low momentum, S= AS/AT W = annihilation fraction of e- e+ with high momentum, W= WL+WR= (AWL+AWR)/AT R: Slope lattice W/WL VN : N S, R MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 ,W Positron Annihilation Lifetime Spectroscopy Positron Lifetime 511 keV START Sample STOP + e + e- e PALS with PLEPS in Münich 511 keV Positron lifetime r0 : electron radius c : light velocity ne-* :Local electronic density Lifetime spectrum Fast -Fast spectrometer (r02 cne* ) 1 S(t) = BG + R(t)O P(t) P(t) : prob. for positron to annihilate at time t P(t) = i Ii exp(- t/ i ), with i Ii = 1 i = 1/ i : lifetime component i and its intensity Ii 2 lifetime components at least 2 annihilation states 2 long component = vacancy defect MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Positron lifetime in W Specific lifetime for each type of defects Theory (DFT) [1] Vn = 440 ps 450 400 Lifetime (ps) 350 Lattice 300 250 V = 200 ps 200 150 = 108 ps 100 0 20 40 60 80 100 Number of vacancies Lacunes VN : N [1] T. Troev, E. Popov, P. Staikov, N. Nankov, T. Yoshiie, NIMB 267, 3, 335 13 MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Vacancy defects properties Use separate effects experiments combining irradiations in different conditions and PAS (and other techniques) measurements and calculations to characterize vacancy defects in materials: Nature Interactions with impurities ….. Migration In W and UO2 MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Vacancy defects in W : Single vacancies properties and V-clusters MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Dpa and He, H induced in material for fusion ITER, DEMO : steps in the development of fusion energy production Fusion reaction 2H + 3H 4He(3,5 MeV) + n (14.1 MeV) W divertor, first walls? dpa : displacements per atom Temp. 800- 1700°C dpa, vacancies, interstitials ….. (n,p) n 14.1 MeV H, (n,α) He ITER Tokamak He, H high flux Low energy Change the microstructure and chemical composition Evolution of thermal, electrical, mechanical properties of materials MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Damage dose calculations in DEMO Divertor W = predominant recoil W for FW or divertor Damage dose max in 3 years = 12dpa [He]max in 3 years = 20-30 appm He/damage = 1.6-2.5 appm/dpa • Large energy distribution (up to 300 keV) mean value at 3.3 keV [1] M.R. Gilbert et al. / Journal of Nuclear Materials 442 (2013) S755–S760, M.R. Gilbert et al. / Journal of Nuclear Materials 467 (2015) 121 MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Macroscopic properties:Irradiations with neutrons Pure W Vacancy defects ? W-Re 25% Formation de cavités Swelling in W irradiated with neutrons (E>0.1MeV), 5.5x1026n.m2 (9.5dpa) [1] [1] J.Motolich et al., Scripta Metallurgica, 8 (1974) 837-842; [2] V. Barabash, G. Federici, M. Rödig, L.L. Snead, C.H. Wu, Journal of Nuclear Materials, 283–287, Part 1 (2000) 138-146. MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Experimental approach Virgin samples : thin foils (150µm), 7*7 mm2, annealed at 1600°C/1h/Vacuum 3 16 -2 He 800 keV 10 cm 0.70 Defects 0.12 0.10 0.60 He 0.50 25 keV positon implantation profile 0.08 0.06 0.40 0.30 10-100 appm 0.04 0.20 0.02 0.10 0.00 0 250 500 750 1000 1250 0.00 1500 Depth (nm) Study of defects in the Track region with PAS Fluence 1014 1015 1016 5×1016 Estimated Damage (dpa)[SRIM] 0 to 700 nm 2.5×10-4 2.5×10-3 0.025 0.13 PAS ; Positron Annihilation Spectroscopy MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 He (at%) Implantation to induce defects 3He 800keV Fluence de 1013 à 5.1016cm-2 Damage (dpa) 0.14 Implantation-induced defects Virgin sample annealed 1600°C/1h/vacuum 800 keV implantation, Fluence from 1013 to 5x1016 cm-2 (VDG Orléans) W Positron Energy (keV) 0 One single type of defect V 5 10 15 20 25 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.42 0.42 0.41 0.41 S 0.40 Initial State 0.39 0.39 0.38 0.38 0.37 0.37 0.085 Virgin sample 0.080 Implantation fluence 13 -2 10 cm 14 -2 10 cm 15 -2 10 cm 16 -2 5´10 cm 0.075 W 0.40 0.070 0.065 0.060 0.055 0 5 10 15 20 25 Positron Energy (keV) A Debelle , MF Barthe et al., J. Nucl. Mat., 376 (2008) 216-221 MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 S 3He Single vacancy in W One single type of defect 0.46 low momentum fraction S Virgin sample : annealed 1500°C/1h/ArH2 3He 800 keV irradiation Fluence from 1014 to 5x1016 cm-2 Virgin sample Implantation fluence 13 -2 10 cm 14 -2 10 cm 15 -2 10 cm 16 -2 5´10 cm 0.44 0.42 0.40 Initial State 0.38 Lattice 0.36 0.05 0.06 0.07 0.08 high momentum fraction W [1] A Debelle , MF Barthe et al, JNM.376 (2008) 216; [2] T. Troev, E. Popov, et al, NIMB 267, (2009), 335; [3] P.E. Lhuillier, MF Barthe et al., PSS ,C6, (2009), 2329, [4] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans – MINOS 2015, Cadarache , France, 4-6/11/2015 P. 21 Single vacancy in W One single type of defect Positron Lifetime In agreement with calculations τ=200±0.4ps I=98±0. 2% , [3] VCalc=200ps [2] τ Single vacancy (V) 0.46 low momentum fraction S Virgin sample : annealed 1500°C/1h/ArH2 3He 800 keV irradiation Fluence from 1014 to 5x1016 cm-2 Virgin sample 0.44 SV, WV Implantation fluence 13 -2 10 cm 14 -2 10 cm 15 -2 10 cm 16 -2 5´10 cm 0.42 0.40 Initial State 0.38 Lattice 0.36 0.05 0.06 0.07 0.08 high momentum fraction W [1] A Debelle , MF Barthe et al, JNM.376 (2008) 216; [2] T. Troev, E. Popov, et al, NIMB 267, (2009), 335; [3] P.E. Lhuillier, MF Barthe et al., PSS ,C6, (2009), 2329, [4] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans – MINOS 2015, Cadarache , France, 4-6/11/2015 P. 22 Single vacancy in W Trapping in one trap = 2 annihilation states • Lattice, SL and τL = 110ps • Single Vacancy V, SV Trapping KV Delocalised Positrons λL Localised Positrons detrapping δV 0 annihilation 0.46 low momentum fraction S Virgin sample : annealed 1500°C/1h/ArH2 3He 800 keV irradiation Fluence from 1014 to 5x1016 cm-2 Single vacancy (V) Virgin sample 0.44 SV, WV Implantation fluence 13 -2 10 cm 14 -2 10 cm 15 -2 10 cm 16 -2 5´10 cm 0.42 CV 0.40 0.38 Initial State Lattice 0.36 0.05 0.06 0.07 0.08 high momentum fraction W λV annihilation Trapping rate, KV= CV.µV µV trapping specific coefficient, µV=4 ± 2 ×1014 s-1[1] , Snorm=S/SL [1] PE Lhuillier Thesis CEMHTI 2010, MF Barthe CEMHTI - CNRS – Orléans – MINOS 2015, Cadarache , France, 4-6/11/2015 P. 23 800 keV 3He irradiated W PAS Trapping in one trap = 2 annihilation states • Lattice, SL and τL = 110ps • Single Vacancy V, SV Trapping KV Delocalised Positrons λL annihilation Localised Positrons detrapping δV 0 λV annihilation Trapping rate, KV= CV.µV µV trapping specific coefficient, µV=4 ± 2 ×1014 s-1[1] , Snorm=S/SL [1] PE Lhuillier Thesis CEMHTI 2010, [2] A De Backer, C Becquart, C. Domain, MF Barthe, JNM 429 (2012) 78–91, [3] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans –MoD PMI2015, Marseille , France, 25-27/05/2015 P. 24 800 keV 3He irradiated W LAKIMOCA (C. Domain EdF) [3] PAS Recombination Emission Implanted He + Interstitial Traps loop PBC or surface 200nm dislocation Emission cascade Vacancy cluster Interstitial Marlowe cluster Annihilation + Mixed He vacancy cluster He cluster Migration [1] PE Lhuillier Thesis CEMHTI 2010, [2] A De Backer, C Becquart, C. Domain, MF Barthe, JNM 429 (2012) 78–91, [3] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans –MoD PMI2015, Marseille , France, 25-27/05/2015 P. 25 800 keV 3He irradiated W PAS LAKIMOCA (C. Domain EdF) [3] Recombination Emission Implanted He + Traps Interstitial loop PBC or surface dislocation Emission cascade Vacancy cluster Interstitial cluster Annihilation Marlowe + 200nm Mixed He vacancy cluster He cluster Migration [1] PE Lhuillier Thesis CEMHTI 2010, [2] A De Backer, C Becquart, C. Domain, MF Barthe, JNM 429 (2012) 78–91, [3] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans –MoD PMI2015, Marseille , France, 25-27/05/2015 P. 26 800 keV 3He irradiated W LAKIMOCA (C. Domain EdF) [3] Species Em (eV) mono-SIA (1I) 0.013 mono-v (1v) 1.66 PAS [1] PE Lhuillier Thesis CEMHTI 2010, [2] A De Backer, C Becquart, C. Domain, MF Barthe, JNM 429 (2012) 78–91, [3] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans –MoD PMI2015, Marseille , France, 25-27/05/2015 P. 27 Single vacancy/ V-clusters in W Low momentum fraction S One single type of defect Single vacancy (V) 0.48 0.46 Annealing 3 He 800 keV (25 keV) 16 -2 5x10 cm 0.46 low momentum fraction S Virgin sample : annealed 1500°C/1h/ArH2 3He 800 keV irradiation Fluence from 1014 to 5x1016 cm-2 Implantation fluence 13 -2 10 cm 14 -2 10 cm 15 -2 10 cm 16 -2 5´10 cm 0.44 0.42 SV, WV 0.40 Initial State 0.38 Lattice 0.36 0.05 0.44 300 K 473 K 623 K 873 K 1173 K 1273 K 1473 K Virgin sample 0.06 0.07 0.08 high momentum fraction W 0.42 0.40 0.38 200 400 600 800 1000 1200 1400 1600 Temperature (K) [1] A Debelle , MF Barthe et al, JNM.376 (2008) 216; [2] T. Troev, E. Popov, et al, NIMB 267, (2009), 335; [3] P.E. Lhuillier, MF Barthe et al., PSS ,C6, (2009), 2329, [4] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans – MINOS 2015, Cadarache , France, 4-6/11/2015 P. 28 Single vacancy/ V-clusters in W Low momentum fraction S One single type of defect Single vacancy (V) 0.48 Annealing 0.46 3 He 800 keV (25 keV) 16 -2 5x10 cm 0.46 low momentum fraction S Virgin sample : annealed 1500°C/1h/ArH2 3He 800 keV irradiation Fluence from 1014 to 5x1016 cm-2 300 K 473 K 623 K 873 K 1173 K 1273 K 1473 K Virgin sample Implantation fluence 13 -2 10 cm 14 -2 10 cm 15 -2 10 cm 16 -2 5´10 cm 0.44 0.42 SV, WV 0.40 Initial State 0.38 Lattice 0.36 0.05 0.44 0.06 0.07 0.08 high momentum fraction W At 873K Positron Annihilation Lifetime Spectrometry with PLEPS [3] 0.42 0.40 Mean lifetime 0.38 200 400 600 800 1000 1200 1400 1600 Temperature (K) V migration, 473-623K Em(V) = 1.66 eV [4] V-clusters VN with N>30 [2] 1st component 2nd component τm (ps) τ1 (ps) I1 (%) τ2 (ps) I2 (%) 331 176 54 458 45 [1] A Debelle , MF Barthe et al, JNM.376 (2008) 216; [2] T. Troev, E. Popov, et al, NIMB 267, (2009), 335; [3] P.E. Lhuillier, MF Barthe et al., PSS ,C6, (2009), 2329, [4] C.Becquart,et al JNM 403, Issues 1-3, 2010, 75-88 MF Barthe CEMHTI - CNRS – Orléans – MINOS 2015, Cadarache , France, 4-6/11/2015 P. 29 Vacancy defects in self ions irradiated W : Positron annihilation spectroscopy Transmission electron microscopy MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Experimental details : irradiations with W ions Japet 2 MV 2 MV ARAMIS Yvette 2.5 MV 190kV IRMA Épiméthée 3 MV Saclay Japet Yvette 200 kV TEM Orsay Épiméthée Experiments done at JANNuS (Joint Accelerators for Nanoscience and Nuclear Simulation), France Irradiation W 20 MeV in bulk : postmortem characterizations Irradiation W 1.2 MeV in thin foils: in situ and post- mortem characterizations PAS, TEM MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 High momentum Fraction W Low momentum Fraction S 20 MeV W irradiation: low dpa Mean positron implantation depth (nm) 249 354 153 24 77 0 0.44 0.44 0.42 0.42 0.40 0.40 Latice Single vacancy 0.38 0.05 0.08 0.06 0.07 0.38 0.08 High momentum Fraction W 0.42 0.07 20 MeV W implanted W 0.025 dpa 1 dpa 12 dpa 0.06 0.05 virgin 0 5 10 15 Energy (keV) 20 25 Latice Single vacancy 0.060 0.40 0.065 High momentum Fraction W V-clusters (small 3D V-cluster+ V-loops ) are created even at low dpa MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Ex situ TEM observation : post-mortem W irradiated 1.2 MeV W ions at 0.017 dpa at RT Loops Image 1 : over focused image, cavities appear black surrounded by a white halo 20 Counts 15 Image 2 : under focused image, cavities appear white surrounded by a black halo Diam. = 0.6 ± 0.1 nm for visible V clusters C > 4.2 ± 1.2 x 1023 V-clusters.m-3 Smaller V-clusters can not be excluded 10 5 0 0.5 1.0 1.5 2.0 2.5 Observed V-clusters size (nm) MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 33 High momentum Fraction W Low momentum Fraction S 20 MeV W irradiation: effect of dpa Mean positron implantation depth (nm) 249 354 153 24 77 0 0.44 0.44 0.42 0.42 Vn 0.40 0.40 Latice Single vacancy 0.38 0.05 0.08 0.06 0.07 0.38 0.08 High momentum Fraction W 0.07 20 MeV W implanted W 0.025 dpa 1 dpa 12 dpa 0.06 0.05 virgin 0 5 10 15 Energy (keV) 20 25 V-clusters (small 3D V-cluster+ V-loops ) are created even at low dpa Size and/or concentration of vacancy clusters increases with dpa Saturation from 1 dpa MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Annealing in vacuum : effect of dpa Low momentum Fraction S 0.51 0.51 Lattice Single vacancy (V) 0.48 0.45 0.45 0.42 V W 20MeV (0.025 dpa*) W 20MeV (1 dpa*) W 20MeV (12 dpa*) 0.39 0.36 0.48 300 450 600 750 Temperature (K) 0.42 0.39 900 0.04 0.06 0.08 High momentum Fraction W MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 0.36 Annealing in vacuum : effect of dpa 3He 0.48 Low momentum fraction S Low momentum Fraction S 0.51 0.45 0.42 W 20MeV (0.025 dpa*) W 20MeV (1 dpa*) W 20MeV (12 dpa*) 0.39 0.36 300 450 600 750 Temperature (K) 800 keV irradiations Lattice Single (V) He vacancy 800 keV (25 keV) 0.48 3 16 -2 5x10 cm 0.46 0.44 0.48 0.45 0.42 0.40 V 0.38 200 400 600 800 1000 1200 1400 1600 Temperature (K) 900 0.51 V migration, ∼ 573K 0.06 E0.04 m(V) = 1.66 eV [4] 0.08 High momentum Fraction W 0.42 0.39 0.36 ∀dpa clustering occurs in the same temperature range as for single vacancies mainly due to V migration and agglomeration on small clusters MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Vacancy defects in UO2 : MF Barthe, CEMHTI CNRS Orléans, MINOS , Cadarache 4-6/11/2015 Experiments : Indirect detection of defects in UO2 XRD, lattice parameter changes, [1,2,3 ] [2] [1] [3] RBS/C in Xe and He implanted UO2 [4] dpa Thermal properties in (U,Pu)O2 samples, [5] [1] J.H.Davies et al, JNM 41 (1971), 143., [2] Weber W.J, JNM 114 (1983), 213 [3] N.Nakae, JNM 80 (1979), 314-322 , [4] F. Garrido et al. NIM B 266 (2008) 2842–2847, [5] D. Staicu, T. Wiss et al. JNM 397 (2010) 8–18 MF Barthe CEMHTI - CNRS – Orléans –MoD PMI2015, Marseille , France, 25-27/05/2015 P. 38 Experiments : Indirect detection of defects in UO2 XRD, lattice parameter changes, [1,2,3 ] [2] [1] [3] RBS/C in Xe and He imlanted UO2 [4]defects Indirect information about primary No direct observation of vacancy defects dpa Thermal properties in (U,Pu)O2 samples, [5] [1] J.H.Davies et al, JNM 41 (1971), 143., [2] Weber W.J, JNM 114 (1983), 213 [3] N.Nakae, JNM 80 (1979), 314-322 , [4] F. Garrido et al. NIM B 266 (2008) 2842–2847, [5] D. Staicu, T. Wiss et al. JNM 397 (2010) 8–18 MF Barthe CEMHTI - CNRS – Orléans –MoD PMI2015, Marseille , France, 25-27/05/2015 P. 39 U O 60 µm Fluorine structure Vacancy defects in irradiated UO2 (fast) Positron Lifetime, Self-consistent Two Component DFT calculations of positron lifetime Positron Lifetime Spectrum 511 keV START STOP 1,28 MeV Sample e+ e+ e511 keV MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 PALS in UPuO2 [1] DEN/DTCD/SECM/LMPA CEA Marcoule [1] D. Roudil, M F Barthe et al. / Journal of Nuclear Materials 420 (2012) 63–68 MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Vacancy defects in UO2 300 300 250 250 200 200 170 ps 150 150 100 100 45 MeV 50 e- 1 MeV e- 2,5 MeV Virgin 50 0 0 0 2x10 16 4x10 16 18 2x10 -2 4x10 18 6x10 18 Vacancy defects lifetime (ps) Average lifetime (ps) Irradiations 45 MeV (2x10-4 dpa), 1 MeV and 2.5 MeV electrons Positron Annihilation Spectroscopy (Fast Positrons), 300K Lifetime V = 3074 ps No vacancy defects are detected for 1 MeV e- irradiation Vacancy defects detected if 2.5MeV e- irradiation Fluence (cm ) Open symbols : average lifetime Full symbols : Second lifetime component M F Barthe, et al Phys. Stat. Solidi C 4 3627-3632 2007 MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Vacancy defects in UO2 300 -3 displaced atoms concentration (cm ) 300 Average lifetime (ps) 8x10 19 200 6x10 19 150 19 4x10 100 Displacements induced in UO2 250 with electrons programme S mott 200 170 ps O Displacement 250 45 MeV 5019 2x10 Virgin U (Ed=40 eV[1,2]) 150 100 O+U Displacements e- 1 MeV e- 2,5 MeV 50 O (Ed=20 eV[2]) 0 0 0 0 02x1016 14x1016 2 18 3 2x104 4x10 5 18 18 6 6x10 Vacancy defects lifetime (ps) Irradiations 45 MeV, 1 MeV and 2.5 MeV electrons Positron Annihilation Spectroscopy (Fast Positrons), 300K Lifetime -2 IncidentFluence Energy of(cm electrons (MeV) ) Open symbols : average lifetime Full symbols : Second lifetime component [1] J.Soullard, JNM 135 (1985) 190-196.;[2] C. Meis, A. Chartier JNM 341 (2005) 25 V = 3074 ps No vacancy defects are detected for 1 MeV e- irradiation Vacancy defects detected if 2.5MeV e- irradiation Displacement of U if E(e-)>2 MeV VU, or complexes VU 2VO M F Barthe, et al Phys. Stat. Solidi C 4 3627-3632 2007 MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Fully self-consistent 2 components DFT calculations Calculations in the ABINIT code (Two Components DFT) [1] LDA SiC * GGA+U UO2 Self consistent scheme PSN2 with gradient correction GC for the enhancement factor g *Defects were fully relaxed Relaxation of defects due to positron localization = iterations DEN/DEC/SESC/LLCC [1] J Wiktor, PhD thesis, University of Marseille, oct 2015, [2] M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995). MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Positron lifetime calculations in UO2 Calculations in the ABINIT code (Two Components DFT) [1] Self consistent scheme PSN2 with gradient correction GC for the enhancement factor g DFT(GGA, PBE)+U formalism3 to treat the 5f electrons Defects were fully relaxed Exp ~170 ps Reduction of the lifetime with increase of the charge Due to relaxation for VU 4- :+10% outward 0: +13% outward Schottky defects DEN/DEC/SESC/LLCC 1 J Wiktor, M. Bertolus, G. Jomard, MF Barthe et al, Phys Rev B 90, 184101 (2014) 2 M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995). 3 S. Dudarev, D. Manh, and A. Sutton, Philos. Mag. Part B 75, 613 (1997). MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Identification of vacancy defects in UO2 irr Exp . Long lifetime ~310±10 ps MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 3 traps model UO (set G, sintered polished and annealed 1700°C/24h/ArH ) irr alpha 45 MeV 2x1016 cm-2 ; mesure sous vide en fonction de2la température Measurement in ultra a function of temperature WHM libre, 3 comp. source (230ps, 20% ; vacuum 450ps, 1.4% ; as 1500ps, 0.03%) Long component 2 (ps) Average lifetime av (ps) 2 rH2 Ga17/Al9/Ga59 irr alpha 45 MeV 2e16 cm 250 -2 Experimental data Model with 3 Traps : negative ions IN, V1-, et V2 - 3 traps (IN, V1, V2 ) model 240 230 τIN=170 ps and τV-= τV2 =310 ps 220 210 200 330 >30 times more neutral vacancies than negatively charged ones Cv2(cm-3) µv1 6,50E+19 1,00E+15 320 310 Cv-(cm-3) µ0 r µ0 2 Er(eV) Vr(s-1) 2.0E+18 3,40E+16 4,00E+16 1,00E-02 1,00E+11 300 290 Short lcomponent 1 (ps) Long component Intensity I2 (%) 280 60 CIN(cm-3) µ0(IN) EIN(eV) 1,00E+19 4,20E+16 3,00E-01 50 40 High binding energy at Rydberg state of negative ions 30 20 10 190 short lifetime is constant Trapping saturation 180 170 160 0 50 100 150 200 250 300 Temperature (K) MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Calculated formation energies Formation energies of defects in stoichiometric UO2 [1] In the undoped UO2 VO should be positive, hence not detected by PAS VU and VU+VO defects should be negative, while the VU+2VO should be neutral. DEN/DEC/SESC/LLCC Close to stoechiometry , IO2-,VO2+ , VU4- DFT LDA+U [2] [1] 1 J Wiktor, M. Bertolus, G. Jomard, MF Barthe et al, Phys Rev B 90, 184101 (2014), [2] J P Crocombette Phys Rev B 85, 144101 (2012) MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Identification of vacancy defects in UO2 irr VU and VU-VO are negatively charged close to the middle of the bandgap in close stoechiometric UO2 Exp . Long lifetime ~310±10 ps Vacancy defects 2VU is 8- close to the middle of the bandgap in close stoechiometric UO2 We propose Neutral vacancy defects which are preponderant = Schottky defects Negatively charged vacancy defects = a mixing of (VU-VO)2-, (2VU-2VO)4DEN/DEC/SESC/LLCC MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Conclusions Positron annihilation spectroscopy • Vacancy defects properties (nature, migration, agglomeration…) concentration • From single vacancy to V-clusters • Thin layers (damage region with HI) / thick samples (electron or high energy LI) • DFT Calculations of annihilation characteristics • Complementarity of Lifetime and Doppler • Complementarity with TEM In tungsten • Light ions : single vacancies from T in the range 473-623K: migration and clustering • Heavy ions at RT or lower temperature low dpa : V-clusters (3D small voids +V-loops ) + single vacancies high dpa : V-clusters with larger size + single vacancies >423K clustering due to migration of single vacancies and with V-loops as precurssors? • He Plasma nV-mHe complexes close to the surface In UO2 • Identification of the dominant vacancy defect detected : Schottky defect VU+2VO MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 Thank to All collaborators M SIDIBE, CEMHTI CNRS PE LHUILLIER, CEMHTI CNRS H LABRIM, CEMHTI CNRS P DESGARDIN, CEMHTI CNRS C. GENEVOIS-MAZELLIER, CEMHTI CNRS E. AUTISSIER, CEMHTI CNRS T SAUVAGE, CEMHTI CNRS B DECAMPS, CSNSM CNRS R SCHAUBLIN, ETHZ A DE BACKER, UMET C BECQUART, UMET P TROCELLIER, CEA/SRMP Y SERRUYS, CEA/SRMPS J. WIKTOR, CEA/SESC/LLCC M BERTOLUS, CEA/SESC/LLCC G CARLOT, CEA/SESC/LLCC M FREYSS, CEA/SESC/LLCC P GARCIA, CEA/SESC/LLCC G JOMARD, CEA/SESC/LLCC S ESNOUF, LSI D ROUDIL, CEA/SECM/LMPA C VALOT, CEA/SESC/LLCC F VELLA, CEA/SECM/LMPA Accelerators teams Jannus (Orsay and Saclay), LSI, CEMHTI Thank You for your kind attention MF Barthe, CEMHTI CNRS, Orléans, MINOS, Cadarache, 4-6/11/2015 51
© Copyright 2026 Paperzz