bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 Physiologicalandbiochemicalchangesassociatedwithexperimentaldehydrationinthe 2 desertadaptedcactusmouse,Peromyscuseremicus 3 4 LaurenKordonowy1,KaelinaLombardo1,HannahGreen2,EviceBolton1,SarahLaCourse3,Matthew 5 MacManes1 6 7 1 University of New Hampshire, Department of Molecular Cellular and Biomedical Sciences 8 2 University of New Hampshire, Department of Biological Sciences 9 3 University of New Hampshire, Department of Psychology 10 11 12 Abstract 13 Characterizingtraitscriticalforadaptationtoagivenenvironmentisanimportantfirststepin 14 understandinghowphenotypesevolve.Howanimalsadapttotheextremeheatandaridity 15 commonplacetodesertsrepresentsisanexceptionallyinterestingexampleoftheseprocesses,andhas 16 beenthefocusofstudyfordecades.Incontrasttothosestudies,whereexperimentsareconductedon 17 eitherwildanimalsorcaptiveanimalsheldinnon-desertconditions,thestudydescribedhereleverages 18 auniqueenvironmentalchamberthatreplicatesdesertconditionsforcaptivePeromyscuseremicus 19 (cactusmouse).Hereweestablishbaselinevaluesfordailywaterintakeandforserumelectrolytes,as 20 wellastheresponseofthesevariablestoexperimentaldehydration.Inbrief,P.eremicus’dailywater 21 intakeisverylow.It’sserumelectrolytesaredistinctfrommanypreviouslystudiedanimals,andits 22 responsetodehydrationifprofound,thoughnotsuggestiveofrenalimpairmentinthefaceofprofound 23 dehydration,whichisatypicalofmammals. 24 25 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 26 Introduction 27 Understandingtheevolutionofadaptivetraitshaslongbeenoneoftheprimarygoalsinevolutionary 28 biology.Thestudyoftherelationshipsbetweenfitnessandphenotype,oftenpoweredbymodern 29 genomictechniques(Vignierietal.2010),hasprovidedresearcherswithinsightintothemechanistic 30 processesthatunderlieadaptivephenotypes(Castoeetal.2013;Huerta-Sánchezetal.2014).Systems 31 inwhichthepowerofgenomicscanbecombinedwithanunderstandingofnaturalhistoryand 32 physiologyarewellsuitedforthestudyofadaptation(Mullenetal.2009;BedfordandHoekstra2015) 33 especiallywhenresearchershavetheabilitytoassaythelinkbetweengenotypeandphenotypeinwild 34 animalsandthenconductcomplementaryexperimentsusingrepresentativeanimalsincarefully 35 controlledlaboratoryenvironments.Thestudydescribedhere,characterizingthephysiologyandserum 36 biochemistryofPeromyscuseremicusisthefirststepinalargerstudyaimedatunderstandingthe 37 genomicsarchitectureofadaptationtodesertenvironments. 38 39 Desertadaptationhassignificantecological,evolutionary,andbiomedicalsignificance.Incontrastto 40 humansandothermammals,desertrodentscansurviveinextremeenvironmentalconditionsandare 41 resistanttotheeffectsofdehydration.Physiologicaladaptionstodesertshavebeencharacterizedin 42 severalrodents.Specifically,renalhistologyhasbeenstudiedinmultipleHeteromyidrodents(Altschuler 43 etal.1979),andthegeneralconclusionisthatthesedesertadaptedanimalshaveevolvedelongate 44 LoopsofHenle(Barrettetal.1978;Mbassa1988;Beuchat1996)thatarehypothesizedtooptimize 45 waterconservation.Inadditiontostudiesofrenalhistology,severalstudieshavecharacterized 46 pulmonarywaterloss(Schmidt-NielsenandSchmidt-Nielsen1950;Hayesetal.1998),watermetabolism 47 (HowellandGersh1935),andwaterconsumption(MacMillenandLee1967;Bradford1974;Mares 48 1977;Nagy1988;MerktandTaylor1994)indesertrodents.Whiledesertanimalspossessspecialized 49 physiologythatisefficientwithregardstowatermetabolismandloss,whetherornotspecialized bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 50 genomicadaptationexistsisanactiveareaofresearch(Marraetal.2012;MacManesandEisen2014; 51 Marraetal.2014). 52 53 Althoughthecactusmouse(Peromyscuseremicus)hasnotbeenaparticularfocusforthestudyof 54 desertadaptation(butsee(al-Kahtanietal.2004;MacManesandEisen2014),thisCricetidrodent 55 nativetothearidregionsoftheSouthwesternUnitedStatesandNorthernMexico(VealandCaire2001) 56 offersauniqueopportunitytounderstandphysiologicaladaptationstodeserts.P.eremicusisa 57 memberofalargergenusofanimalsknowncolloquiallyasthe“Drosophilaofmammals”(Bedfordand 58 Hoekstra2015),andPeromyscusspecieshavebeenthefocusofextensivestudy(Hoekstraetal.2001; 59 Steineretal.2007;MacManesandLacey2012;Shorteretal.2012).P.eremicusisasisterspeciestothe 60 non-desertadaptedP.californicus(Bradleyetal.2007),anditiscloselyrelatedtoP.crinitus,thecanyon 61 mouse,whichisanotherdesertadaptedrodentnativetoSouthwesterndeserts. 62 63 Criticaltodesertsurvivalistheabilitytomaintainwaterbalanceevenwhenthelossofwaterexceeds 64 dietarywaterintake(Heimeieretal.2002).Indeed,themammaliancorpusconsistsof60%water 65 (JéquierandConstant2009).Farfromastaticreservoir,properphysiologicfunctionrequireswaterfor 66 numerousprocesses,includingnutrienttransport(Haussinger1996),signaltransduction,pHbalance, 67 thermalregulation(Montainetal.1999)andtheremovalofmetabolicwaste.Toaccomplishthese 68 functions,anearlyconstantsupplyofwaterisrequiredtoreplacewaterloss(JéquierandConstant 69 2009),whichoccursmainlyviathegastrointestinalandgenitourinarysystems,andevaporativeloss, 70 whichisgreatlyacceleratedinextremeheatandaridity(Cheuvrontetal.2010).Becausethebody 71 possesseslimitedreserves,whenlossexceedsintakeduringevenashortperiodoftime,dehydration 72 anddeathcanoccur.Mammalsareexquisitelysensitivetodehydrationandpossesslimited 73 compensatorymechanisms. bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 74 75 Characterizingdesertadaptationrequirescarefulandintegrativephysiologicalstudies,whichshould 76 includeadetailedcharacterizationofwaterintake,responsestodehydration,andthemeasurementof 77 bloodelectrolytes.Indeed,quantifyingthesemetricsisoneofthefirststepsinunderstandinghow 78 animalssurviveintheextremeheatandaridityofdeserts.Inparticular,theelectrolyteschlorideand 79 sodiumareimportantmarkersofdehydration(Costilletal.1976).Thesemoleculesplayessentialroles 80 inmetabolicandphysiologicalprocesses,andtheyareintegraltothefunctionallyofavarietyof 81 transmembranetransportpumps(BlausteinandLederer1999;Jentschetal.2002),neurotransmission 82 (YuandCatterall2003),andmaintenanceoftonicity(FeigandMcCurdy1977).Furthermore, 83 hypernatremiacausesrestlessness,lethargy,muscleweakness,orcoma(AdroguéandMadias2000). 84 Bicarbonateion,incontrast,isprimarilyresponsibleforaidinginthemaintenanceoftheacid-base 85 balanceandisresorbedintherenaltubules(McKinneyandBurg1977).Bloodureanitrogen(BUN)isa 86 testthatassaystheabundanceofurea–theendproductformetabolismofnitrogencontaining 87 compounds.Ureaisresorbedintheglomerulus,andrenalimpairmentisofteninferredwhenBUN 88 becomeselevated(Baumetal.1975).Importantly,thecanonicalmodelofurearesorptionisdependent 89 onurinevolume,whichismarkedlydiminishedindesertrodents,thuslimitingtheutilityofusingBUN 90 asanindicatorofrenalfunction.Lastly,creatinine,aproductofmusclebreakdown,whosemeasured 91 leveldoesnotdependonurinevolumeisusedasameasureofrenalfunction(Baumetal.1975). 92 93 Genesmostfrequentlyimplicatedindesert-adaptationincludemembersoftheaquaporinfamily(Huang 94 etal.2001).However,previousworksuggeststhatanalternativegenefamily,thesolutecarriers,are 95 morerelevantfordesert-adaptationinthecactusmouse(MacManesandEisen2014).Asafirststep 96 towardsfullyelucidatingthepatternsofadaptiveevolutiontodesertsinP.eremicus,wecharacterized 97 thenormalpatternsofwaterintakeandelectrolytelevelsaswellasthephysiologicresponseto bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 98 experimentaldehydration.Assuch,thisstudyprovidescriticalphysiologicalandbiochemical 99 informationaboutP.eremicusanditsresponsetodehydrationandisgenerallyusefulasresearchers 100 begintoleveragelarge-scalegenomedataagainstclassicquestionsregardingtheevolutionofadaptive 101 phenotypes. 102 103 MaterialsandMethods 104 WeusedcaptiveP.eremicusthatwerepurchasedfromtheUniversityofSouthCarolinaPeromyscus 105 GeneticStockCenterin2013.Theseanimals,whicharedescendantfromwildcaughtanimalsfroma 106 dry-desertpopulationinArizona,havebeenbredincaptivityattheUniversityofNewHampshire. 107 Animalsarehousedinalargewalk-inenvironmentalchamberbuilttoreplicatetheenvironmental 108 conditionsinwhichthispopulationhasevolved.Specifically,theanimalsexperienceanormaldiurnal 109 patternoftemperaturefluctuation,rangingfrom90Fduringthedaytimeto75Fduringthenight. 110 Relativehumidity(RH)rangesfrom10%duringthedayto25%duringthenight.Animalsarehousedin 111 standardlabmousecageswithbeddingthathasbeendehydratedtomatchdesertconditions.Theyare 112 fedastandardrodentchow,whichhasalsobeendehydrated.Waterisprovidedadlibduringcertain 113 phasesofexperimentationandwithheldcompletelyduringothers.Allanimalcareproceduresfollow 114 theguidelinesestablishedbytheAmericanSocietyofMammalogy(Sikesetal.2011)andhavebeen 115 approvedbytheUniversityofNewHampshireAnimalCareandUseCommitteeunderprotocolnumber 116 103092. 117 118 Allanimalsincludedinthisstudyweresexuallymatureadults.Aslightbiasfortheinclusionofmales 119 exists,asaconcurrentstudyofmalereproductivegenomicswasoccurring.Preliminaryanalyses 120 conductedsuggestthatnosignificantdifferencesinanyofthephysiologicalmeasures,andasaresult, 121 malesandfemaleswereanalyzedasonegroup.Forasubsetofanimals,waterintakewasmeasured, bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 122 whichwasaccomplishedviatheuseofcustomized15mlconicaltubes,whereinwaterintakewas 123 measuredevery24hoursforaminimumof3consecutivedays(range3-10days).Animalsselectedfor 124 thedehydrationtrialwereweighedonadigitalscale,housedwithoutwaterforthreedays,thenre- 125 weighedtodeterminethechangeinbodymassduetodehydration.Attheconclusionofwater 126 measurementorafterathree-daydehydrationanimalsweresacrificedviaisofluraneoverdoseand 127 decapitation.Immediatelyafterdeath,a120uLsampleoftrunkbloodwasobtainedforserum 128 electrolytemeasurement.ThiswasaccomplishedusinganAbaxisVetscanVS2machinewithacritical 129 carecartridge,whichmeasurestheconcentrationofseveralelectrolytes(Sodium,Chloride,Bicarbonate 130 ion,Creatinine,andBloodUreaNitrogen(BUN))relevanttohydrationstatusandrenalfunction.Lastly, 131 thekidney,spleen,liver,lung,hypothalamus,testes,vasdeferensandepididymisweredissectedout 132 andstoredinRNAlater(AmbionInc.)forfuturestudy.Allstatisticalanalyseswerecarriedoutinthe 133 statisticalpackage,R(RCoreDevelopmentTeam2011). 134 135 Results 136 Wemeasuredthedailywaterintakefor22adultcactusmiceforbetweenthreeand10consecutive 137 days.Meanwaterintakewas0.11mLperdaypergrambodyweight(median=0.11,SD=0.05,min= 138 0.033,max=0.23).WemeasuredlevelsofserumSodium,Chloride,Bicarbonateion,Creatinine,and 139 BloodUreaNitrogen(BUN)for44adultmice,therebyestablishingnormal(baseline)valuesforP. 140 eremicus(Figure1andTable1). 141 142 Acomparisonofmiceprovidedwithwateradlibitumtomicethatexposedtoexperimentalwater 143 deprivationforthreedaysrevealedthatthedehydratedmicelostanaverageof23.2%oftheirbody 144 weight(median=23.9%,SD=5.3%,min=12.3%,max=32.3%).Despitethissubstantialweightloss, 145 anecdotally,miceappearedhealthy.Theywereactive,eating,andinteractingnormally.Theamountof bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 146 weightlossdidnotdependondailywaterintake(p=0.63,R2= 0.03),thoughthetrendsuggeststhat 147 animalsthatdrinkmorewaterlostmoreweight).Furthermore,bodyweightdidnotstronglyinfluence 148 thepercentlossofbodyweight(Figure2;p=0.68,R2= 0.02). 149 150 Inadditiontoasubstantiallossinbodyweight,dehydrationwasassociatedwithdifferencesinserum 151 electrolytes(Figure3;n=19dehydrated,n=24hydrated).Thesechangesweresubtle,butsignificant 152 usingatwo-samplet-test(p<0.008inallcases). 153 154 Lastly,thelevelsofserumelectrolytesweretightlycorrelatedwithpercentbodyweightloss(Figure4). 155 Indeed,therelationshipbetweenthelevelofserumsodiumandweightlosswaspositiveandsignificant, 156 (ANOVA,F-statistic:12.85,11DF,p=0.004),aswastherelationshipbetweenBUNandweightloss 157 (ANOVA,F-statistic:9.089,11DF,p=0.012).Therelationshipsbetweenweightlossandchlorideand 158 bicarbonatelevelsrespectively,werepositivebutnotsignificant. 159 160 Discussion 161 Desertsareamongsttheharshestenvironmentsontheplanet.Indeed,animalslivingintheseareas 162 mustbehighlyadaptedtotheuniquecombinationofextremeheatandaridity.Giventhatour 163 understandingofthephysiologyofdesertadaptedanimalsislimitedlargelytostudiesinrenalhistology 164 (Mbassa1988)andonwaterintakeandoutput(MacMillenandLee1967;TracyandWalsberg2001),an 165 enhancedunderstandingofserumelectrolytechangesduetodehydrationisinformative.Becausemany 166 oftheharmfuleffectsofdehydrationresultfromelectrolyteabnormalities,characterizingnormalvalues 167 andtheelectrolyteresponsetodehydrationrepresentsacriticalfirststepingarneringadeeper 168 understandingofhowdesertanimalssurvivedespitesevereandprolongeddehydration. 169 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 170 Inthisstudy,normal(baseline)valuesforserumSodium,Chloride,BicarbonateIon,Creatinine,and 171 BloodUreaNitrogenwereestablishedinacaptivecolonyoflabanimalshousedindesertconditions. 172 Althoughthesemeasuresmaydifferinwildanimals(see(CalisiandBentley2009)forabriefreviewof 173 suchdifferences),establishingnormalvaluesincaptiveanimalsiscrucial,thoughfuturestudiesaimto 174 understandthepatternsofelectrolytevariationinwildanimals.InP.eremicus,wedefinethenormal 175 rangesforeachelectrolyteasthosevaluesfallingbetweenthe1stand3rdquartile.SerumChlorideand 176 Sodiumweresignificantlyhigherthaninpublishedrangesforothermammals,includinghumans,a 177 marsupial(ViggersandLindenmayer1996),Cricetomys(Nssienetal.2002), andtheporcupine(Moreau 178 etal.2003).However,serumchlorideandsodiumlevelsinourstudywerequitecomparabletoanother 179 wildrodent,Neotimafuscipes(Weberetal.2002),aMustelid(Thorntonetal.1979),andtheHyrax 180 (Arochetal.2007).ValuesforBUNaregenerallyhigherinthisstudy;unfortunately,adirectcomparison 181 isnotpossible,asmeasuredvaluesaredependentonthevolumeofurineproduced.SerumCreatinineis 182 low,largelyresultingfromthegenerallackofmusclemassinP.eremicusrelativetoothermammals. 183 However,becausetheequipmentusedtoanalyzethiselectrolytedoesnoteffectivelycapturethelower 184 endofthebiologicalrange,directcomparisonsarenotmadeforthismetric. 185 186 Inadditiontocharacterizingbaselineelectrolytesandtheirresponsetoexperimentaldehydration,the 187 normativevaluefordailywaterintakewasestimatedtobe0.11mLperdaypergrambodyweight. 188 Thoughcomparablemeasuresofwaterconsumptionarescarce,onestudyintwoaridadaptedLimoys 189 (L.pictusandL.irroratus)housedinnon-desertcaptivesettingswereestimatedtobe0.18and0.17mL 190 perdaypergrambodyweightrespectively(Christianetal.1978)–avaluemuchgreaterthaninP. 191 eremicus. 192 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 193 Animalsthatwereexposedtoexperimentaldehydrationlostasubstantialamountofbodyweight. 194 Dehydrationinhumans,resultinginlossofevenafractionofthisamountresultsincardiovascular 195 collapseanddeath.Indeed,evenadehydration-relatedlossofafewpercentofbodyweightmaycause 196 seriousrenalimpairmentorrenalfailure.Thatthecactusmousemaylosesomuchweightasaresultof 197 dehydrationandremainactive,andapparentlyhealthy,withoutrenalimpairmentisatestamentto 198 theirdesertadaptation.Yet,whileanecdotallymiceappearwell,theymaybeexperiencingsubstantial 199 cognitiveimpairment,asisthecasewithmild-humandehydration(Armstrongetal.2012).Future 200 studiesinthelabaimtounderstandthecognitiveeffectsofdehydrationincactusmouse. 201 202 Inadditiontoweightloss,dehydratedanimalsdemonstratedbiochemicalevidenceofphysiological 203 stress,intheformofincreasedSodium,Chloride,BUN,andBicarb.Therewerenosignificant 204 relationshipsbetweenanyphysiologicalvalueandCreatinine,suggestingthatdehydrationrelatedstress 205 doesnotresultinrenalimpairmentordamage.Indeed,thisisincontrasttohumansandother 206 mammalswhereacutedehydrationofthenatureimposedontheseanimalsisuniversallyrelatedto 207 renalfailureandsubsequentdeath.ThatP.eremicuscanwithstandthislevelofdehydrationisa 208 testamenttotheprocessesinvolvedinadaptation.Studiesinprogressaimtolinkpatternsof 209 physiologicalchangeofthetypesdescribedheretopatternsofgeneexpressioninbothcaptiveandwild 210 animals,furtherinformingourunderstandingofrenalfailureduetodehydrationinmammals. 211 212 213 214 215 216 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 217 ADROGUÉ,H.J.ANDN.E.MADIAS.2000.Hypernatremia.NewEnglandJournalOfMedicine342:1493–1499. 218 219 220 AL-KAHTANI,M.A.,C.ZULETA,E.CAVIEDES-VIDALANDT.GARLAND.2004.Kidneymassandrelativemedullary 221 222 ARMSTRONG,L.E.ETAL.2012.Milddehydrationaffectsmoodinhealthyyoungwomen.Journalof Nutrition142:382–388. 223 224 225 AROCH,I.,R.KINGANDG.BANETH.2007.Hematologyandserumbiochemistryvaluesoftrapped,healthy, free-rangingrockhyraxes(Procaviacapensis)andtheirassociationwithage,sex,andgestational status.Veterinaryclinicalpathology/AmericanSocietyforVeterinaryClinicalPathology36:40–48. 226 227 228 BARRETT,J.M.,W.KRIZ,B.KAISSLINGANDC.DEROUFFIGNAC.1978.Theultrastructureofthenephronsofthe desertrodent(Psammomysobesus)kidney.II.ThinlimbsofHenleoflong-loopednephrons.The Americanjournalofanatomy151:499–514. 229 230 BAUM,N.,C.C.DICHOSOANDC.E.CARLTON.1975.Bloodureanitrogenandserumcreatinine.Physiology andinterpretations.Urology5:583–588. 231 232 BEDFORD,N.L.ANDH.E.HOEKSTRA.2015.Peromyscusmiceasamodelforstudyingnaturalvariation.eLife 4:e06813. 233 234 BEUCHAT,C.A.1996.Structureandconcentratingabilityofthemammaliankidney:correlationswith habitat.AmericanJournalOfPhysiology271:R157–79. 235 236 BLAUSTEIN,M.P.ANDW.J.LEDERER.1999.Sodium/calciumexchange:itsphysiologicalimplications. Physiologicalreviews79:763–854. 237 BRADFORD,D.F.1974.Waterstressoffree-livingPeromyscustruei.Ecology55:1407–1414. 238 239 240 BRADLEY,R.D.,N.D.DURISH,D.S.ROGERS,J.R.MILLER,M.D.ENGSTROMANDC.W.KILPATRICK.2007.Towarda molecularphylogenyforPeromyscus:Evidencefrommitochondrialcytochrome-bsequences. JournalOfMammalogy88:1146–1159. 241 242 CALISI,R.M.ANDG.E.BENTLEY.2009.Labandfieldexperiments:Aretheythesameanimal?Hormones AndBehavior56:1–10. 243 244 CASTOE,T.A.ETAL.2013.TheBurmesepythongenomerevealsthemolecularbasisforextreme adaptationinsnakes.PNAS110:20645–20650. 245 246 247 CHEUVRONT,S.N.,R.W.KENEFICK,S.J.MONTAINANDM.N.SAWKA.2010.Mechanismsofaerobic performanceimpairmentwithheatstressanddehydration.JournalofAppliedPhysiology 109:1989–1995. 248 249 CHRISTIAN,D.P.,J.O.MATSONANDS.G.ROSENBERG.1978.Comparativewaterbalanceintwospeciesof Liomys.ComparativeBiochemistryandPhysiology61A:589–559. 250 COSTILL,D.L.,R.COTÉANDW.FINK.1976.Musclewaterandelectrolytesfollowingvariedlevelsof thicknessofrodentsinrelationtohabitat,bodysize,andphylogeny.PhysiologicalandBiochemical Zoology77:346–365. bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 251 dehydrationinman.JournalofAppliedPhysiology40:6–11. 252 253 254 E.M.ALTSCHULER,R.B.NAGLE,E.J.BRAUN,S.L.LINDSTEDTANDP.H.KRUTZSCH.1979.Morphologicalstudyof thedesertheteromyidkidneywithemphasisonthegenusPerognathus.TheAnatomicalRecord 194:461–468. 255 256 FEIG,P.U.ANDD.K.MCCURDY.1977.Thehypertonicstate.TheNewEnglandjournalofmedicine 297:1444–1454. 257 258 HAUSSINGER,D.1996.Theroleofcellularhydrationintheregulationofcellfunction.TheBiochemical Journal313(Pt3):697–710. 259 260 HAYES,J.,C.BIBLEANDJ.BOONE.1998.Repeatabilityofmammalianphysiology:Evaporativewaterlossand oxygenconsumptionofDipodomysmerriami.JournalOfMammalogy79:475–485. 261 262 263 HEIMEIER,R.A.,B.J.DAVISANDJ.A.DONALD.2002.Theeffectofwaterdeprivationontheexpressionof atrialnatriureticpeptideanditsreceptorsinthespinifexhoppingmouse,Notomysalexis. ComparativeBiochemistryandPhysiologyPartA:Physiology132:893–903. 264 265 HOEKSTRA,H.ETAL.2001.Strengthandtempoofdirectionalselectioninthewild.ProceedingsOfThe NationalAcademyOfSciencesOfTheUnitedStatesOfAmerica98:9157–9160. 266 267 HOWELL,A.B.ANDI.GERSH.1935.ConservationofwaterbytherodentDipodomys.JournalOf Mammalogy16:1. 268 269 HUANG,Y.ETAL.2001.Absenceofaquaporin-4waterchannelsfromkidneysofthedesertrodent Dipodomysmerriamimerriami.AmericanJournalOfPhysiology-RenalPhysiology280:F794–F802. 270 271 HUERTA-SÁNCHEZ,E.ETAL.2014.AltitudeadaptationinTibetanscausedbyintrogressionofDenisovan-like DNA.Nature512:194–197. 272 273 J.R.MERKTANDC.R.TAYLOR.1994.“Metabolicswitch”fordesertsurvival.ProceedingsOfTheNational AcademyOfSciencesOfTheUnitedStatesOfAmerica91:12313–12316. 274 275 JENTSCH,T.J.,V.STEIN,F.WEINREICHANDA.A.ZDEBIK.2002.MolecularStructureandPhysiologicalFunction ofChlorideChannels.Physiologicalreviews82:503–568. 276 277 JÉQUIER,E.ANDF.CONSTANT.2009.Waterasanessentialnutrient:thephysiologicalbasisofhydration. EuropeanJournalofClinicalNutrition64:115–123. 278 279 MACMANES,M.D.ANDE.A.LACEY.2012.IspromiscuityassociatedwithenhancedselectiononMHC-DQα inmice(genusPeromyscus)?PloSone7:e37562. 280 281 282 MACMANES,M.D.ANDM.B.EISEN.2014.Characterizationofthetranscriptome,nucleotidesequence polymorphism,andnaturalselectioninthedesertadaptedmousePeromyscuseremicus.PeerJ 2:e642. 283 284 MACMILLEN,R.E.ANDA.K.LEE.1967.Australiandesertmice:independenceofexogenouswater.Science 158:383–385. bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 285 286 MARES,M.1977.WaterEconomyandSaltBalanceinaSouth-AmericanDesertRodent,EligmodontiaTypus.ComparativeBiochemistryAndPhysiologyA-Molecular&IntegrativePhysiology56:325–332. 287 288 MARRA,N.J.,A.ROMEROANDA.DEWOODY.2014.Naturalselectionandthegeneticbasisof osmoregulationinheteromyidrodentsasrevealedbyRNA-seq.MolecularEcology23:2699–2711. 289 290 291 292 MARRA,N.J.,S.H.EO,M.C.HALE,P.M.WASERANDA.DEWOODY.2012.Aprioriandaposterioriapproaches forfindinggenesofevolutionaryinterestinnon-modelspecies:Osmoregulatorygenesinthekidney transcriptomeofthedesertrodentDipodomysspectabilis(Banner-TailedKangarooRat). ComparativeBiochemistryandPhysiology-PartD:GenomicsandProteomics:1–12. 293 294 MBASSA,G.K.1988.Mammalianrenalmodificationsindryenvironments.Veterinaryresearch communications12:1–18. 295 296 MCKINNEY,T.D.ANDM.B.BURG.1977.Bicarbonateandfluidabsorptionbyrenalproximalstraight tubules.KidneyInternational12:1–8. 297 298 MONTAIN,S.,W.LATZKAANDN.SAWKA.1999.Fluidreplacementrecommendationsfortraininginhot weather.Militarymedicine164:502–508. 299 300 301 302 MOREAU,B.,J.C.VIÉ,P.COTELLON,I.D.THOISY,A.MOTARDANDC.P.RACCURT.2003.Hematologicandserum biochemistryvaluesintwospeciesoffree-rangingporcupines(Coendouprehensilis,Coendou melanurus)infrenchguiana.Journalofzooandwildlifemedicine:officialpublicationofthe AmericanAssociationofZooVeterinarians34:159–162. 303 304 305 MULLEN,L.M.,S.N.VIGNIERI,J.A.GOREANDH.E.HOEKSTRA.2009.Adaptivebasisofgeographicvariation: genetic,phenotypicandenvironmentaldifferencesamongbeachmousepopulations.Proceedings oftheRoyalSocietyB276:3809–3818. 306 307 NAGY,K.A.1988.Seasonalpatternsofwaterandenergybalanceindesertvertebrates.JournalOfArid Environments14:201–210. 308 309 310 NSSIEN,M.,F.O.OLAYEMI,S.K.ONWUKAANDA.OLUSOLA.2002.Comparisonofsomeplasmabiochemcial parametersintwogenerationsofafricangiantrat(Cricetomysgambianus,waterhouse).African JournalofBiomedicalResearch5. 311 312 RCOREDEVELOPMENTTEAM,F.2011.R:ALanguageandEnvironmentforStatisticalComputing.R DevelopmentCoreTeam,Vienna,Austria.<http://www.R-project.org>. 313 314 315 R.S.SIKES,W.L.GANNONANIMALCAREANDUSECOMMITTEEOFTHEAMERICANSOCIETYOFMAMMALOGISTS.2011. GuidelinesoftheAmericanSocietyofMammalogistsfortheuseofwildmammalsinresearch. JournalOfMammalogy92:235–253. 316 317 SCHMIDT-NIELSEN,B.ANDK.SCHMIDT-NIELSEN.1950.PulmonaryWaterLossinDesertRodents.American JournalOfPhysiology162:31–36. 318 319 SHORTER,K.R.,J.P.CROSSLAND,D.WEBB,G.SZALAI,M.R.FELDERANDP.B.VRANA.2012.Peromyscusasa MammalianEpigeneticModel.GeneticsResearchInternational2012:1–11. bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 320 321 STEINER,C.C.,J.N.WEBERANDH.E.HOEKSTRA.2007.Adaptivevariationinbeachmiceproducedbytwo interactingpigmentationgenes.PLoSBiology5:e219. 322 323 THORNTON,P.C.,P.A.WRIGHT,P.J.SACRAANDT.E.GOODIER.1979.Theferret,Mustelaputoriusfuro,asa newspeciesintoxicology.Laboratoryanimals13:119–124. 324 325 TRACY,R.ANDG.WALSBERG.2001.Intraspecificvariationinwaterlossinadesertrodent,Dipodomys merriami.Ecology82:1130–1137. 326 VEAL,R.ANDW.CAIRE.2001.Peromyscuseremicus.MammalianSpecies118:1–6. 327 328 329 VIGGERS,K.L.ANDD.B.LINDENMAYER.1996.VariationinHematologicalandSerumBiochemicalValuesof theMountainBrushtailPossum,TrichosuruscaninusOgilby(Marsupialia:Phalangeridae).JournalOf WildlifeDiseases32:142–146. 330 331 VIGNIERI,S.N.,J.G.LARSONANDH.E.HOEKSTRA.2010.Theselectiveadvantageofcrypsisinmice.Evolution 64:2153–2158. 332 333 WEBER,D.K.,K.DANIELSON,S.WRIGHTANDJ.E.FOLEY.2002.Hematologyandserumbiochemistryvaluesof dusky-footedwoodrat(Neotomafuscipes).JournalOfWildlifeDiseases38:576–582. 334 335 YU,F.H.ANDW.A.CATTERALL.2003.Overviewofthevoltage-gatedsodiumchannelfamily.Genome Biology4:207. 336 337 338 339 340 341 342 343 344 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 345 Table1 346 Normal Min Max Mean Sodium(mMol/L) 148-158 144 170 153 Chloride(mMol/L) 110-115 105 126 113 BUN(mg/dL) 29-46 22 64 37 Bicarb(mMol/L) 19-25 15 26 22 Creatinine(mg/dL) >0.2-0.3 >0.2 0.4 0.22 347 348 Table1.Normalvaluesforserumelectrolytes.Normalvaluesaredefinedasthosevaluesfalling 349 betweenthe1stand3rdquartile.Ofnote,theAbaxisVS2electrolyteanalyzerdoesnotmeasure 350 Creatininebelow0.2mg/dL;therefore,therangefornormalCreatinineistruncatedatthisvalue. 351 352 353 354 355 356 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 358 comparisonindottedredlines.Ofnote,theAbaxisVS2electrolyteanalyzerdoesnotmeasure 359 Creatininebelow0.2mg/dL,andthereforetherangefornormalCreatinineistruncatedatthisvalue. 360 Na 361 362 363 364 365 366 367 368 0.8 0.4 15 95 130 10 0.2 100 20 105 20 30 110 0.6 40 115 25 50 1.0 60 1.2 70 30 130 125 120 160 150 140 1.4 Figure1.Normalvaluesforserumelectrolytes.Humannormalvalues(fromMedline)areplottedfor 170 357 Cl Bicarb BUN Creatinine bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 370 Nosignificanttrendexists. 371 R 2 = −0.0738 0.15 0.20 0.25 0.30 Figure2.Percentbodyweightlossasafunctionofinitialbodyweightduetoexperimentaldehydration. Percent loss body weight 369 20 22 24 26 28 30 32 Initial body weight 372 373 374 375 376 377 378 379 380 381 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. bicarbonateion.Reportedp-valuesarefromatwo-tailedt-test(n=19dehydrated:DRY,n=24hydrated): 384 WET. 385 16 Wet P − val ue = 0.00871 Wet 30 40 50 60 Dry Blood Urea Nitrogen 125 115 105 Serum Chloride 386 Wet P − val ue = 0.000207 Dry 20 Serum Bicarb 155 145 P − val ue = 1.2e−07 Dry 24 383 165 Figure3.Experimentaldehydrationresultedinincreasesinserumsodium,chloride,BUNand Serum Sodium 382 P − val ue = 0.00221 Dry Wet 387 388 389 390 391 392 bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 394 (F-statistic:12.85,11DF,p-value:0.004283)andBUN(F-statistic:9.089,11DF,p-value:0.01177) 0.15 145 150 155 160 165 R 2 = 0.222 0.25 0.25 R 2 = 0.539 0.15 Percent loss body weight Figure4.TherelationshipbetweenserumelectrolytesispositiveinallcasesandsignificantforSodium Percent loss body weight 393 170 16 18 110 115 Serum Chloride 395 396 24 26 120 125 0.25 R 2 = 0.452 0.15 Percent loss body weight 0.25 R 2 = 0.0419 105 22 Serum Bicarb 0.15 Percent loss body weight Serum Sodium 20 30 40 50 60 Blood Urea Nitrogen
© Copyright 2025 Paperzz