Physiological and biochemical changes associated with

bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
1
Physiologicalandbiochemicalchangesassociatedwithexperimentaldehydrationinthe
2
desertadaptedcactusmouse,Peromyscuseremicus
3
4
LaurenKordonowy1,KaelinaLombardo1,HannahGreen2,EviceBolton1,SarahLaCourse3,Matthew
5
MacManes1
6
7
1
University of New Hampshire, Department of Molecular Cellular and Biomedical Sciences
8
2
University of New Hampshire, Department of Biological Sciences
9
3
University of New Hampshire, Department of Psychology
10
11
12
Abstract
13
Characterizingtraitscriticalforadaptationtoagivenenvironmentisanimportantfirststepin
14
understandinghowphenotypesevolve.Howanimalsadapttotheextremeheatandaridity
15
commonplacetodesertsrepresentsisanexceptionallyinterestingexampleoftheseprocesses,andhas
16
beenthefocusofstudyfordecades.Incontrasttothosestudies,whereexperimentsareconductedon
17
eitherwildanimalsorcaptiveanimalsheldinnon-desertconditions,thestudydescribedhereleverages
18
auniqueenvironmentalchamberthatreplicatesdesertconditionsforcaptivePeromyscuseremicus
19
(cactusmouse).Hereweestablishbaselinevaluesfordailywaterintakeandforserumelectrolytes,as
20
wellastheresponseofthesevariablestoexperimentaldehydration.Inbrief,P.eremicus’dailywater
21
intakeisverylow.It’sserumelectrolytesaredistinctfrommanypreviouslystudiedanimals,andits
22
responsetodehydrationifprofound,thoughnotsuggestiveofrenalimpairmentinthefaceofprofound
23
dehydration,whichisatypicalofmammals.
24
25
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
26
Introduction
27
Understandingtheevolutionofadaptivetraitshaslongbeenoneoftheprimarygoalsinevolutionary
28
biology.Thestudyoftherelationshipsbetweenfitnessandphenotype,oftenpoweredbymodern
29
genomictechniques(Vignierietal.2010),hasprovidedresearcherswithinsightintothemechanistic
30
processesthatunderlieadaptivephenotypes(Castoeetal.2013;Huerta-Sánchezetal.2014).Systems
31
inwhichthepowerofgenomicscanbecombinedwithanunderstandingofnaturalhistoryand
32
physiologyarewellsuitedforthestudyofadaptation(Mullenetal.2009;BedfordandHoekstra2015)
33
especiallywhenresearchershavetheabilitytoassaythelinkbetweengenotypeandphenotypeinwild
34
animalsandthenconductcomplementaryexperimentsusingrepresentativeanimalsincarefully
35
controlledlaboratoryenvironments.Thestudydescribedhere,characterizingthephysiologyandserum
36
biochemistryofPeromyscuseremicusisthefirststepinalargerstudyaimedatunderstandingthe
37
genomicsarchitectureofadaptationtodesertenvironments.
38
39
Desertadaptationhassignificantecological,evolutionary,andbiomedicalsignificance.Incontrastto
40
humansandothermammals,desertrodentscansurviveinextremeenvironmentalconditionsandare
41
resistanttotheeffectsofdehydration.Physiologicaladaptionstodesertshavebeencharacterizedin
42
severalrodents.Specifically,renalhistologyhasbeenstudiedinmultipleHeteromyidrodents(Altschuler
43
etal.1979),andthegeneralconclusionisthatthesedesertadaptedanimalshaveevolvedelongate
44
LoopsofHenle(Barrettetal.1978;Mbassa1988;Beuchat1996)thatarehypothesizedtooptimize
45
waterconservation.Inadditiontostudiesofrenalhistology,severalstudieshavecharacterized
46
pulmonarywaterloss(Schmidt-NielsenandSchmidt-Nielsen1950;Hayesetal.1998),watermetabolism
47
(HowellandGersh1935),andwaterconsumption(MacMillenandLee1967;Bradford1974;Mares
48
1977;Nagy1988;MerktandTaylor1994)indesertrodents.Whiledesertanimalspossessspecialized
49
physiologythatisefficientwithregardstowatermetabolismandloss,whetherornotspecialized
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
50
genomicadaptationexistsisanactiveareaofresearch(Marraetal.2012;MacManesandEisen2014;
51
Marraetal.2014).
52
53
Althoughthecactusmouse(Peromyscuseremicus)hasnotbeenaparticularfocusforthestudyof
54
desertadaptation(butsee(al-Kahtanietal.2004;MacManesandEisen2014),thisCricetidrodent
55
nativetothearidregionsoftheSouthwesternUnitedStatesandNorthernMexico(VealandCaire2001)
56
offersauniqueopportunitytounderstandphysiologicaladaptationstodeserts.P.eremicusisa
57
memberofalargergenusofanimalsknowncolloquiallyasthe“Drosophilaofmammals”(Bedfordand
58
Hoekstra2015),andPeromyscusspecieshavebeenthefocusofextensivestudy(Hoekstraetal.2001;
59
Steineretal.2007;MacManesandLacey2012;Shorteretal.2012).P.eremicusisasisterspeciestothe
60
non-desertadaptedP.californicus(Bradleyetal.2007),anditiscloselyrelatedtoP.crinitus,thecanyon
61
mouse,whichisanotherdesertadaptedrodentnativetoSouthwesterndeserts.
62
63
Criticaltodesertsurvivalistheabilitytomaintainwaterbalanceevenwhenthelossofwaterexceeds
64
dietarywaterintake(Heimeieretal.2002).Indeed,themammaliancorpusconsistsof60%water
65
(JéquierandConstant2009).Farfromastaticreservoir,properphysiologicfunctionrequireswaterfor
66
numerousprocesses,includingnutrienttransport(Haussinger1996),signaltransduction,pHbalance,
67
thermalregulation(Montainetal.1999)andtheremovalofmetabolicwaste.Toaccomplishthese
68
functions,anearlyconstantsupplyofwaterisrequiredtoreplacewaterloss(JéquierandConstant
69
2009),whichoccursmainlyviathegastrointestinalandgenitourinarysystems,andevaporativeloss,
70
whichisgreatlyacceleratedinextremeheatandaridity(Cheuvrontetal.2010).Becausethebody
71
possesseslimitedreserves,whenlossexceedsintakeduringevenashortperiodoftime,dehydration
72
anddeathcanoccur.Mammalsareexquisitelysensitivetodehydrationandpossesslimited
73
compensatorymechanisms.
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
74
75
Characterizingdesertadaptationrequirescarefulandintegrativephysiologicalstudies,whichshould
76
includeadetailedcharacterizationofwaterintake,responsestodehydration,andthemeasurementof
77
bloodelectrolytes.Indeed,quantifyingthesemetricsisoneofthefirststepsinunderstandinghow
78
animalssurviveintheextremeheatandaridityofdeserts.Inparticular,theelectrolyteschlorideand
79
sodiumareimportantmarkersofdehydration(Costilletal.1976).Thesemoleculesplayessentialroles
80
inmetabolicandphysiologicalprocesses,andtheyareintegraltothefunctionallyofavarietyof
81
transmembranetransportpumps(BlausteinandLederer1999;Jentschetal.2002),neurotransmission
82
(YuandCatterall2003),andmaintenanceoftonicity(FeigandMcCurdy1977).Furthermore,
83
hypernatremiacausesrestlessness,lethargy,muscleweakness,orcoma(AdroguéandMadias2000).
84
Bicarbonateion,incontrast,isprimarilyresponsibleforaidinginthemaintenanceoftheacid-base
85
balanceandisresorbedintherenaltubules(McKinneyandBurg1977).Bloodureanitrogen(BUN)isa
86
testthatassaystheabundanceofurea–theendproductformetabolismofnitrogencontaining
87
compounds.Ureaisresorbedintheglomerulus,andrenalimpairmentisofteninferredwhenBUN
88
becomeselevated(Baumetal.1975).Importantly,thecanonicalmodelofurearesorptionisdependent
89
onurinevolume,whichismarkedlydiminishedindesertrodents,thuslimitingtheutilityofusingBUN
90
asanindicatorofrenalfunction.Lastly,creatinine,aproductofmusclebreakdown,whosemeasured
91
leveldoesnotdependonurinevolumeisusedasameasureofrenalfunction(Baumetal.1975).
92
93
Genesmostfrequentlyimplicatedindesert-adaptationincludemembersoftheaquaporinfamily(Huang
94
etal.2001).However,previousworksuggeststhatanalternativegenefamily,thesolutecarriers,are
95
morerelevantfordesert-adaptationinthecactusmouse(MacManesandEisen2014).Asafirststep
96
towardsfullyelucidatingthepatternsofadaptiveevolutiontodesertsinP.eremicus,wecharacterized
97
thenormalpatternsofwaterintakeandelectrolytelevelsaswellasthephysiologicresponseto
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
98
experimentaldehydration.Assuch,thisstudyprovidescriticalphysiologicalandbiochemical
99
informationaboutP.eremicusanditsresponsetodehydrationandisgenerallyusefulasresearchers
100
begintoleveragelarge-scalegenomedataagainstclassicquestionsregardingtheevolutionofadaptive
101
phenotypes.
102
103
MaterialsandMethods
104
WeusedcaptiveP.eremicusthatwerepurchasedfromtheUniversityofSouthCarolinaPeromyscus
105
GeneticStockCenterin2013.Theseanimals,whicharedescendantfromwildcaughtanimalsfroma
106
dry-desertpopulationinArizona,havebeenbredincaptivityattheUniversityofNewHampshire.
107
Animalsarehousedinalargewalk-inenvironmentalchamberbuilttoreplicatetheenvironmental
108
conditionsinwhichthispopulationhasevolved.Specifically,theanimalsexperienceanormaldiurnal
109
patternoftemperaturefluctuation,rangingfrom90Fduringthedaytimeto75Fduringthenight.
110
Relativehumidity(RH)rangesfrom10%duringthedayto25%duringthenight.Animalsarehousedin
111
standardlabmousecageswithbeddingthathasbeendehydratedtomatchdesertconditions.Theyare
112
fedastandardrodentchow,whichhasalsobeendehydrated.Waterisprovidedadlibduringcertain
113
phasesofexperimentationandwithheldcompletelyduringothers.Allanimalcareproceduresfollow
114
theguidelinesestablishedbytheAmericanSocietyofMammalogy(Sikesetal.2011)andhavebeen
115
approvedbytheUniversityofNewHampshireAnimalCareandUseCommitteeunderprotocolnumber
116
103092.
117
118
Allanimalsincludedinthisstudyweresexuallymatureadults.Aslightbiasfortheinclusionofmales
119
exists,asaconcurrentstudyofmalereproductivegenomicswasoccurring.Preliminaryanalyses
120
conductedsuggestthatnosignificantdifferencesinanyofthephysiologicalmeasures,andasaresult,
121
malesandfemaleswereanalyzedasonegroup.Forasubsetofanimals,waterintakewasmeasured,
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
122
whichwasaccomplishedviatheuseofcustomized15mlconicaltubes,whereinwaterintakewas
123
measuredevery24hoursforaminimumof3consecutivedays(range3-10days).Animalsselectedfor
124
thedehydrationtrialwereweighedonadigitalscale,housedwithoutwaterforthreedays,thenre-
125
weighedtodeterminethechangeinbodymassduetodehydration.Attheconclusionofwater
126
measurementorafterathree-daydehydrationanimalsweresacrificedviaisofluraneoverdoseand
127
decapitation.Immediatelyafterdeath,a120uLsampleoftrunkbloodwasobtainedforserum
128
electrolytemeasurement.ThiswasaccomplishedusinganAbaxisVetscanVS2machinewithacritical
129
carecartridge,whichmeasurestheconcentrationofseveralelectrolytes(Sodium,Chloride,Bicarbonate
130
ion,Creatinine,andBloodUreaNitrogen(BUN))relevanttohydrationstatusandrenalfunction.Lastly,
131
thekidney,spleen,liver,lung,hypothalamus,testes,vasdeferensandepididymisweredissectedout
132
andstoredinRNAlater(AmbionInc.)forfuturestudy.Allstatisticalanalyseswerecarriedoutinthe
133
statisticalpackage,R(RCoreDevelopmentTeam2011).
134
135
Results
136
Wemeasuredthedailywaterintakefor22adultcactusmiceforbetweenthreeand10consecutive
137
days.Meanwaterintakewas0.11mLperdaypergrambodyweight(median=0.11,SD=0.05,min=
138
0.033,max=0.23).WemeasuredlevelsofserumSodium,Chloride,Bicarbonateion,Creatinine,and
139
BloodUreaNitrogen(BUN)for44adultmice,therebyestablishingnormal(baseline)valuesforP.
140
eremicus(Figure1andTable1).
141
142
Acomparisonofmiceprovidedwithwateradlibitumtomicethatexposedtoexperimentalwater
143
deprivationforthreedaysrevealedthatthedehydratedmicelostanaverageof23.2%oftheirbody
144
weight(median=23.9%,SD=5.3%,min=12.3%,max=32.3%).Despitethissubstantialweightloss,
145
anecdotally,miceappearedhealthy.Theywereactive,eating,andinteractingnormally.Theamountof
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
146
weightlossdidnotdependondailywaterintake(p=0.63,R2= 0.03),thoughthetrendsuggeststhat
147
animalsthatdrinkmorewaterlostmoreweight).Furthermore,bodyweightdidnotstronglyinfluence
148
thepercentlossofbodyweight(Figure2;p=0.68,R2= 0.02).
149
150
Inadditiontoasubstantiallossinbodyweight,dehydrationwasassociatedwithdifferencesinserum
151
electrolytes(Figure3;n=19dehydrated,n=24hydrated).Thesechangesweresubtle,butsignificant
152
usingatwo-samplet-test(p<0.008inallcases).
153
154
Lastly,thelevelsofserumelectrolytesweretightlycorrelatedwithpercentbodyweightloss(Figure4).
155
Indeed,therelationshipbetweenthelevelofserumsodiumandweightlosswaspositiveandsignificant,
156
(ANOVA,F-statistic:12.85,11DF,p=0.004),aswastherelationshipbetweenBUNandweightloss
157
(ANOVA,F-statistic:9.089,11DF,p=0.012).Therelationshipsbetweenweightlossandchlorideand
158
bicarbonatelevelsrespectively,werepositivebutnotsignificant.
159
160
Discussion
161
Desertsareamongsttheharshestenvironmentsontheplanet.Indeed,animalslivingintheseareas
162
mustbehighlyadaptedtotheuniquecombinationofextremeheatandaridity.Giventhatour
163
understandingofthephysiologyofdesertadaptedanimalsislimitedlargelytostudiesinrenalhistology
164
(Mbassa1988)andonwaterintakeandoutput(MacMillenandLee1967;TracyandWalsberg2001),an
165
enhancedunderstandingofserumelectrolytechangesduetodehydrationisinformative.Becausemany
166
oftheharmfuleffectsofdehydrationresultfromelectrolyteabnormalities,characterizingnormalvalues
167
andtheelectrolyteresponsetodehydrationrepresentsacriticalfirststepingarneringadeeper
168
understandingofhowdesertanimalssurvivedespitesevereandprolongeddehydration.
169
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
170
Inthisstudy,normal(baseline)valuesforserumSodium,Chloride,BicarbonateIon,Creatinine,and
171
BloodUreaNitrogenwereestablishedinacaptivecolonyoflabanimalshousedindesertconditions.
172
Althoughthesemeasuresmaydifferinwildanimals(see(CalisiandBentley2009)forabriefreviewof
173
suchdifferences),establishingnormalvaluesincaptiveanimalsiscrucial,thoughfuturestudiesaimto
174
understandthepatternsofelectrolytevariationinwildanimals.InP.eremicus,wedefinethenormal
175
rangesforeachelectrolyteasthosevaluesfallingbetweenthe1stand3rdquartile.SerumChlorideand
176
Sodiumweresignificantlyhigherthaninpublishedrangesforothermammals,includinghumans,a
177
marsupial(ViggersandLindenmayer1996),Cricetomys(Nssienetal.2002), andtheporcupine(Moreau
178
etal.2003).However,serumchlorideandsodiumlevelsinourstudywerequitecomparabletoanother
179
wildrodent,Neotimafuscipes(Weberetal.2002),aMustelid(Thorntonetal.1979),andtheHyrax
180
(Arochetal.2007).ValuesforBUNaregenerallyhigherinthisstudy;unfortunately,adirectcomparison
181
isnotpossible,asmeasuredvaluesaredependentonthevolumeofurineproduced.SerumCreatinineis
182
low,largelyresultingfromthegenerallackofmusclemassinP.eremicusrelativetoothermammals.
183
However,becausetheequipmentusedtoanalyzethiselectrolytedoesnoteffectivelycapturethelower
184
endofthebiologicalrange,directcomparisonsarenotmadeforthismetric.
185
186
Inadditiontocharacterizingbaselineelectrolytesandtheirresponsetoexperimentaldehydration,the
187
normativevaluefordailywaterintakewasestimatedtobe0.11mLperdaypergrambodyweight.
188
Thoughcomparablemeasuresofwaterconsumptionarescarce,onestudyintwoaridadaptedLimoys
189
(L.pictusandL.irroratus)housedinnon-desertcaptivesettingswereestimatedtobe0.18and0.17mL
190
perdaypergrambodyweightrespectively(Christianetal.1978)–avaluemuchgreaterthaninP.
191
eremicus.
192
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
193
Animalsthatwereexposedtoexperimentaldehydrationlostasubstantialamountofbodyweight.
194
Dehydrationinhumans,resultinginlossofevenafractionofthisamountresultsincardiovascular
195
collapseanddeath.Indeed,evenadehydration-relatedlossofafewpercentofbodyweightmaycause
196
seriousrenalimpairmentorrenalfailure.Thatthecactusmousemaylosesomuchweightasaresultof
197
dehydrationandremainactive,andapparentlyhealthy,withoutrenalimpairmentisatestamentto
198
theirdesertadaptation.Yet,whileanecdotallymiceappearwell,theymaybeexperiencingsubstantial
199
cognitiveimpairment,asisthecasewithmild-humandehydration(Armstrongetal.2012).Future
200
studiesinthelabaimtounderstandthecognitiveeffectsofdehydrationincactusmouse.
201
202
Inadditiontoweightloss,dehydratedanimalsdemonstratedbiochemicalevidenceofphysiological
203
stress,intheformofincreasedSodium,Chloride,BUN,andBicarb.Therewerenosignificant
204
relationshipsbetweenanyphysiologicalvalueandCreatinine,suggestingthatdehydrationrelatedstress
205
doesnotresultinrenalimpairmentordamage.Indeed,thisisincontrasttohumansandother
206
mammalswhereacutedehydrationofthenatureimposedontheseanimalsisuniversallyrelatedto
207
renalfailureandsubsequentdeath.ThatP.eremicuscanwithstandthislevelofdehydrationisa
208
testamenttotheprocessesinvolvedinadaptation.Studiesinprogressaimtolinkpatternsof
209
physiologicalchangeofthetypesdescribedheretopatternsofgeneexpressioninbothcaptiveandwild
210
animals,furtherinformingourunderstandingofrenalfailureduetodehydrationinmammals.
211
212
213
214
215
216
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
217
ADROGUÉ,H.J.ANDN.E.MADIAS.2000.Hypernatremia.NewEnglandJournalOfMedicine342:1493–1499.
218
219
220
AL-KAHTANI,M.A.,C.ZULETA,E.CAVIEDES-VIDALANDT.GARLAND.2004.Kidneymassandrelativemedullary
221
222
ARMSTRONG,L.E.ETAL.2012.Milddehydrationaffectsmoodinhealthyyoungwomen.Journalof
Nutrition142:382–388.
223
224
225
AROCH,I.,R.KINGANDG.BANETH.2007.Hematologyandserumbiochemistryvaluesoftrapped,healthy,
free-rangingrockhyraxes(Procaviacapensis)andtheirassociationwithage,sex,andgestational
status.Veterinaryclinicalpathology/AmericanSocietyforVeterinaryClinicalPathology36:40–48.
226
227
228
BARRETT,J.M.,W.KRIZ,B.KAISSLINGANDC.DEROUFFIGNAC.1978.Theultrastructureofthenephronsofthe
desertrodent(Psammomysobesus)kidney.II.ThinlimbsofHenleoflong-loopednephrons.The
Americanjournalofanatomy151:499–514.
229
230
BAUM,N.,C.C.DICHOSOANDC.E.CARLTON.1975.Bloodureanitrogenandserumcreatinine.Physiology
andinterpretations.Urology5:583–588.
231
232
BEDFORD,N.L.ANDH.E.HOEKSTRA.2015.Peromyscusmiceasamodelforstudyingnaturalvariation.eLife
4:e06813.
233
234
BEUCHAT,C.A.1996.Structureandconcentratingabilityofthemammaliankidney:correlationswith
habitat.AmericanJournalOfPhysiology271:R157–79.
235
236
BLAUSTEIN,M.P.ANDW.J.LEDERER.1999.Sodium/calciumexchange:itsphysiologicalimplications.
Physiologicalreviews79:763–854.
237
BRADFORD,D.F.1974.Waterstressoffree-livingPeromyscustruei.Ecology55:1407–1414.
238
239
240
BRADLEY,R.D.,N.D.DURISH,D.S.ROGERS,J.R.MILLER,M.D.ENGSTROMANDC.W.KILPATRICK.2007.Towarda
molecularphylogenyforPeromyscus:Evidencefrommitochondrialcytochrome-bsequences.
JournalOfMammalogy88:1146–1159.
241
242
CALISI,R.M.ANDG.E.BENTLEY.2009.Labandfieldexperiments:Aretheythesameanimal?Hormones
AndBehavior56:1–10.
243
244
CASTOE,T.A.ETAL.2013.TheBurmesepythongenomerevealsthemolecularbasisforextreme
adaptationinsnakes.PNAS110:20645–20650.
245
246
247
CHEUVRONT,S.N.,R.W.KENEFICK,S.J.MONTAINANDM.N.SAWKA.2010.Mechanismsofaerobic
performanceimpairmentwithheatstressanddehydration.JournalofAppliedPhysiology
109:1989–1995.
248
249
CHRISTIAN,D.P.,J.O.MATSONANDS.G.ROSENBERG.1978.Comparativewaterbalanceintwospeciesof
Liomys.ComparativeBiochemistryandPhysiology61A:589–559.
250
COSTILL,D.L.,R.COTÉANDW.FINK.1976.Musclewaterandelectrolytesfollowingvariedlevelsof
thicknessofrodentsinrelationtohabitat,bodysize,andphylogeny.PhysiologicalandBiochemical
Zoology77:346–365.
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
251
dehydrationinman.JournalofAppliedPhysiology40:6–11.
252
253
254
E.M.ALTSCHULER,R.B.NAGLE,E.J.BRAUN,S.L.LINDSTEDTANDP.H.KRUTZSCH.1979.Morphologicalstudyof
thedesertheteromyidkidneywithemphasisonthegenusPerognathus.TheAnatomicalRecord
194:461–468.
255
256
FEIG,P.U.ANDD.K.MCCURDY.1977.Thehypertonicstate.TheNewEnglandjournalofmedicine
297:1444–1454.
257
258
HAUSSINGER,D.1996.Theroleofcellularhydrationintheregulationofcellfunction.TheBiochemical
Journal313(Pt3):697–710.
259
260
HAYES,J.,C.BIBLEANDJ.BOONE.1998.Repeatabilityofmammalianphysiology:Evaporativewaterlossand
oxygenconsumptionofDipodomysmerriami.JournalOfMammalogy79:475–485.
261
262
263
HEIMEIER,R.A.,B.J.DAVISANDJ.A.DONALD.2002.Theeffectofwaterdeprivationontheexpressionof
atrialnatriureticpeptideanditsreceptorsinthespinifexhoppingmouse,Notomysalexis.
ComparativeBiochemistryandPhysiologyPartA:Physiology132:893–903.
264
265
HOEKSTRA,H.ETAL.2001.Strengthandtempoofdirectionalselectioninthewild.ProceedingsOfThe
NationalAcademyOfSciencesOfTheUnitedStatesOfAmerica98:9157–9160.
266
267
HOWELL,A.B.ANDI.GERSH.1935.ConservationofwaterbytherodentDipodomys.JournalOf
Mammalogy16:1.
268
269
HUANG,Y.ETAL.2001.Absenceofaquaporin-4waterchannelsfromkidneysofthedesertrodent
Dipodomysmerriamimerriami.AmericanJournalOfPhysiology-RenalPhysiology280:F794–F802.
270
271
HUERTA-SÁNCHEZ,E.ETAL.2014.AltitudeadaptationinTibetanscausedbyintrogressionofDenisovan-like
DNA.Nature512:194–197.
272
273
J.R.MERKTANDC.R.TAYLOR.1994.“Metabolicswitch”fordesertsurvival.ProceedingsOfTheNational
AcademyOfSciencesOfTheUnitedStatesOfAmerica91:12313–12316.
274
275
JENTSCH,T.J.,V.STEIN,F.WEINREICHANDA.A.ZDEBIK.2002.MolecularStructureandPhysiologicalFunction
ofChlorideChannels.Physiologicalreviews82:503–568.
276
277
JÉQUIER,E.ANDF.CONSTANT.2009.Waterasanessentialnutrient:thephysiologicalbasisofhydration.
EuropeanJournalofClinicalNutrition64:115–123.
278
279
MACMANES,M.D.ANDE.A.LACEY.2012.IspromiscuityassociatedwithenhancedselectiononMHC-DQα
inmice(genusPeromyscus)?PloSone7:e37562.
280
281
282
MACMANES,M.D.ANDM.B.EISEN.2014.Characterizationofthetranscriptome,nucleotidesequence
polymorphism,andnaturalselectioninthedesertadaptedmousePeromyscuseremicus.PeerJ
2:e642.
283
284
MACMILLEN,R.E.ANDA.K.LEE.1967.Australiandesertmice:independenceofexogenouswater.Science
158:383–385.
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
285
286
MARES,M.1977.WaterEconomyandSaltBalanceinaSouth-AmericanDesertRodent,EligmodontiaTypus.ComparativeBiochemistryAndPhysiologyA-Molecular&IntegrativePhysiology56:325–332.
287
288
MARRA,N.J.,A.ROMEROANDA.DEWOODY.2014.Naturalselectionandthegeneticbasisof
osmoregulationinheteromyidrodentsasrevealedbyRNA-seq.MolecularEcology23:2699–2711.
289
290
291
292
MARRA,N.J.,S.H.EO,M.C.HALE,P.M.WASERANDA.DEWOODY.2012.Aprioriandaposterioriapproaches
forfindinggenesofevolutionaryinterestinnon-modelspecies:Osmoregulatorygenesinthekidney
transcriptomeofthedesertrodentDipodomysspectabilis(Banner-TailedKangarooRat).
ComparativeBiochemistryandPhysiology-PartD:GenomicsandProteomics:1–12.
293
294
MBASSA,G.K.1988.Mammalianrenalmodificationsindryenvironments.Veterinaryresearch
communications12:1–18.
295
296
MCKINNEY,T.D.ANDM.B.BURG.1977.Bicarbonateandfluidabsorptionbyrenalproximalstraight
tubules.KidneyInternational12:1–8.
297
298
MONTAIN,S.,W.LATZKAANDN.SAWKA.1999.Fluidreplacementrecommendationsfortraininginhot
weather.Militarymedicine164:502–508.
299
300
301
302
MOREAU,B.,J.C.VIÉ,P.COTELLON,I.D.THOISY,A.MOTARDANDC.P.RACCURT.2003.Hematologicandserum
biochemistryvaluesintwospeciesoffree-rangingporcupines(Coendouprehensilis,Coendou
melanurus)infrenchguiana.Journalofzooandwildlifemedicine:officialpublicationofthe
AmericanAssociationofZooVeterinarians34:159–162.
303
304
305
MULLEN,L.M.,S.N.VIGNIERI,J.A.GOREANDH.E.HOEKSTRA.2009.Adaptivebasisofgeographicvariation:
genetic,phenotypicandenvironmentaldifferencesamongbeachmousepopulations.Proceedings
oftheRoyalSocietyB276:3809–3818.
306
307
NAGY,K.A.1988.Seasonalpatternsofwaterandenergybalanceindesertvertebrates.JournalOfArid
Environments14:201–210.
308
309
310
NSSIEN,M.,F.O.OLAYEMI,S.K.ONWUKAANDA.OLUSOLA.2002.Comparisonofsomeplasmabiochemcial
parametersintwogenerationsofafricangiantrat(Cricetomysgambianus,waterhouse).African
JournalofBiomedicalResearch5.
311
312
RCOREDEVELOPMENTTEAM,F.2011.R:ALanguageandEnvironmentforStatisticalComputing.R
DevelopmentCoreTeam,Vienna,Austria.<http://www.R-project.org>.
313
314
315
R.S.SIKES,W.L.GANNONANIMALCAREANDUSECOMMITTEEOFTHEAMERICANSOCIETYOFMAMMALOGISTS.2011.
GuidelinesoftheAmericanSocietyofMammalogistsfortheuseofwildmammalsinresearch.
JournalOfMammalogy92:235–253.
316
317
SCHMIDT-NIELSEN,B.ANDK.SCHMIDT-NIELSEN.1950.PulmonaryWaterLossinDesertRodents.American
JournalOfPhysiology162:31–36.
318
319
SHORTER,K.R.,J.P.CROSSLAND,D.WEBB,G.SZALAI,M.R.FELDERANDP.B.VRANA.2012.Peromyscusasa
MammalianEpigeneticModel.GeneticsResearchInternational2012:1–11.
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
320
321
STEINER,C.C.,J.N.WEBERANDH.E.HOEKSTRA.2007.Adaptivevariationinbeachmiceproducedbytwo
interactingpigmentationgenes.PLoSBiology5:e219.
322
323
THORNTON,P.C.,P.A.WRIGHT,P.J.SACRAANDT.E.GOODIER.1979.Theferret,Mustelaputoriusfuro,asa
newspeciesintoxicology.Laboratoryanimals13:119–124.
324
325
TRACY,R.ANDG.WALSBERG.2001.Intraspecificvariationinwaterlossinadesertrodent,Dipodomys
merriami.Ecology82:1130–1137.
326
VEAL,R.ANDW.CAIRE.2001.Peromyscuseremicus.MammalianSpecies118:1–6.
327
328
329
VIGGERS,K.L.ANDD.B.LINDENMAYER.1996.VariationinHematologicalandSerumBiochemicalValuesof
theMountainBrushtailPossum,TrichosuruscaninusOgilby(Marsupialia:Phalangeridae).JournalOf
WildlifeDiseases32:142–146.
330
331
VIGNIERI,S.N.,J.G.LARSONANDH.E.HOEKSTRA.2010.Theselectiveadvantageofcrypsisinmice.Evolution
64:2153–2158.
332
333
WEBER,D.K.,K.DANIELSON,S.WRIGHTANDJ.E.FOLEY.2002.Hematologyandserumbiochemistryvaluesof
dusky-footedwoodrat(Neotomafuscipes).JournalOfWildlifeDiseases38:576–582.
334
335
YU,F.H.ANDW.A.CATTERALL.2003.Overviewofthevoltage-gatedsodiumchannelfamily.Genome
Biology4:207.
336
337
338
339
340
341
342
343
344
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
345
Table1
346
Normal
Min
Max
Mean
Sodium(mMol/L)
148-158
144
170
153
Chloride(mMol/L)
110-115
105
126
113
BUN(mg/dL)
29-46
22
64
37
Bicarb(mMol/L)
19-25
15
26
22
Creatinine(mg/dL)
>0.2-0.3
>0.2
0.4
0.22
347
348
Table1.Normalvaluesforserumelectrolytes.Normalvaluesaredefinedasthosevaluesfalling
349
betweenthe1stand3rdquartile.Ofnote,theAbaxisVS2electrolyteanalyzerdoesnotmeasure
350
Creatininebelow0.2mg/dL;therefore,therangefornormalCreatinineistruncatedatthisvalue.
351
352
353
354
355
356
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
358
comparisonindottedredlines.Ofnote,theAbaxisVS2electrolyteanalyzerdoesnotmeasure
359
Creatininebelow0.2mg/dL,andthereforetherangefornormalCreatinineistruncatedatthisvalue.
360
Na
361
362
363
364
365
366
367
368
0.8
0.4
15
95
130
10
0.2
100
20
105
20
30
110
0.6
40
115
25
50
1.0
60
1.2
70
30
130
125
120
160
150
140
1.4
Figure1.Normalvaluesforserumelectrolytes.Humannormalvalues(fromMedline)areplottedfor
170
357
Cl
Bicarb
BUN
Creatinine
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
370
Nosignificanttrendexists.
371
R 2 = −0.0738
0.15
0.20
0.25
0.30
Figure2.Percentbodyweightlossasafunctionofinitialbodyweightduetoexperimentaldehydration.
Percent loss body weight
369
20
22
24
26
28
30
32
Initial body weight
372
373
374
375
376
377
378
379
380
381
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
bicarbonateion.Reportedp-valuesarefromatwo-tailedt-test(n=19dehydrated:DRY,n=24hydrated):
384
WET.
385
16
Wet
P − val ue = 0.00871
Wet
30
40
50
60
Dry
Blood Urea Nitrogen
125
115
105
Serum Chloride
386
Wet
P − val ue = 0.000207
Dry
20
Serum Bicarb
155
145
P − val ue = 1.2e−07
Dry
24
383
165
Figure3.Experimentaldehydrationresultedinincreasesinserumsodium,chloride,BUNand
Serum Sodium
382
P − val ue = 0.00221
Dry
Wet
387
388
389
390
391
392
bioRxiv preprint first posted online Apr. 8, 2016; doi: http://dx.doi.org/10.1101/047704. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.
394
(F-statistic:12.85,11DF,p-value:0.004283)andBUN(F-statistic:9.089,11DF,p-value:0.01177)
0.15
145
150
155
160
165
R 2 = 0.222
0.25
0.25
R 2 = 0.539
0.15
Percent loss body weight
Figure4.TherelationshipbetweenserumelectrolytesispositiveinallcasesandsignificantforSodium
Percent loss body weight
393
170
16
18
110
115
Serum Chloride
395
396
24
26
120
125
0.25
R 2 = 0.452
0.15
Percent loss body weight
0.25
R 2 = 0.0419
105
22
Serum Bicarb
0.15
Percent loss body weight
Serum Sodium
20
30
40
50
60
Blood Urea Nitrogen