Assignment_Ch1 01. The g.c.d. of each two consecutive natural numbers is…………. . (A) 0 (B) 1 (C) 2 (D) 3 02. 289 1 is................. . (A) a rational but not integer (D) non - reccuring decimal (B) an integer (C) an irrational 03. The g.c.d. of two numbers is 18 and their product is 6480. Their 1 c.m. is ………… . (A) 320 (B) 90 (C) 6480 (D) 360 04. If k1 and k2 are two distinct prime integers, then their 1 c.m. is ……… . (A) 1 (B) k2 (C) k1k2 (D) k1 05. 2.03122 is ……….. . (A) an irrational number (B) a rational number (C) an integer (D) zero 06. g.c.d. (24, 63) = ………… (A) 3 (B) 2 (C) 24 (D) 9 07. 1.c.m. (36, 94) = …………. (A) 36 (B) 36 94 (C) 94 08. (D) 1692 7 2 5 ........... . (A) does not exist as a binomial surd (B) 6 1 (C) 6 1 (D) 7 5 43 3 09. The decimal expansion of 2 5 will terminate after………… digits. (A) 3 (B) 2 (C) 4 (D) 1 4 10. 8 4 3 ........... . (A) 2 6 (B) does not exist as a binomial surd 11. If g.c.d. (12, 40) = 40 + 4x, then x = …………. . (A) -9 (B) 9 (C) 8 (D) -8 6 12. The decimal form of 15 is ………. (A) 3.125 (B) 0.4 (C) 2.20 13. Tha last digit of 10n is ……….. . (A) 4 (B) 5 (C) 0 (D) 2 (D) 2.375 (C) 6 2 (D) 6 2 14. If g.c.d. (336, 52) = 6, then 1 c.m. (336, 52) = …………. (A) 3024 (B) 52 (C) 12 (D) 336 15. (3k + 2)2 leaves remainder ………… on dividing by 3. (A) 2 (B) 0 (C) 1 (D) -1 16. The rationalizing factor of 2 5 is …………. . (A) 2 5 (B) 2 5 (C) 2 5 17. 0.123123123…….is……. . (A) an integer (B) an irrational number (D) 2 5 (C) a rational number (D) zero 18. Tha last digit of 29 5135 is…………. (A) 2 (B) 5 (C) 25 (D) 0 19. The rationalizing factor of 5 2 is ………… (A) 5 (B) 5 (C) 2 (D) 2 20. The irrational number which is not a surd is…………. . (A) 16 (B) 3 27 (C) (D) 8 21. The product of three consecutive positive integers is always divisible by ……. (A) 6 (B) 9 (C) 8 (D) 10 22. The product of four consecutive positive integers is divisible by …….. . (A) 16 (B) 48 (C) 24 (D) 32 23. If n > 1, then n4 + 4 is ……., number. (n N) (A) a composite (B) an even (C) a prime (D) an odd 24. For every a N, a2 is divided by 6, then …….. cannot be the remainder. (A) 3 (B) 4 (C) 1 (D) 5 25. on dividing (5k + 1)2 by 5, the remainder is …… . (k N) (A) 0 (B) 3 (C) 2 (D) 1 26. 5n ends with ……. . (n N) (A) 0 (B) 2 (C) 5 (D) 4 27. 2m5n (m, n N) ends with ……… . (A) 2 (B) 25 (C) 0 (D) 5 28. If n is an odd integer, then n2 - 1 is divisible by ……. . (A) 5 (B) 8 (C) 3 (D) 7 29. The g.c.d. of two natural numbers is 8 and their product is 384, then their l.c.m. = …….. (A) 16 (B) 96 (C) 48 (D) 32 30. If the products of two natural numbers and their l.c.m are equal, then their g.c.d. is …….. . (A) 1 (B) a prime (C) 2 (D) one of from two numbers 31. p1 and p2 are distinct primes, then their l.c.m is ……….. . (A) p1p2 (B) p2 (C) 1 (D) p1 32. If p, q, r are distinct primes, then their l.c.m. is ……… . (A) pq, qr or pr (B) pq (C) pqr (D) 1 33. g.c.d (15, 24, 40) = ……. . (A) 15 (B) 1 (C) 3 (D) 8 34. l.c.m. (15, 24, 40) = …… (A) 60 (B) 120 (C) 40 (D) 1 35. g.c.d. (136, 221, 391) = ……. . (A) 221 (B) 136 (C) 17 (D) 391 36. If g.c.d. (a, b) = 8, l.c.m. (a, b) = 64 and a > b, then a = …… (A) 8 (B) 64 (C) 32 (D) 16 37. If g.c.d. (a, b) = 1, then g.c.d. (a - b, a + b) = …….. . (A) 4 (B) a + b or a - b (C) a or b (D) 1 or 2 38. If g.c.d. (a, b) = 18, then l.c.m. (a, b) = ……. is not possible. (A) 48 (B) 108 (C) 36 (D) 72 39. 4 3is........ (A) rational but not an integer decimal 40. (B) an irrational (C) an integer (D) non-recurring 3 5 ........ 5 1 (A) 5 1 (B) 3 2 (C) 41. 9 141 ........... (A) does not exist as a real number 141 9 (D) 2 (D) does not exist (B) does not exist as a binomial surd (C) 9 141 42. 0.02222 … is …….. . (A) a rational number (B) an integer number irrational number (C) a natural number (D) an 18 3 43. 5 (A) 4 has......digits afterdecimalpo int . (B) 1 (C) 2 (D) 3 2517 44. The decimal expansion of 6250 terminate after …… digits. (A) 3 (B) 4 (C) 5 (D) 6 317 represents....... 3125 45. (A) a non-recurring decimal recurring decimal (B) an integer (C) a terminating decimal (D) a 46. Every even integer a is in the form of .........; where, k z. (A) 3k+1 (B) 2k (C) 2k+1 (D) 4k 47. Every odd integer a is in the form of ..........; where, k z. (A) 4k+1 (B) 2k+1 (C) k+1 (D) 3k 48. The numbers in the form 3k 1 (k z) are ...........; . (A) divisible by 3 (B) even numbers (C) not divisible by 3 (D) odd numbers 49. If n is a positive even integer, then n(n + 1)(n + 1) is divisible by ........... . (A) 24 (B) 9 (C) 15 (D) 18 50. l.c.m. (115, 25) = .......... (A) 115 (B) 5 (C) 575 (D) 25 51. g.c.d. (28, 35, 91) = ........... (A) 1 (B) 14 (C) 5 (D) 7 52. g.c.d (a, b) l.c.m. (a, b) = ........... (where, a, b n) (A) 1 (B) ab (C) b (D) a 53. 1.c.m. (15, 21, 35) = ............ (A) 35 (B) 105 (C) 15 21 35 54. l.c.m. (40, 60, 80) = ............ (A) 180 (B) 240 (C) 480 (D) 210 (D) 120 55. The smallest positive number greater than 5 is ............. such that when it divided by 20, 30 or 40 it leaves the remember 5. (A) 45 (B) 245 (C) (D) 35 56. The smallest positive number divisible by 24, 36, and 48 is .......... . (A) 144 (B) 96 (C) 288 (D) 48 57. The smallest positive number divisible by every integers from 2 to 6 is .......... . (A) 60 (B) 12 (C) 30 (D) 24 58. The smallest positive number divisible by every integers from 2 to 10 is .......... . (A) 2520 (B) 6000 (C) 720 (D) 540 59. g.c.d. (18, 24) l.c.m. (18, 24) = ............ (A) 72 (B) 144 (C) 432 (D) 6 18 24 60. If g.c.d. (a, b) = b, then l.c.m. (a, b) = ............ . (A) a (B) 1 (C) b (D) ab (where, a, b N) 61. The product of prime factors of 180 is ........... . (A) 4 9 5 (B) 2 2 5 9 (C) 2 2 3 3 5 (D) 10 18 p 62. q is a rational number and for non-negative numbers m, n q = 2m5n if and only if the p decimal form of q is (A) non-recurring decimal expansion (B) integer form expansion (D) recurring decimal expansion (C) a terminating decimal 12 63. The decimal form 0f 35 is .............. . (A) integer form decimal expansion (B) non-terminating recurring decimal expansion (D) a terminating decimal expansion 42 is ........ 64. The decimal form of 35 (A) integer form decimal expansion (B) non-terminating recurring decimal expansion (D) non-terminating decimal expansion (C) non-recurring (C) a terminating 47 65. 500 has ............ digits after decimal point in terminating decimal expansion. (A) 4 (B) 3 (C) 5 (D) 2 9 66. The decimal expansion of 1600 will terminate after ............ digits. (A) 4 (B) 5 (C) 3 (D) 6 337 is ......... 125 67. The decimal expansion of (A) 3.696 68. (A) (B) 2.696 (C) 2.969 12 and ......... are like surds. 36 (B) 48 (C) 60 (D) 1.348 (D) 24 69. The pair .............. is a like surds. (A) 72 and 6 (B) 8 and 16 (C) 24 and 48 (D) 18 and 50 70. The product of two conjugate binomial surds is ........... . (A) a rational number (B) quadratic surd (C) any surds (D) an integer 71. The conjugate surd of 3 2 is .......... . (A) 3 -2 72. 3 22 = ........... (A) 5 + 2 6 73. (A) (B) 3 - 2 (C) 2 + 3 (B) 5 + 4 3 5 2 6 = ............ 3+ 2 (B) 5 + 3 (D) 2 - 3 (C) 11 + 2 3 (C) 6+1 (D) 7 + 4 3 (D) 1 + 4 1 74. The surds obtained on rationalising the denominator of 3 8 (A) 6 -4 (B) 3-8 (C) 3 - 8 (D) 3 + 2 2 75. 12 140 ........... (A) 7 + 5 (B) 8 +2 (C) 14 - 2 (D) 7 - 5 ........... Answers: 01 : A B C D 02 : A B C D 03 : A B C 04 : A C 07 : A C 10 : A C 13 : A C 16 : A C 19 : A C 22 : A C 25 : A C 28 : A C 31 : A C 34 : A C 37 : A C 40 : A C 43 : A C 46 : A C 49 : A D B C D 05 : A B C D 06 : A B D B C D 08 : A B C D 09 : A B D B C D 11 : A B C D 12 : A B D B C D 14 : A B C D 15 : A B D B C D 17 : A B C D 18 : A B D B C D 20 : A B C D 21 : A B D B C D 23 : A B C D 24 : A B D B C D 26 : A B C D 27 : A B D B C D 29 : A B C D 30 : A B D B C D 32 : A B C D 33 : A B D B C D 35 : A B C D 36 : A B D B C D 38 : A B C D 39 : A B D B C D 41 : A B C D 42 : A B D B C D 44 : A B C D 45 : A B D B C D 47 : A B C D 48 : A B D B C D 50 : A B C D 51 : A B C 52 : A C 55 : A C 58 : A C 61 : A C 64 : A C 67 : A C 70 : A C 73 : A C D B C D 53 : A B C D 54 : A B D B C D 56 : A B C D 57 : A B D B C D 59 : A B C D 60 : A B D B C D 62 : A B C D 63 : A B D B C D 65 : A B C D 66 : A B D B C D 68 : A B C D 69 : A B D B C D 71 : A B C D 72 : A B D B C D 74 : A B C D 75 : A B D
© Copyright 2026 Paperzz