Document

Assignment_Ch1
01. The g.c.d. of each two consecutive natural numbers is…………. .
(A) 0
(B) 1
(C) 2
(D) 3
02. 289  1 is................. .
(A) a rational but not integer
(D) non - reccuring decimal
(B) an integer
(C) an irrational
03. The g.c.d. of two numbers is 18 and their product is 6480. Their 1 c.m. is ………… .
(A) 320
(B) 90
(C) 6480
(D) 360
04. If k1 and k2 are two distinct prime integers, then their 1 c.m. is ……… .
(A) 1
(B) k2
(C) k1k2
(D) k1

05. 2.03122 is ……….. .
(A) an irrational number
(B) a rational number
(C) an integer
(D) zero
06. g.c.d. (24, 63) = …………
(A) 3
(B) 2
(C) 24
(D) 9
07. 1.c.m. (36, 94) = ………….
(A) 36
(B) 36  94
(C) 94
08.
(D) 1692
7  2 5  ........... .
(A) does not exist as a binomial surd
(B)
6 1
(C)
6 1
(D)
7 5
43
3
09. The decimal expansion of 2  5 will terminate after………… digits.
(A) 3
(B) 2
(C) 4
(D) 1
4
10.
8  4 3  ........... .
(A) 2 6
(B) does not exist as a binomial surd
11. If g.c.d. (12, 40) = 40 + 4x, then x = …………. .
(A) -9
(B) 9
(C) 8
(D) -8
6
12. The decimal form of 15 is ……….
(A) 3.125
(B) 0.4
(C) 2.20
13. Tha last digit of 10n is ……….. .
(A) 4
(B) 5
(C) 0
(D) 2
(D) 2.375
(C)
6 2
(D)
6 2
14. If g.c.d. (336, 52) = 6, then 1 c.m. (336, 52) = ………….
(A) 3024
(B) 52
(C) 12
(D) 336
15. (3k + 2)2 leaves remainder ………… on dividing by 3.
(A) 2
(B) 0
(C) 1
(D) -1
16. The rationalizing factor of  2  5 is …………. .
(A)  2  5
(B)  2  5
(C) 2  5
17. 0.123123123…….is……. .
(A) an integer
(B) an irrational number
(D) 2  5
(C) a rational number
(D) zero
18. Tha last digit of 29 5135 is………….
(A) 2
(B) 5
(C) 25
(D) 0
19. The rationalizing factor of 5 2 is …………
(A) 5
(B)
5
(C) 2
(D)
2
20. The irrational number which is not a surd is…………. .
(A) 16
(B) 3 27
(C) 
(D) 8
21. The product of three consecutive positive integers is always divisible by …….
(A) 6
(B) 9
(C) 8
(D) 10
22. The product of four consecutive positive integers is divisible by …….. .
(A) 16
(B) 48
(C) 24
(D) 32
23. If n > 1, then n4 + 4 is ……., number. (n  N)
(A) a composite
(B) an even
(C) a prime
(D) an odd
24. For every a  N, a2 is divided by 6, then …….. cannot be the remainder.
(A) 3
(B) 4
(C) 1
(D) 5
25. on dividing (5k + 1)2 by 5, the remainder is …… . (k  N)
(A) 0
(B) 3
(C) 2
(D) 1
26. 5n ends with ……. . (n  N)
(A) 0
(B) 2
(C) 5
(D) 4
27. 2m5n (m, n  N) ends with ……… .
(A) 2
(B) 25
(C) 0
(D) 5
28. If n is an odd integer, then n2 - 1 is divisible by ……. .
(A) 5
(B) 8
(C) 3
(D) 7
29. The g.c.d. of two natural numbers is 8 and their product is 384, then their l.c.m. = ……..
(A) 16
(B) 96
(C) 48
(D) 32
30. If the products of two natural numbers and their l.c.m are equal, then their g.c.d. is
…….. .
(A) 1
(B) a prime
(C) 2
(D) one of from two numbers
31. p1 and p2 are distinct primes, then their l.c.m is ……….. .
(A) p1p2
(B) p2
(C) 1
(D) p1
32. If p, q, r are distinct primes, then their l.c.m. is ……… .
(A) pq, qr or pr
(B) pq
(C) pqr
(D) 1
33. g.c.d (15, 24, 40) = ……. .
(A) 15
(B) 1
(C) 3
(D) 8
34. l.c.m. (15, 24, 40) = ……
(A) 60
(B) 120
(C) 40
(D) 1
35. g.c.d. (136, 221, 391) = ……. .
(A) 221
(B) 136
(C) 17
(D) 391
36. If g.c.d. (a, b) = 8, l.c.m. (a, b) = 64 and a > b, then a = ……
(A) 8
(B) 64
(C) 32
(D) 16
37. If g.c.d. (a, b) = 1, then g.c.d. (a - b, a + b) = …….. .
(A) 4
(B) a + b or a - b
(C) a or b
(D) 1 or 2
38. If g.c.d. (a, b) = 18, then l.c.m. (a, b) = ……. is not possible.
(A) 48
(B) 108
(C) 36
(D) 72
39. 4  3is........
(A) rational but not an integer
decimal
40.
(B) an irrational
(C) an integer
(D) non-recurring
3  5  ........
5 1
(A)
5 1
(B)
3 2
(C)
41. 9  141  ...........
(A) does not exist as a real number
141 9
(D)
2
(D) does not exist
(B) does not exist as a binomial surd
(C)
9  141
42. 0.02222 … is …….. .
(A) a rational number
(B) an integer number
irrational number
(C) a natural number
(D) an
18
3
43. 5
(A) 4
has......digits afterdecimalpo int .
(B) 1
(C) 2
(D) 3
2517
44. The decimal expansion of 6250 terminate after …… digits.
(A) 3
(B) 4
(C) 5
(D) 6
317
represents.......
3125
45.
(A) a non-recurring decimal
recurring decimal
(B) an integer
(C) a terminating decimal
(D) a
46. Every even integer a is in the form of .........; where, k z.
(A) 3k+1
(B) 2k
(C) 2k+1
(D) 4k
47. Every odd integer a is in the form of ..........; where, k z.
(A) 4k+1
(B) 2k+1
(C) k+1
(D) 3k
48. The numbers in the form 3k  1 (k z) are ...........; .
(A) divisible by 3
(B) even numbers
(C) not divisible by 3
(D) odd numbers
49. If n is a positive even integer, then n(n + 1)(n + 1) is divisible by ........... .
(A) 24
(B) 9
(C) 15
(D) 18
50. l.c.m. (115, 25) = ..........
(A) 115
(B) 5
(C) 575
(D) 25
51. g.c.d. (28, 35, 91) = ...........
(A) 1
(B) 14
(C) 5
(D) 7
52. g.c.d (a, b)  l.c.m. (a, b) = ........... (where, a, b n)
(A) 1
(B) ab
(C) b
(D) a
53. 1.c.m. (15, 21, 35) = ............
(A) 35
(B) 105
(C) 15  21  35
54. l.c.m. (40, 60, 80) = ............
(A) 180
(B) 240
(C) 480
(D) 210
(D) 120
55. The smallest positive number greater than 5 is ............. such that when it divided by 20,
30 or 40 it
leaves the remember 5.
(A) 45
(B) 245
(C)
(D) 35
56. The smallest positive number divisible by 24, 36, and 48 is .......... .
(A) 144
(B) 96
(C) 288
(D) 48
57. The smallest positive number divisible by every integers from 2 to 6 is .......... .
(A) 60
(B) 12
(C) 30
(D) 24
58. The smallest positive number divisible by every integers from 2 to 10 is .......... .
(A) 2520
(B) 6000
(C) 720
(D) 540
59. g.c.d. (18, 24)  l.c.m. (18, 24) = ............
(A) 72
(B) 144
(C) 432
(D) 6  18  24
60. If g.c.d. (a, b) = b, then l.c.m. (a, b) = ............ .
(A) a
(B) 1
(C) b
(D) ab
(where, a, b N)
61. The product of prime factors of 180 is ........... .
(A) 4  9  5
(B) 2  2  5  9
(C) 2  2  3  3  5
(D) 10  18
p
62. q is a rational number and for non-negative numbers m, n q = 2m5n if and only if the
p
decimal form of q is
(A) non-recurring decimal expansion
(B) integer form
expansion
(D) recurring decimal expansion
(C) a terminating decimal
12
63. The decimal form 0f 35 is .............. .
(A) integer form
decimal expansion
(B) non-terminating recurring decimal expansion
(D) a terminating decimal expansion
42
is ........
64. The decimal form of 35
(A) integer form
decimal expansion
(B) non-terminating recurring decimal expansion
(D) non-terminating decimal expansion
(C) non-recurring
(C) a terminating
47
65. 500 has ............ digits after decimal point in terminating decimal expansion.
(A) 4
(B) 3
(C) 5
(D) 2
9
66. The decimal expansion of 1600 will terminate after ............ digits.
(A) 4
(B) 5
(C) 3
(D) 6
337
is .........
125
67. The decimal expansion of
(A) 3.696
68.
(A)
(B) 2.696
(C) 2.969
12 and ......... are like surds.
36
(B) 48
(C) 60
(D) 1.348
(D)
24
69. The pair .............. is a like surds.
(A)
72 and
6
(B)
8
and 16
(C)
24 and
48
(D) 18 and 50
70. The product of two conjugate binomial surds is ........... .
(A) a rational number
(B) quadratic surd
(C) any surds
(D) an integer
71. The conjugate surd of 3  2 is .......... .
(A)
3 -2
72.
 3  22 = ...........
(A) 5 + 2 6
73.
(A)
(B) 3 - 2
(C) 2 + 3
(B) 5 + 4 3
5  2 6 = ............
3+ 2
(B) 5 +
3
(D) 2 - 3
(C) 11 + 2 3
(C)
6+1
(D) 7 + 4 3
(D) 1 + 4
1
74. The surds obtained on rationalising the denominator of 3  8
(A)
6 -4
(B)
3-8
(C) 3 - 8
(D) 3 + 2 2
75. 12  140  ...........
(A)
7 + 5
(B)
8 +2
(C) 14 - 2
(D)
7 - 5
...........
Answers:
01 : A B C D  02 : A B C D  03 : A B
C

04 : A
C

07 : A
C

10 : A
C

13 : A
C

16 : A
C

19 : A
C

22 : A
C

25 : A
C

28 : A
C

31 : A
C

34 : A
C

37 : A
C

40 : A
C

43 : A
C

46 : A
C

49 : A
D 
B C D  05 : A B C D  06 : A B
D 
B C D  08 : A B C D  09 : A B
D 
B C D  11 : A B C D  12 : A B
D 
B C D  14 : A B C D  15 : A B
D 
B C D  17 : A B C D  18 : A B
D 
B C D  20 : A B C D  21 : A B
D 
B C D  23 : A B C D  24 : A B
D 
B C D  26 : A B C D  27 : A B
D 
B C D  29 : A B C D  30 : A B
D 
B C D  32 : A B C D  33 : A B
D 
B C D  35 : A B C D  36 : A B
D 
B C D  38 : A B C D  39 : A B
D 
B C D  41 : A B C D  42 : A B
D 
B C D  44 : A B C D  45 : A B
D 
B C D  47 : A B C D  48 : A B
D 
B C D  50 : A B C D  51 : A B
C

52 : A
C

55 : A
C

58 : A
C

61 : A
C

64 : A
C

67 : A
C

70 : A
C

73 : A
C
D 
B C D  53 : A B C D  54 : A B
D 
B C D  56 : A B C D  57 : A B
D 
B C D  59 : A B C D  60 : A B
D 
B C D  62 : A B C D  63 : A B
D 
B C D  65 : A B C D  66 : A B
D 
B C D  68 : A B C D  69 : A B
D 
B C D  71 : A B C D  72 : A B
D 
B C D  74 : A B C D  75 : A B
D 