Chapter 7 668 Analytic Trigonometry Section 7.4 ■ Sum and Difference Formulas You should know the sum and difference formulas. sinsu ± vd 5 sin u cos v ± cos u sin v cossu ± vd 5 cos u cos v 7 sin u sin v tan u ± tan v 17 tan u tan v You should be able to use these formulas to find the values of the trigonometric functions of angles whose sums or differences are special angles. tansu ± vd 5 ■ ■ You should be able to use these formulas to solve trigonometric equations. Vocabulary Check 1. sin u cos v 2 cos u sin v 3. 2. cos u cos v 2 sin u sin v tan u 1 tan v 1 2 tan u tan v 4. sin u cos v 1 cos u sin v 5. cos u cos v 1 sin u sin v 6. 1. (a) coss1208 1 458d 5 cos 1208 cos 458 2 sin 1208 sin 458 5 2 !2 2 !6 4 5 ! ! ! 1 !2 21 1 !2 (b) cos 1208 1 cos 458 5 2 1 5 2 2 2 3. (a) cos 1 4 1 3 2 5 cos 4 cos 3 2 sin 4 sin 3 p p p 5 5 (b) cos 5. (a) sin (b) sin !2 2 p 1 ?22 p !2 2 ? p 7p 2 4. (a) sin 14 !2 2 !6 7p p 1 !3 21 2 !3 2 sin 5 2 2 5 6 3 2 2 2 ! 1 (b) sin ! ! !6 1 !2 4 !2 2 !3 2 2 5 !2 2 !3 2 2 5p 3p 5p 3p 5p 5 sin cos 1 cos sin 6 4 6 4 6 1 22 212 23 2 1 12 22 21122 ! 52 4 2 3p 5 2 p 5p p 1 5 sin 5 sin 5 3 6 6 2 1 22 21 232 2 12 22 21122 (b) sin 1358 2 cos 308 5 !3 p p !2 1 !2 1 1 1 cos 5 1 5 4 3 2 2 2 16 2. (a) sins1358 2 308d 5 sin 1358 cos 308 2 cos 1358 sin 308 1 1221 22 2 2 1 23 21 22 2 5 2 5 tan u 2 tan v 1 1 tan u tan v ! ! !6 1 !2 4 5p !2 1 !2 1 1 3p 1 sin 5 1 5 4 6 2 2 2 6. (a) sins3158 2 608d 5 sin 3158 cos 608 2 cos 3158 sin 608 5 2 !2 2 52 (b) sin 3158 2 sin 608 5 !2 4 1 ?22 2 !2 2 ? !3 2 !6 4 2 !2 !3 2 !2 2 !3 2 5 2 2 2 Section 7.4 7. sin 1058 5 sins608 1 458d 8. 1658 5 1358 1 308 5 sin 608 cos 458 1 cos 608 sin 458 5 5 !3 2 !2 4 !2 ? 1 2 1 2 ? 5 sin 458 cos 308 2 sin 308 cos 458 2 s!3 1 1d 5 5 5 cos 608 cos 458 2 sin 608 sin 458 5 !2 ? 2 !2 4 2 !3 2 sin 1658 5 sins1358 1 308d 5 sin 1358 cos 308 1 sin 308 cos 1358 !2 cos 1058 5 coss608 1 458d 1 5 2 Sum and Difference Formulas ? !2 !2 2 !2 4 5 5 52 tan 608 1 tan 458 1 2 tan 608 tan 458 1 2 !3 2 1 2 ? !2 2 s!3 2 1d 5 2cos 458 cos 308 2 sin 458 sin 308 52 5 2 5 cos 1358 cos 308 2 sin 1358 sin 308 2 s1 2 !3d !3 1 1 !3 cos 1658 5 coss1358 1 308d tan 1058 5 tans608 1 458d 5 ? !3 1 1 1 1 !3 ? 1 2 !3 1 1 !3 4 1 2!3 5 22 2 !3 22 !2 2 !2 4 !3 ? 2 2 !2 1 ?2 2 s!3 1 1d tan 1658 5 tans1358 1 308d 5 tan 1358 1 tan 308 1 2 tan 1358 tan 308 5 2tan 458 1 tan 308 1 1 tan 458 tan 308 21 1 5 11 !3 3 !3 3 5 22 1 !3 tan 1958 5 tans2258 2 308d 9. sin 1958 5 sins2258 2 308d 5 sin 2258 cos 308 2 cos 2258 sin 308 5 tan 2258 2 tan 308 1 1 tan 2258 tan 308 5 tan 458 2 tan 308 1 1 tan 458 tan 308 5 2sin 458 cos 308 1 cos 458 sin 308 52 5 !2 2 !2 4 ? !3 2 !2 1 2 1 ?2 s1 2 !3 d 3 1 3 2 32 5 5 3 31 111 3 2 12 ! cos 1958 5 coss2258 2 308d 5 cos 2258 cos 308 1 sin 2258 sin 308 5 2cos 458 cos 308 2 sin 458 sin 308 52 52 !2 2 !2 4 ? !3 2 2 !2 s!3 1 1d ! 2 1 ?2 5 !3 !3 12 2 6!3 5 2 2 !3 6 ? 3 2 !3 3 2 !3 669 Chapter 7 670 Analytic Trigonometry 10. 2558 5 3008 2 458 11. sin sin 2558 5 sins3008 2 458d 1 11p 3p p 5 sin 1 12 4 6 5 sin 5 sin 3008 cos 458 2 sin 458 cos 3008 5 2sin 608 cos 458 2 sin 458 cos 608 52 52 !3 ? 2 !2 4 s !2 2 2 !3 1 1 !2 2 5 1 ?2 5 d cos cos 2558 5 coss3008 2 458d 5 cos 3008 cos 458 1 sin 3008 sin 458 1 2 ? !2 2 !2 5 4 2 !3 2 ? !2 52 tan tan 2558 5 tans3008 2 458d 5 tan 3008 2 tan 458 1 1 tan 3008 tan 458 5 2tan 608 2 tan 458 1 2 tan 608 tan 458 7p p p 5 1 12 3 4 sin 1 5 sin 5 5 cos 2 ? 2 !2 4 !2 2 1 1 5 cos 5 5 1 2 ? !2 4 !2 2 1 ?2 2 p p p p cos 2 sin sin 3 4 3 4 !2 2 2 !3 2 s1 2 !3d ? 2 p 3p p 3p cos 2 sin sin 4 6 4 6 !2 2 ? !3 2 1 11p 3p p 5 tan 1 4 4 6 21 1 2 !2 2 1 ?2 52 2 !3 5 !2 2 3 1 2 s21d !3 3 5 23 1 !3 3 1 !3 5 212 1 6!3 5 22 1 !3 6 1 7p p p 5 tan 1 12 3 4 3 2 !3 ? 3 2 !3 2 p p 1 tan 3 4 5 p p 1 2 tan tan 3 4 5 !3 1 1 1 2 !3 5 22 2 !3 s!3 1 1d 7p p p 5 cos 1 12 3 4 s!3 2 1d tan p p p p cos 1 sin cos 3 4 4 3 !3 2 3p p 1 tan 4 6 5 3p p 1 2 tan tan 4 6 tan 7p p p 5 sin 1 12 3 4 22 !2 1 tan 2 !3 2 1 5 5 2 1 !3 1 2 !3 12. 1 2 2 1 2 s1 2 !3d 1 !3 11p 3p p 5 cos 1 12 4 6 5 cos !2 ? 2 5 cos 608 cos 458 2 sin 608 sin 458 5 3p p 3p p cos 1 cos sin 4 6 4 6 !2 4 2 !2 4 s!3 1 1d Section 7.4 13. sin 1 17p 9p 5p 5 sin 2 12 4 6 5 sin 5 cos ! !2 4 s!3 1 1d 5 2 5 1 cos 2 p p p p cos 2 sin cos 6 4 4 6 !2 ? 2 !2 ! !2 s1 2 !3 d 5 2 5 1 tan 2 1 2 s2 !3y3d !3 ? 2 !2 4 2 5 12 1 6!3 5 2 1 !3 6 !2 2 3 1 !3 ? 3 1 !3 !3 3 21 !3 3 5 22 1 !3 15. 285 5 225 1 60 sin 2858 5 sins2258 1 608d 5 sin 2258 cos 608 1 cos 2258 sin 608 122 2 !2 1 2 1 2 2 5 2 42 s !2 !3 2 ! !3 1 1 d cos 2858 5 coss2258 1 608d 5 cos 2258 cos 608 2 sin 2258 sin 608 52 122 2 12 2 21 2 2 5 !2 1 2 !2 1 2 ? s!3 1 1d 1 5 !3 !2 4 s!3 2 1d tan 2858 5 tans2258 1 608d 5 tan 2258 1 tan 608 1 1 !3 5 1 2 tan 2258 tan 608 1 2 !3 1 1 !3 5 4 1 2!3 5 22 2 !3 5 2 s2 1 !3d 22 ? 1 1 !3 !3 2 2 1 p p p 5 tan 2 12 6 4 11 52 ? 2 p p 2 tan 6 4 5 p p 1 1 tan tan 6 4 1 1 s2 !3y3d 3 1 !3 3 2 !3 2 p p p p cos 1 sin sin 6 4 6 4 tan 5 !2 1 5 cos tans9py4d 2 tans5py6d 1 1 tans9py4d tans5py6d 2 s1 2 !3 d 4 2 ! 4 1 2 2 p p p 5 cos 2 12 6 4 3 2 1 2 1 2 1 2 2 2 122 1 5 1 !2 17p 9p 5p 5 tan 2 12 4 6 5 2 p p p 5 sin 2 12 6 4 5 sin 5p 9p 5p 9p cos 1 sin sin 4 6 4 6 5 cos tan 1 sin 2 ! 1 5 p p p 5 2 12 6 4 12 232 2 1 22 21122 2 17p 9p 5p 5 cos 2 12 4 6 5 14. 2 9p 5p 9p 5p cos 2 cos sin 4 6 4 6 !2 52 2 Sum and Difference Formulas !2 2 671 672 Chapter 7 Analytic Trigonometry 17. 21658 5 2 s1208 1 458d 16. 2105 5 308 2 1358 sins21658d 5 sinf2 s1208 1 458dg sins308 2 1358d 5 sin 308 cos 1358 2 cos 308 sin 1358 5 2sins1208 1 458d 5 sin 308s2cos 458d 2 cos 308 sin 458 5 12212 2 2 2 1 2 21 2 2 !2 1 !2 52 4 !3 5 2 fsin 1208 cos 458 1 cos 1208 sin 458g !2 52 s1 1 !3d 52 coss308 2 1358d 5 cos 308 cos 1358 1 sin 308 sin 1358 5 1 23 212 22 2 1 11221 22 2 ! !2 4 ! 5 11 4 52 52 tan 308 2 s2tan 458d 1 1 tan 308s2tan 458d 3 !2 2 2 1 2 !2 ? 2 1 2 ? !2 4 !2 2 2 !3 2 ? !2 2 s1 1 !3d 52 52 tan 1208 1 tan 458 1 2 tan 1208 tan 458 2 !3 1 1 1 2 s2 !3 ds1d 52 1 2 !3 1 1 !3 52 4 2 2!3 22 1 2 !3 !3 ?12 5 2 2 !3 18. 158 5 458 2 308 sin 158 5 sins458 2 308d 5 sin 458 cos 308 2 cos 458 sin 308 5 1 22 21 23 2 2 1 22 21122 5 ! ! ! s !2 !3 2 1 4 d 5 !2s!3 2 1d 4 cos 158 5 coss458 2 308d 5 cos 458 cos 308 1 sin 458 sin 308 5 tan 158 5 tans458 2 308d 5 1 22 21 23 2 1 1 22 21122 5 ! ! s !2 !3 1 1 4 d 5 !2s!3 1 1d 4 tan 458 2 tan 308 1 1 tan 458 tan 308 !3 12 5 ! 3 132 1 1 s1d !3 4 s!3 2 1d 5 2tans1208 1 tan 458d 5 2 1 !3 ! !2 tans21658d 5 tanf2 s1208 1 458dg 2 s21d 1 33 2s21d ? 5 cos 1208 cos 458 2 sin 1208 sin 458 s1 2 !3 d !3 2 5 coss1208 1 458d ! tan 308 2 tan 1358 tans308 2 1358d 5 1 1 tan 308 tan 1358 5 !3 coss21658d 5 cosf2 s1208 1 458dg 5 cos 308s2cos 458d 1 sin 308 sin 458 5 3 3 2 !3 3 3 2 !3 5 5 3 1 !3 3 1 !3 3 3 2 !3 ? 3 2 !3 5 12 2 6!3 5 2 2 !3 6 Section 7.4 13p 3p p 5 1 12 4 3 19. sin 1 3p p 13p 5 sin 1 12 4 3 5 5 !2 ! 52 ! 5 1 2 !3 1 1 !3 1 52 4 2 2!3 22 2 5 2 2 !3 3p 3p p p cos 2 sin sin 4 3 4 3 !2 1 ?22 2 !2 2 ? !3 2 52 !2 4 s1 1 !3 d 7p p p 52 2 12 3 4 1 sin 2 2 1 1 1 1 2 12 1 2 12 2 !3 2 21 22 2 2 11221 22 2 5 2 42 s 1 ! ! 2 ! 1 2 12 !3 1 1 d 1 2 12 7p p p p p p p 5 cos 2 2 5 cos 2 cos 1 sin 2 sin 12 3 4 3 4 3 4 5 1 2 7p p p p p p p 5 sin 2 2 5 sin 2 cos 2 cos 2 sin 12 3 4 3 4 3 4 5 2 cos 2 2 11221 22 2 1 12 23 21 22 2 5 ! 1 ! ! !2 4 s1 2 !3 d 1 p3 2 2 tan1p4 2 2 p p 1 1 tan12 2 tan1 2 3 4 7p p p tan 2 5 tan 2 2 5 12 3 4 5 21 1 !3 1 2 s21ds!3d 52 13p 3p p 5 cos 1 12 4 3 2 134p2 1 tan1p3 2 5 3p p 1 2 tan1 2 tan1 2 4 3 s1 2 !3 d !2 4 1 13p 3p p 5 tan 1 12 4 3 tan 12 22 21 23 2 1 ?21 2 5 cos 20. 2 2 p 3p p 3p cos 1 cos sin 4 3 4 3 5 sin cos tan Sum and Difference Formulas tan 2 2 !3 2 1 5 2 1 !3 1 1 s2 !3 ds1d ? 1 2 !3 1 2 !3 673 Chapter 7 674 21. 2 Analytic Trigonometry 1 13p 3p p 52 1 12 4 3 3 14 sin 2 3p 1 p 3 2 24 5 2sin1 4 3p 3 3 3 14 cos 2 3p 1 p 3 3 14 tan 2 3p 1 p 3 3p 1 !2 4 s!3 2 1d 2 122 2 2 1 2 2 5 2 4 !2 1 2 !2 !3 3p tan 52 1 p 3 1 2 !3 1 1 !3 !2 s!3 1 1d 2 p 3p 1 tan 4 3 1 2 tan 22. p 3 !3 3p p 3p p cos 2 sin sin 4 3 4 3 24 5 2tan1 4 5 !2 s1 2 !3 d 5 24 5 cos1 4 5 cos 4 122 1 12 2 2 1 2 24 2 4 52 2 !2 1 !2 52 p 3 3p p 3p p cos 1 cos sin 4 3 4 3 5 2 sin 52 1 3p p tan 4 3 1 2 !3 52 ? 1 2 !3 5 21 1 !3 1 2 s2 !3 d 4 2 2!3 5 22 1 !3 22 5p p p 5 1 12 4 6 sin 1 4 1 6 2 5 sin 4 cos 6 1 cos 4 sin 6 p p p 5 cos p p p 1 22 21 23 2 1 1 22 21122 5 ! ! ! !2 4 s!3 1 1d 1 4 1 6 2 5 cos 4 cos 6 2 sin 4 sin 6 p p p 5 1 2 p p tan 1 5 4 6 p p p 1 22 21 23 2 2 1 22 21122 5 ! ! ! !2 !3 p p 1 tan 11 4 6 3 5 !3 p p 1 2 tan tan 1 2 s1d 4 6 3 4 s!3 2 1d tan 1 2 5 !3 1 2 23. cos 258 cos 158 2 sin 258 sin 158 5 coss258 1 158d 5 cos 408 24. sin 1408 cos 508 1 cos 1408 sin 508 5 sins1408 1 508d 5 sin 1908 Section 7.4 25. tan 3258 2 tan 868 5 tans3258 2 868d 5 tan 2398 1 1 tan 3258 tan 868 26. 27. sin 3 cos 1.2 2 cos 3 sin 1.2 5 sins3 2 1.2d 5 sin 1.8 Sum and Difference Formulas tan 1408 2 tan 608 5 tans1408 2 608d 5 tan 808 1 1 tan 1408 tan 608 28. cos 1 p p p p p p cos 2 sin sin 5 cos 1 7 5 7 5 7 5 5 cos 29. tan 2x 1 tan x 5 tans2x 1 xd 5 tan 3x 1 2 tan 2x tan x 2 1 5 5 coss2458d 5 !3 p p p p p p cos 1 cos sin 5 sin 1 12 4 12 4 12 4 5 sin 12p 35 32. cos 158 cos 608 1 sin 158 sin 608 5 coss158 2 608d 5 sin 3008 33. sin 2 34. cos 1 3p 3p 3p p p p cos 2 sin sin 5 cos 1 16 16 16 16 16 16 p 3 5 cos p !2 5 4 2 !3 2 154p2 2 tan112p 2 5p p 2 2 5 tan1 36. 5p p 4 12 1 1 tan1 2 tan1 2 4 12 tan tan 258 1 tan 1108 5 tans258 1 1108d 35. 1 2 tan 258 tan 1108 5 tan 1358 5 21 5 tan 176p2 5 tan 1p6 2 5 For Exercises 37– 44, we have: 5 5 sin u 5 13 , u in Quadrant II ⇒ cos u 5 2 12 13 , tan u 5 2 12 cos v 5 2 35, v in Quadrant II ⇒ sin v 5 45, tan v 5 2 43, y y (−3, 4) (−12, 5) 5 13 2 30. cos 3x cos 2y 1 sin 3x sin 2y 5 coss3x 2 2yd 31. sin 3308 cos 308 2 cos 3308 sin 308 5 sins3308 2 308d 52 675 u x v x Figures for Exercises 37– 44 !3 3 2 !2 2 676 Chapter 7 Analytic Trigonometry 37. sinsu 1 vd 5 sin u cos v 1 cos u sin v 5 38. cossu 2 vd 5 cos u cos v 1 sin u sin v 1 113212 52 1 12 132152 5 52 3 12 4 5 2 63 65 5 39. cossu 1 vd 5 cos u cos v 2 sin u sin v 1 5 2 5 41. tansu 1 vd 5 12 13 5 4 5 16 65 1 2 tan u tan v 5 5 4 2 12 1 s2 3 d 12s 5 2 12 ds d 2 43 21 5 2 12 1 2 59 42. cscsu 2 vd 5 1 21 2 7 5 2 4 43. secsv 2 ud 5 5 5 36 20 56 1 5 65 65 65 3 5 2 2 145212 12 13 2 1 5 21 13 2 52 tan u 1 tan v 9 63 52 4 16 5 1 1 5 cossv 2 ud cos v cos u 1 sin v sin u 1 4 5 s2 35 ds2 12 13 d 1 s5 ds13 d 5 212 352 1 1135 21452 40. sinsv 2 ud 5 sin v cos u 2 cos v sin u 212 52 2 1132152 3 12 13 44. tansu 1 vd 5 1 1 20 5 56 1 s36 d s d 65 65 65 65 56 5 cotsu 1 vd 5 33 48 15 1 52 65 65 65 1 1 5 sinsu 2 vd 2sinsv 2 ud 1 65 5 33 2 s2 33 d 65 s2 125 d 1 s2 43 d tan u 1 tan v 5 5 1 2 tan u tan v 1 2 s2 12 ds2 43 d 2 74 4 9 52 63 16 1 1 16 5 52 tansu 1 vd 2 63 63 16 For Exercises 45–50, we have: 7 7 sin u 5 2 25 , u in Quadrant III ⇒ cos u 5 2 24 25 , tan u 5 24 cos v 5 2 45, v in Quadrant III ⇒ sin v 5 2 35, tan v 5 34 y y v u x x 25 5 (−24, −7) (− 4, −3) Figures for Exercises 45– 50 45. cossu 1 vd 5 cos u cos v 2 sin u sin v 46. sinsu 1 vd 5 sin u cos v 1 cos u sin v 4 7 3 5 s2 24 25 ds2 5 d 2 s2 25 ds2 5 d 7 5 s2 25 ds2 45 d 1 s2 2425 ds2 35 d 3 55 28 72 4 5 125 1 125 5 100 125 5 5 Section 7.4 47. tansu 2 vd 5 5 2 34 11s 7 24 48. tansv 2 ud 5 11 ds d 3 4 5 s4 d 2 s24 d tan v 2 tan u 5 7 1 1 tan v tan u 1 1 s34 ds24 d 3 tan u 2 tan v 1 1 tan u tan v 7 24 Sum and Difference Formulas 2 24 52 39 32 44 117 11 24 39 32 5 1 1 5 53 5 cossu 1 vd 3 5 Use Exercise 45 for cossu 1 vd. 1 50. cossu 2 vd 5 cos u cos v 1 sin u sin v 5 2 5 24 25 212 542 1 12 257 212 352 96 21 117 1 5 125 125 125 51. sinsarcsin x 1 arccos xd 5 sinsarcsin xd cossarccos xd 1 sinsarccos xd cossarcsin xd 5 x ? x 1 !1 2 x2 ? !1 2 x2 5 x2 1 1 2 x2 51 1 1 x θ x θ = arcsin x θ = arccos x 52. Let u 5 arctan 2x and v 5 arccos x tan u 5 2x cos v 5 x. 4x 2 + 1 1 2x u 1 − x2 v x 1 sinsarctan 2x 2 arccos xd 5 sinsu 2 vd 5 sin u cos v 2 cos u sin v 5 5 1 − x2 θ 1 − x2 2x !4x2 1 1 sxd 2 2x2 2 !1 2 x2 !4x2 1 1 1 !4x2 1 1 s!1 2 x2 d 44 117 1 1 117 5 44 5 tansv 2 ud 117 44 cotsv 2 ud 5 49. secsu 1 vd 5 5 7 677 Chapter 7 678 Analytic Trigonometry 53. cossarccos x 1 arcsin xd 5 cossarccos xd cossarcsin xd 2 sinsarccos xd sinsarcsin xd 5 x ? !1 2 x2 2 !1 2 x2 ?x 50 (Use the triangles in Exercise 51.) 54. Let u 5 arccos x v 5 arctan x and cos u 5 x tan v 5 x. 1 1 + x2 1 − x2 x u v x 1 cossarcos x 2 arctan xd 5 cossu 2 vd 5 cos u cos v 1 sin u sin v 5 sxd 5 1!1 11 x 2 1 s!1 2 x d1!1 x1 x 2 2 2 2 x 1 x!1 2 x2 !1 1 x2 55. sins3p 2 xd 5 sin 3p cos x 2 sin x cos 3p 56. sin 5 s0dscos xd 2 s21dssin xd 1 2 1 x2 5 sin 2 cos x 1 sin x cos 2 p p 5 s1dscos xd 1 ssin xds0d 5 sin x 57. sin 5 cos x 1 6 1 x2 5 sin 6 cos x 1 cos 6 sin x p p 5 p 58. cos 14 5p 2 2 x 5 cos 1 scos x 1 !3 sin xd 2 59. cossp 2 ud 1 sin 52 1 2 1 u2 5 cos p cos u 1 sin p sin u 1 sin 2 cos u 1 cos 2 sin u p p p 5 s21dscos ud 1 s0dssin ud 1 s1dscos ud 1 ssin uds0d 5 2cos u 1 cos u 50 1 2 p 60. tan 2u 5 4 p 2 tan u 1 2 tan u 4 5 p 1 1 tan u 1 1 tan tan u 4 tan p 5p 5p cos x 1 sin sin x 4 4 !2 2 scos x 1 sin xd Section 7.4 Sum and Difference Formulas 61. cossx 1 yd cossx 2 yd 5 scos x cos y 2 sin x sin ydscos x cos y 1 sin x sin yd 5 cos2 x cos2 y 2 sin2 x sin2 y 5 cos2 xs1 2 sin2 yd 2 sin2 x sin2 y 5 cos2 x 2 cos2 x sin2 y 2 sin2 x sin2 y 5 cos2 x 2 sin2 yscos2 x 1 sin2 xd 5 cos2 x 2 sin2 y 62. sinsx 1 yd sinsx 2 yd 5 ssin x cos y 1 sin y cos xdssin x cos y 2 sin y cos xd 5 sin2 x cos2 y 2 sin2 y cos2 x 5 sin2 xs1 2 sin2 yd 2 sin2 y cos2 x 5 sin2 x 2 sin2 x sin2 y 2 sin2 y cos2 x 5 sin2 x 2 sin2 yssin2 x 1 cos2 xd 5 sin2 x 2 sin2 y 63. sinsx 1 yd 1 sinsx 2 yd 5 sin x cos y 1 cos x sin y 1 sin x cos y 2 cos x sin y 5 2 sin x cos y 64. cossx 1 yd 1 cossx 2 yd 5 cos x cos y 2 sin x sin y 1 cos x cos y 1 sin x sin y 5 2 cos x cos y 65. cos 12 3p 2 2 x 5 cos 3p 3p cos x 1 sin sin x 2 2 66. cossp 1 xd 5 cos p cos x 2 sin p sin x 5 s21d cos x 2 s0d sin x 5 s0dscos xd 1 s21dssin xd 5 2cos x 5 2sin x 2 2 − 2p 2p −6 −2 −2 67. sin 12 3p 2 6 1 u 5 sin 3p 3p cos u 1 cos sin u 2 2 68. tansp 1 ud 5 5 s21dscos ud 1 s0dssin ud 5 5 2cos u tan p 1 tan u 1 2 tan p tan u 0 1 tan u 1 2 s0d tan u 5 tan u 2 3 − 2p 2p −6 6 −2 −3 679 680 Chapter 7 Analytic Trigonometry 1 sin x 1 69. sin x cos 2 1 2 p p 1 sin x 2 51 3 3 p p p p 1 cos x sin 1 sin x cos 2 cos x sin 5 1 3 3 3 3 2 sin xs0.5d 5 1 sin x 5 1 x5 1 sin x 1 70. sin x cos 2 1 p 2 2 p p 1 2 sin x 2 5 6 6 2 1 2 p p p p 1 5 1 cos x sin 2 sin x cos 2 cos x sin 6 6 6 6 2 2 cos xs0.5d 5 1 2 cos x 5 1 2 x5 1 cos x 1 71. cos x cos 2 1 p 5p , 3 3 2 p p 2 cos x 2 51 4 4 1 2 p p p p 51 2 sin x sin 2 cos x cos 1 sin x sin 4 4 4 4 1 22 2 5 1 22 sin x ! 2 !2 sin x 5 1 sin x 5 2 sin x 5 2 x5 1 !2 !2 2 5p 7 p , 4 4 Section 7.4 Sum and Difference Formulas tansx 1 pd 1 2 sinsx 1 pd 5 0 72. tan x 1 tan p 1 2ssin x cos p 1 cos x sin pd 5 0 1 2 tan x tan p tan x 1 0 1 2fsin xs21d 1 cos xs0dg 5 0 1 2 tan xs0d tan x 2 2 sin x 5 0 1 sin x 5 2 sin x cos x sin x 5 2 sin x cos x sin xs1 2 2 cos xd 5 0 sin x 5 0 cos x 5 or x 5 0, p 1 Analytically: cos x 1 73. cos x cos 2 1 x5 1 2 p 5p , 3 3 2 p p 1 cos x 2 51 4 4 p p p p 2 sin x sin 1 cos x cos 1 sin x sin 5 1 4 4 4 4 1 22 2 5 1 2 cos x ! !2 cos x 5 1 1 cos x 5 !2 !2 cos x 5 2 p 7p , 4 4 x5 2 1 2 1 p p Graphically: Graph y1 5 cos x 1 1 cos x 2 4 4 The points of intersection occur at x 5 1 74. tansx 1 pd 2 cos x 1 2 and y 2 5 1. 0 p 7p and x 5 . 4 4 2 p 50 2 Answers: s0, 0d, s3.14, 0d ⇒ x 5 0, p −2 4 0 −4 2p 2p 681 682 Chapter 7 75. y 5 Analytic Trigonometry 1 1 sin 2t 1 cos 2t 3 4 1 1 (a) a 5 , b 5 , B 5 2 3 4 C 5 arctan 76. 3 b 5 arctan < 0.6435 a 4 y< !1132 1 1142 sins2t 1 0.6435d y5 5 sins2t 1 0.6435d 12 2 (b) Amplitude: 5 feet 12 (c) Frequency: 1 B 2 1 5 5 5 cycle per second period 2p 2p p 2 y1 5 A cos 2p 1T 2 l2 y2 5 A cos 2p 1T 1 l2 y1 1 y2 5 A cos 2p t x t x 1T 2 l2 1 A cos 2p 1T 1 l2 3 y1 1 y2 5 A cos 2p 5 2A cos 2p t x t x 4 3 t x t x t x t x cos 2p 1 sin 2p sin 2p 1 A cos 2p cos 2p 2 sin 2p sin 2p T l T l T l T l 4 t x cos 2p T l 78. False. 77. False. cossu ± vd 5 cos u cos v 7 sin u sin v sinsu ± vd 5 sin u cos v ± cos u sin v 1 79. False. cos x 2 2 p p p 5 cos x cos 1 sin x sin 2 2 2 80. True. 1 5 scos xds0d 1 ssin xds1d sin x 2 2 1 2 p p 2 x 5 2cos x 5 2sin 2 2 5 sin x 81. cossnp 1 ud 5 cos np cos u 2 sin np sin u 82. sinsnp 1 ud 5 sin np cos u 1 sin u cos np 5 s21d scos ud 2 s0dssin ud 5 s0dscos ud 1 ssin uds21dn 5 s21dnscos ud, where n is an integer. 5 s21dn ssin ud, where n is an integer. n 83. C 5 arctan b b a ⇒ sin C 5 , cos C 5 !a2 1 b2 !a2 1 b2 a 1 !a2 1 b2 sinsBu 1 Cd 5 !a2 1 b2 sin Bu 84. C 5 arctan ? !a2 1 b2 1 !a2 1 b2 ? cos Bu2 5 a sin Bu 1 b cos Bu a b a a b ⇒ sin C 5 , cos C 5 !a2 1 b2 !a2 1 b2 b 1 !a2 1 b2 cossBu 2 Cd 5 !a2 1 b2 cos Bu ? !a2 1 b2 1 sin Bu ? !a2 1 b2 2 5 b cos Bu 1 a sin Bu 5 a sin Bu 1 b cos Bu b a Section 7.4 85. sin u 1 cos u 86. 3 sin 2u 1 4 cos 2u a 5 1, b 5 1, B 5 1 (a) C 5 arctan Sum and Difference Formulas a 5 3, b 5 4, B 5 2 b p 5 arctan 1 5 a 4 (a) C 5 arctan sin u 1 cos u 5 !a2 1 b2 sinsBu 1 Cd 1 p 4 5 !2 sin u 1 b 4 5 arctan < 0.9273 a 3 3 sin 2u 1 4 cos 2u 5 !a2 1 b2 sinsBu 1 Cd < 5 sins2u 1 0.9273d 2 a 3 5 arctan < 0.6435 b 4 (b) C 5 arctan a p (b) C 5 arctan 5 arctan 1 5 b 4 3 sin 2u 1 4 cos 2u 5 !a2 1 b2 cossBu 2 Cd sin u 1 cos u 5 !a2 1 b2 cossBu 2 Cd 1 p 5 !2 cos u 2 4 2 88. sin 2u 2 cos 2u 87. 12 sin 3u 1 5 cos 3u a 5 1, b 5 21, B 5 2 a 5 12, b 5 5, B 5 3 (a) C 5 arctan < 5 coss2u 2 0.6435d b 5 5 arctan < 0.3948 a 12 12 sin 3u 1 5 cos 3u 5 !a2 1 b2 sinsBu 1 Cd (a) C 5 arctan sin 2u 2 cos 2u 5 !a2 1 b2 sinsBu 1 Cd < 13 sins3u 1 0.3948d (b) C 5 arctan a 12 5 arctan < 1.1760 b 5 12 sin 3u 1 5 cos 3u 5 !a2 1 b2 cossBu 2 Cd < 13 coss3u 2 1.1760d b p 5 arctans21d 5 2 a 4 1 5 !2 sin 2u 2 (b) C 5 arctan sin 2u 2 cos 2u 5 !a2 1 b2 cossBu 2 Cd 1 b p 5 ⇒ a50 a 2 !a2 1 b2 5 2 ⇒ b 5 2 B51 1 2 sin u 1 2 p 5 s0dssinud 1 s2dscosud 5 2 cos u 2 90. C 5 arctan cossx 1 hd 2 cos x cos x cos h 2 sin x sin h 2 cos x 5 h h 5 cos x cos h 2 cos x 2 sin x sin h h 5 cos xscos h 2 1d 2 sin x sin h h 5 cos xscos h 2 1d sin x sin h 2 h h p 4 2 a 3p 52 ⇒ a 5 b, a < 0, b < 0 b 4 !a2 1 b2 5 5 ⇒ a 5 b 5 25!2 2 B51 1 5 cos u 1 91. 2 a p 5 arctans21d 5 2 b 4 5 !2 cos 2u 1 89. C 5 arctan p 4 2 3p 5!2 5!2 52 sin u 2 cos u 4 2 2 683 Chapter 7 684 Analytic Trigonometry 92. (a) The domains of f and g are the sets of real numbers, h Þ 0. (b) (c) The graphs are the same. 2 h 0.01 0.02 0.05 0.1 0.2 0.5 f shd 20.504 20.509 20.521 20.542 20.583 20.691 g shd 20.504 20.509 20.521 20.542 20.583 20.691 −3 3 −2 (d) As h → 0, f shd approaches 20.5. As h → 0, gshd approaches 20.5. y 93. m1 5 tan a and m2 5 tan b b 1 d 5 908 ⇒ d 5 908 2 b y 1 = m 1x + b 1 a 1 u 1 d 5 908 ⇒ a 1 u 1 s908 2 bd 5 908 ⇒ u 5 b 2 a θ δ Therefore, u 5 arctan m2 2 arctan m1. β α x For y 5 x and y 5 !3x we have m1 5 1 and m2 5 !3. y 2 = m 2x + b2 u 5 arctan!3 2 arctan 1 5 608 2 458 5 158 94. For m2 > m1 > 0, the angle u between the lines is: u 5 arctan 11 1 m m 2 m2 2 m1 1 2 m2 5 1 m1 5 1 !3 1 2 12 u 5 arctan 11 95. 1 !3 1 !3 5 arctans2 2 !3 d 5 158 3 − 2p 2p 1 Conjecture: sin2 u 1 2 1 2 p p 1 sin2 u 2 51 4 4 −3 1 sin2 u 1 2 1 2 3 p p p p 1 sin2 u 2 5 sin u cos 1 cos u sin 4 4 4 4 2 p p 2 5 3 5 sin2 u cos2 u sin2 u cos2 u 1 sin u cos u 1 1 2 sin u cos u 1 2 2 2 2 sin u cos u 1 !2 !2 4 3 4 1 3sin u cos 4 2 cos u sin 4 4 5 sin2 u 1 cos2 u 51 2 1 sin u cos u 2 !2 !2 4 2 Section 7.4 Sum and Difference Formulas 685 96. (a) To prove the identity for sinsu 1 vd we first need to prove the identityfor cossu 2 vd. Assume 0 < v < u < 2p and locate u, v, and u 2 v on the unit circle. y C u−v 1 B D u −1 A v O x 1 21 The coordinates of the points on the circle are: A 5 s1, 0d, B 5 scos v, sin vd, C 5 scossu 2 vd, sinsu 2 vdd, and D 5 scos u, sin ud. Since /DOB 5 /COA, chords AC and BD are equal. By the distance formula we have: !fcossu 2 vd 2 1g2 1 fsinsu 2 vd 2 0g2 5 !scos u 2 cos vd2 1 ssin u 2 sin vd2 cos2su 2 vd 2 2 cossu 2 vd 1 1 1 sin2su 2 vd 5 cos2 u 2 2 cos u cos v 1 cos2 v 1 sin2 u 2 2 sin u sin v 1 sin2 v fcos2su 2 vd 1 sin2su 2 vdg 1 1 2 2 cossu 2 vd 5 scos2 u 1 sin2 ud 1 scos2 v 1 sin2 vd 2 2 cos u cos v 2 2 sin u sin v 2 2 2 cossu 2 vd 5 2 2 2 cos u cos v 2 2 sin u sin v 22 cossu 2 vd 5 22scos u cos v 1 sin u sin vd cossu 2 vd 5 cos u cos v 1 sin u sin v Now, to prove the identity for sinsu 1 vd, use cofunction identities. 3 2 2 su 1 vd4 5 cos3 1 2 2 u2 2 v4 p sinsu 1 vd 5 cos 5 cos p 1p2 2 u2 cos v 1 sin1p2 2 u2 sin v 5 sin u cos v 1 cos u sin v (b) First, prove cossu 2 vd 5 cos u cos v 1 sin u sin v using the figure containing points y 1 As1, 0d u−v D C Bscossu 2 vd, sinsu 2 vdd u B u−v 1 v A Cscos v, sin vd −1 Dscos u, sin ud on the unit circle. −1 Since chords AB and CD are each subtended by angle u 2 v, their lengths are equal. Equating fdsA, Bdg2 5 fdsC, Ddg2 we have scossu 2 vd 2 1d2 1 sin2su 2 vd 5 scos u 2 cos vd2 1 ssin u 2 sin vd2. Simplifying and solving for cossu 2 vd, we have cossu 2 vd 5 cos u cos v 1 sin u sin v. Using sin u 5 cos 1p2 2 u2 we have sinsu 2 vd 5 cos 3 p2 2 su 2 vd4 5 cos3 1p2 2 u2 2 s2vd4 5 cos 1p2 2 u2 coss2vd 1 sin1p2 2 u2 sins2vd 5 sin u cos v 2 cos u sin v. x 686 97. Chapter 7 Analytic Trigonometry f sxd 5 5sx 2 3d 72x 8 72x y5 8 8y 5 7 2 x f sxd 5 98. y 5 5sx 2 3d y 5x23 5 x 5 7 2 8y ⇒ f 21sxd 5 28x 1 7 y 135x 5 7 2 f21sxd 8 7 2 s28x 1 7d 5 8 5x f s f 21sxdd 5 x 135y 5 f 21sxd 5 x 1 15 5 f s f 21sxdd 5 f 1 2 3 x 1 15 x 1 15 55 23 5 5 1 4 f 21s f sxdd 5 28 17 28 x2 1 7 5x 2 x 1 15 2 5s3d 55 5 5 x 1 15 2 15 5x f 21s f sxdd 5 f 21s5sx 2 3dd 5 5 5x 2 15 1 15 5 5 5x 5 5sx 2 3d 1 15 5 5x 99. f sxd 5 x2 2 8 f is not one-to-one so f 100. 21 does not exist. f sxd 5 !x 2 16, x ≥ 16 y 5 !x 2 16 y 2 5 x 2 16 x 5 y 2 1 16 ⇒ f 21sxd 5 x2 1 16, x ≥ 0 f s f 21sxdd 5 !sx2 1 16d 2 16 5 x f 21s f sxdd 5 s!x 2 16 d 1 16 5 x 2 2 101. log3 34x23 5 4x 2 3 102. log8 83x 5 3x2 103. elns6x23d 5 6x 2 3 104. 12x 1 eln xsx22d 5 12x 1 xsx 2 2d 5 12x 1 x2 2 2x 5 x2 1 10x Section 7.5 Section 7.5 ■ Multiple-Angle and Product-to-Sum Formulas Multiple-Angle and Product-to-Sum Formulas You should know the following double-angle formulas. (a) sin 2u 5 2 sin u cos u (b) cos 2u 5 cos2 u 2 sin2 u (b) 5 2 cos2 u 2 1 (b) 5 1 2 2 sin2 u (c) tan 2u 5 ■ ■ 2 tan u 1 2 tan2 u You should be able to reduce the power of a trigonometric function. (a) sin2 u 5 1 2 cos 2u 2 (b) cos2 u 5 1 1 cos 2u 2 (c) tan2 u 5 1 2 cos 2u 1 1 cos 2u You should be able to use the half-angle formulas. The signs of sin u u u and cos depend on the quadrant in which lies. 2 2 2 !1 2 2cos u 1 1 cos u u (b) cos 5 ± ! 2 2 ■ ■ (a) sin u 5± 2 (c) tan u 1 2 cos u sin u 5 5 2 sin u 1 1 cos u You should be able to use the product-sum formulas. 1 (a) sin u sin v 5 fcossu 2 vd 2 cossu 1 vdg 2 1 (b) cos u cos v 5 fcossu 2 vd 1 cossu 1 vdg 2 1 (c) sin u cos v 5 fsinsu 1 vd 1 sinsu 2 vdg 2 1 (d) cos u sin v 5 fsinsu 1 vd 2 sinsu 2 vdg 2 You should be able to use the sum-product formulas. (a) sin x 1 sin y 5 2 sin 1 (c) cos x 1 cos y 5 2 cos 2 1 x1y x2y cos 2 2 1 2 1 2 x1y x2y cos 2 2 (b) sin x 2 sin y 5 2 cos 2 1 2 1 x1y x2y sin 2 2 (d) cos x 2 cos y 5 22 sin 1 2 1 2 x1y x2y sin 2 2 2 687
© Copyright 2026 Paperzz