Learning Channel (Pty) Ltd 3rd Floor, The Mills 66 Carr Street Newtown Johannesburg (011) 639-0179 Website: www.learn.co.za National Senior Certificate Grade 12 Mathematics Paper 2 MEMORANDUM Other products for Mathematics available from Learning Channel: 2 1.1 1.2 1.3 1.4 1.5 2010 Mathematics Grade 12 Paper 2: Memorandum ) ( 3 + (–1) M = _ –12+ 3 ; _ 2 ✓ M = (1; 1) ✓ 4 + (–2) _ 4 + (–2) Midpoint FH = _ ; ✓ ( 2 2 ) = (1; 1) ✓ \ midpoint FH = midpoint EG \ lines bisect each other. 3 – (–1) _ 4 = –1 ✓ mEG = _ –1 – 3 = –4 4 – (–2) _ = 6 = 1 ✓ mFH = _ 4 – (–2) 6 \ mEG × mFH = –1 Þ EG^FH ✓ \ using 1.2, diagonals of EFGH bisect at 90° ✓ \ EFGH is a rhombus. OR ____________________ lengthEH = √ (–1 – (–2))2 + (3 – (–2))2 ______ = √1 + 25 ___ = √26 ✓ ________________ lengthEF = √(–1 – 4)2 + (3 – 4)2 ______ =√ 25 + 1 ___ = √26 ✓ \ using 1.2, EFGH is a parallelogram (diagonals bisect) ✓ But EH = EF ✓ \ EFGH is a rhombus. mEG = –1 from above ✓ \ y = –x + c Substitute (–1; 3): ✓ 3 = –(–1) + c 2=c \ y = –x + 2 ✓ y = –x + 2 Let x = _52 . y = – _52 + 2 ✓ y = – _1 ✓ ( 2 ) \ _ 52 ; _ –3 does not lie on the line. ✓ 4 1.6 4 – (–1) _ mFH = _ 4 – 3 = 51 = 5 ✓ \ tan a = 5 A = tan–1(5) ✓ = 78,69° ✓ (2) (2) (4) (3) (3) (3) 2010 Mathematics Grade 12 Paper 2: Memorandum 1.7 1.8 2.1 2.2 2.3 2.4 2.5 3 __________________ lengthEG = √ (3 – (–1))2 + (–1 – 3)2 ___ = √32 ✓ ___________________ lengthHM = √ (1 – (–2))2 + (1 – (–2))2 ___ = √18 ✓ ___ ___ \ area ▵EGH = _12 √ 18 × √ 32 ✓ = 5,05 units2 ✓ G ® H back 5 down 1 \ E ® P is the same ✓ \ P(–6; 2) ✓ (or equivalent) ▵EDC is right angled at C (tangent, radius) ED2 = EC2 + DC2 ✓ 132 = 122 + DC2 25 = DC2 5 = DC ✓ DC2 = (a – 1)2 + (2 – (–1)2 ✓ 25 = a2 – 2a + 1 + 9 ✓ 0 = a2 – 2a – 15 ✓ a = –3; a = 5 ✓ By inspection, for this sketch a = 5. ✓ 2 – (–1) _ m =_ = 3 ✓ 4 5–1 –4 _ mtangent = 3 ✓ _ x + c Substitute (1; –1): y = –4 3 _ x + c ✓ –1 = –4 3 _13 = c ✓ _ x + _ 1 y = –4 3 3 (4) (2) (2) (5) DC y-axis is tangent to circle at A. \ AD is horizontal \ A(0; 2) ✓✓ (inspection) (x – a)2 + (y – b)2 = c2 ✓ Substitute (1; –1) and (0; 2): (0 – 1)2 + (2 – (–1))2 = c2 ✓✓ 10 = c2 ✓ (x – 1)2 + (y + 1)2 = 10 ✓ (4) (2) (5) 4 2010 Mathematics Grade 12 Paper 2: Memorandum 3.1 and 3.2 y B′ C′(5; 3) A′ D′ x A & D′′ D & A′′ B C′′ B′′(3; –4) C 3.3 3.4 4.1 P(x; y) ® P′(–x; –y) ® final image (–45x; –45y) ✓✓ Linear factor _54 Þ area factor _ 16 ✓ 25 \ area = _ 16 p units2 ✓ 25 (x cos q – y sin q; x sin q + y cos q) ✓ = (6 cos 60° – 3 sin 60°; 6 sin 60° + 3 cos 60°) ✓✓ __ __ √ √ = __ 6 – 3 3 ; __ 3 + 6 3 ✓✓ ) ( 2 2 OR = ( 3 – _ 32 3 ; 3√3 + _ 32 ) __ √ 4.2 5.1 y = –x __ (6; 3) ® (3; 6) ® (3; –6) ✓✓ y 5.1.1 tan q = _ = _ a ✓ x b 5.1.2 cos (–q) = cos q = _xr ✓✓ (10) (2) (2) (5) (2) (1) ______ r=√ a2 + b2 (Pythagoras) ✓ a \ cos (–q) = __ ______ 2 ✓ 2 5.2 5.2.1 5.2.2 √ a + b cos 53° = sin (90° – 53°) = sin 37° ✓ =k ✓ sin (–74°) = –sin 74° = –2sin 37°cos 37° ✓✓ _____ = –2k √ 1 – k2 ✓ (4) (2) (4) 2010 Mathematics Grade 12 Paper 2: Memorandum 5.3 5.3.1 5.3.2 LHS asin 2a __ = sin + cos 2a ✓ cos a a2sin acos a __ = sin + 1 – 2sin 2a ✓✓ cos a =1 ✓ = RHS LHS sin (x – 90°)cos (90° – 2x) 234° ____ =_ sin – cos 36° sin (x – 360°) 5 (4) 54° __ – sin x ✓✓ ✓✓ =_ –sin cos 36° (–cos x)sin 2x 54° ___ sin xcos x – cos x · 2sin ✓✓ =_ –sin x sin 54° 5.4 6.1 6.2 = –1 + 2cos2 x ✓ = cos 2x = RHS 3cos2 x + 5sin x = 3 3(1 – sin2 x) + 5sin x = 3 ✓ 3 – 3sin2 x + 5sin x = 3 0 = 3sin2 x – 5sin x 0 = sin x (3sin x – 5) ✓ sin x = 0 or sin x = _35 ✓✓ \ x = 0° + n180° or x is undefined ✓✓ (n Î ) ^ ACB = 110° – 50° = 60° ✓ 2 \ AB = 1502 + 2602 – (2.150.260)cos 60° ✓ AB2 = 51 100 ✓ \ AB = 226,05 ✓ AB = 226 km ✓ 6.2.1 C^ D B = 180° – (q + 30°) ✓ p 6.2.2 In ▵ABC: tan q = _ CB CB tan q = p ………….(i) ✓ CB ___ In ▵CBD: sin [180° – (q = _ sin8 q ✓ + 30°)] (8) (6) (5) (1) CB =_ 8 ✓ __ (sin q + 30°) sin q 8(sin q + 30°) ………….(ii) ✓ CB = __ sin q Combining (i) and (ii): 8sin (q + 30°) p = __ · tan q sin q 8 sin (q + 30°) _ sin q · cos ✓ p = __ sin q q 8(sin q + 30°) ✓ p = __ cos q (6) 6 7.1 7.2 2010 Mathematics Grade 12 Paper 2: Memorandum sin 2x = cos (x – 45°) sin 2x = sin [90° – (x – 45°)] sin 2x = sin (135° – x) ✓ \ 2x = 135° – x + n · 360° (n Î ) ✓ 3x = 135° + n · 360° x = 45° + n · 120° ✓ or 2x = 180° – (135° – x) + n · 360° (n Î ) ✓ 2x = 45° + x + n · 360° x = 45° + n · 360° ✓ \ for x Î [–180°; 180°] x = 45°; 165°; –75° ✓✓ ✓ (8) y 1 g –180° –135° –90° –45° 45 90 135 180 x f –1 7.3 ✓✓ ✓for g ✓✓ ✓for ƒ 7.3.1 g(x) ≤ ƒ(x) for [–180°; 90°] Þ –180° ≤ x ≤ –75° ✓✓ ✓ ƒ(x) 7.3.2 _ undefined Þ g(x) = 0 ✓ g(x) 8.1 8.1.1 8.1.2 8.1.3 \ x = –45° only for [–180°; 90°] ✓ _ x = 65,27 ✓✓ ✓ Using stats mode on calculator or manually SD = 8,71 ✓✓ Upper boundary = 65,27 + 8,71 = 73,98 ✓ Lower boundary = 65,27 – 8,71 = 56,56 ✓ \ reject 50; 45; 80 i.e. 3 bags would be rejected ✓ (6) (3) (2) (3) (2) (3) 2010 Mathematics Grade 12 Paper 2: Memorandum 8.2 Ordered list 11 000 12 600 14 200 Q1 = 14 200 14 500 15 300 Median = 15 350 15 400 16 500 16 800 Q3 = 16 800 18 600 19 600 \ Minimum = 11 000 ✓ Lower quartile = 14 200 ✓ Median = 15 350 ✓ Upper quartile = 16 800 ✓ Maximum = 19 600 ✓ 8.2.2 Scale in 100s 7 8.2.1 (5) 110 120 130 140 150 160 170 180 190 200 ✓✓ ✓✓ (3) 600 8.2.3 Maximum per day = _ = 700 patients per day ✓ 1928 9.1 000 = 392 patients per day ✓ Minimum per day = _ 1128 Marks 20 ≤ x ≤ 29 30 ≤ x ≤ 39 40 ≤ x ≤ 49 50 ≤ x ≤ 59 60 ≤ x ≤ 69 70 ≤ x ≤ 79 80 ≤ x ≤ 89 90 ≤ x ≤ 100 F 4 12 30 82 55 35 24 3 CF 4 16 46 128 183 218 242 245 (2) (2) 8 2010 Mathematics Grade 12 Paper 2: Memorandum 9.2 ✓✓ ✓✓ 9.3 9.4 = 123 Median at _ 2452+ 1 Median approximately 59 ✓✓ Data is grouped, so original raw data is lost. \ mean or median will be approximate. ✓✓ (4) (2) (2)
© Copyright 2026 Paperzz