65 2 . CARBAMATES (URETHANES) SEMICARBAZIDES. UREAS . "Murray a n d Ronzio. J . Am Chem. Soc., 71. 2245 (1947) @ L a m c h e n . J Chem. Soc., 748 (1750) . 41 Kurzer. Org S y n t h e s e s . 31. 8 (1951) including n o t e 5 . 4'Kurzer. Org S y n t h e s e s . 31. 11 (1951) including n o t e 5 . . . . C h 23 . . Amines CONTENTS METHOD . . . 425 Reduction of Nitro Compounds ................................................................ 426 Reduction of O x i m e s .................................................................................. 427 Reduction of N i t r i l e s ................................................................................ 428 Reduction of Amides .................................................................................. 427 . Reduction of Schiff B a s e s ........................................................................ 430 Reduction of Aromatic Amines ................................................................ 431 R e d u c t i v e Alkylation (or R e d u c t i v e Amination) .................................... 432 R e d u c t i v e Alkylation o f Amines ( L e u c k a r t ) .......................................... 433 R e d u c t i v e C l e a v a g e o f Azo Compounds .................................................. 434 C a t a l y t i c Debenzylation of N - B e n z y l d i a l k y l a m ~ n e s.............................. 43 5 Ammonoly s i s of Halogen Compounds ...................................................... 436 Alkylation o f Amines ................................................................................ 437 Interaction of Hexarnine a n d Halogen Compounds ................................ 438 R e p l a c e m e n t of Hydroxyl Groups by Amino Groups .............................. 437 Amination of Aromatic Nuclei .................................................................. 440 Rearrangement o f N-Alkylanilines .......................................................... 441 Amination o f C y c l i c I m i n e s ...................................................................... 442 Amination of O x i d e s .................................................................................. 443 Amination of Unsaturated Compounds .................................................... 444 . Aminome thy lation (Mannich) .................................................................... 445 Aminomethylation of Alcohols .................................................................. 446 Degradation of Amides (Hofmann) ............................................................ 447 Degradation o f Acyl Azides (Curtius) .................................................... 448 Degradation o f Hydroxamic A c i d s ( L d s s e n ) .......................................... 447 Interaction of Hydrazoic Acid and Carbonyl Compounds (Schmidt) .... 450 Hydrolysis of I s o c y a n a t e s , I s o t h i o c y a n a t e s , Urethanes, and U r e a s .. 451 H y d r o l y s i s o f N-Substituted Amides ........................................................ 452 H y d r o l y s i s of N S u b s t i t u t e d P h t h a l i m i d e s (Gabriel) ............................ 453 H y d r o l y s i s o f Nitrosoanilines .................................................................. 454 H y d r o l y s i s o f Quaternary Imine S a l t s ...................................................... 455 H y d r o l y s i s of C y a n a m i d e s ........................................................................ 456 Ring Dehydrogenation ................................................................................ 457 C o n d e n s a t i o n of Grignard R e a g e n t s and 0-Methylhydroxylamine ........ 458, Addition of Grignard R e a g e n t s to Schiff B a s e s .................................... 459 Interaction of Grignard R e a g e n t s and H a l o Amines .............................. 460 Reduction of Unsaturated Amines ............................................................ 461 Interaction of Sodium Amide a n d Halogen Compounds .......................... 462 Rearrangement of Hydrazobenzenes ........................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PAGE Ch. 2 4 CONTENTS (continued) METHOD 463. Interaction of Amines and P-Keto Esters ............................................. 464. Condensation of Unsaturated Amines and Aromatic Compounds ........ Table 81. Amines ................................................................................................ Table 82. Diamines ............................................................................................ Table 83. Olefinic Amines ................................................................................ Table 84. Acetylenic Amines ............................................................................ Table 85. Halo Amines ...................................................................................... Table 86. Hydroxy Amines ................................................................................ Table 87. Amino Ethets .................................................................................... Table 88. Amino Aldehydes .............................................................................. Table 89. Amino Ketones .................................................................................. Table 9 0 . Amino A c i d s ...................................................................................... Table 91. Amino Esters .................................................................................... Table 92. Amino Cyanides ................................................................................ References .......................................................................................................... PAGE 682 682 683 691 694 695 695 698 70 2 704 705 706 710 711 71 5 425. Reduction of Nitro Compounds T h i s method h a s had limited application for making a l i p h a t i c a m i n e s 2 although it a s s u m e s increasing importance in view of t h e commercial availability of the nitroparaffins a n d t h e development of p r o c e s s e s for their ready conversion t o nitro olefins;" 4'77' 'l' nitro alcohols,' nitro ethers,'" nitro a m i n e ~ , ~and ' ~ nitro cyanides,'19 a l l of which have been reduced to the corresponding amino compounds. Aromatic primary amines a r e commonly prepared from nitro compounds by t h e a c t i o n of one of s e v e r a l reducing a g e n t s ; t h e reaction h a s been d i ~ c u s s e d . ' ~ ' Reduction with a metal-acid combination like granulated iron and a s m a l l quantity of a c i d g i v e s e x c e l l e n t r e s u l t s . B y t h i s procedure, many aromatic amines have b e e n prepared, including aniline (86%), 0-toluidine (73%), 4-aminobiphenyl (93%), a n d a-naphthylamine (96%).'** Another common combination is tin a n d hydrochloric acid, but reduction may be accompanied by nuclear halogenation, particularly in t h e treatment of 0-substituted nitrobenzenes. T h e a c t i o n of z i n c d u s t and aqueous alcohol in the p r e s e n c e of calcium chloride, e s s e n t i a l l y neutral condit i o n s , is s u f f i c i e n t t o convert 2-nitrofluorene t o 2-aminofluorene (82%).11 Aluminum amalgam and aqueous alcohol, s t i l l another neutral combination, h a s been s u c c e s s f u l l y applied in the formation of 3-aminoacenaphthene (85%)" and the isomeric aminoacridines (70-75%):' Lithium aluminum hydride is a n effective reductant for certain nitroiilefins in the thiophene s e r i e s .3'p METHOD 425 655 C a t a l y t i c hydrogenation is performed in alcohol solution over Raney nickel a t 25" t o 100" a n d 3 0 atm.14 or over platinum oxide a t room temperature and 1 t o 2 am.'* T h e reaction is highly exothermic; therefore, precautions s h o u l d b e taken a g a i n s t e x c e s s i v e reaction temperatures. T y p i c a l illustrations a r e found in the preparations of 2-amino*-cymene (90%)'' a n d 3,4-diethylaniline (90%);' Heterocyclic nitro compounds in t h e quinoline2' and diDenzothiophene3' s e r i e s a l s o respond favorably t o c a t a l y t i c hydrogenation. In addition t o t h e s e procedures, electrolytic reduction of t h e nitro group h a s b e e n accomplished, a s illustrated by t h e preparation of o-aminocyclohexy lbenzene (85%); however, t h e procedure is rarely employed. An apparatus for large-scale runs h a s been d e s c r i b e d t 7 and a comprehensive review of electrolytic r e a c t i o n s h a s been given?0' Often under t h e non-acidic conditions, t h e reduction s t o p s a t the hyT h u s phenylhydroxylamine, C,H,NHOH, is s yndroxylamine s t a g e .l6' thesized in 68% yield by the a c t i o n of z i n c d u s t a n d water on nitrobenzene Certain aliphatic diamines have b e e n prepared by reduction of nitro amines with or aluminum amalgam.39 T h e starting materials a r e readily obtained by t h e reaction of nitroparaffins with formaldehyde and amines (method 444). Aromatic diamines and other polyfunctional aromatic amino compounds a r e prepared by the above general procedures. In the hydrogenation of polynitro compounds in t h e presence of R a n e y nickel c a t a l y s t , e t h y l a c e t a t e h a s b e e n found t o be a better s o l v e n t than aliphatic alcohols." T h e s y n t h e s i s of 2,4-diaminotoluene is accomplished by reduction of the corresponding dinitro compound with iron filings and hydrochloric a c i d (8%):' Alkaline reducing a g e n t s , including ammonium sulfide, sodium s u l f i d e , z i n c and alcoholic a l k a l i , etc., have a l s o b e e n employed. F o r example, o - p h e n ~ l e n e d i a m i n eis s y n t h e s i z e d in 85% t o 9m yield by reducing o-nitroaniline with z i n c and alcoholic alkali." Certain unsaturated amino compounds like t h e cis- and trans-p,p'diaminostilbene? and p,p'-diaminotolane a r e prepared by s e l e c t i v e hydrogenation of the corresponding dinitro compounds u s ing R a n e y nickel 47 T h e reduction h a s a l s o b e e n accomplished with c a t a l y s t (60-89?4)."' hydrazine hydrate in t h e presence of alkali.'6 Haloanilines a r e obtained from halonitrobenzenes preferably b y the iron-acid reduction procedure>' 'l Nuclear halogenation o c c u r s during the reduction of nitrobenzene by s t a n n o u s chloride in t h e presence of a c e t i c anhydride; a quantitative yield of p-chloroacetanilide is ~btained.'~ Hydrogenation of halonitrobenzenes over R a n e y nickel c a t a l y s t is ~ O S s i b l e provided t h a t the temperature is kept below 150°, a t which point 65 6 AMINES Ch. 24 dehalogenation occur^.^"*^^ T h e iodine atom i s the most susceptible of the halogens to replacement during catalytic hydrogenation of the nitro group; however reduction by stannous chloride and hydrochloric acid has been successful, e.g., m-iodoaniline (83%).53 Aliphatic nitro alcohols, conveniently derived by the condensation of nitroparaffins with aldehyde^,'^ are reduced to amino alcohols in almost quantitative yields by the action of iron powder and mineral acid.' Rest results are obtained when an e x c e s s of acid i s present. The procedure i s illustrated by the synthesis of 2-amino-l-butanol (90%); T h i s same reducing agent h a s been successfully employed in the synthesis of 2-amino-l-phenyl-lpropanol (70%)." T h e formation of amino alcohols by catalytic hydrogenation over Raney nickel catalyst has been accomplished. However, because of the instability of the nitro alcohols in basic media, lower amines are a l s o formed. RCHO METHOD 425 657 the presence of formaldehyde (27%)530(cf. method 431). Reduction of the niuoacetophenones has been accomplished by metal-acid combinations and by selective hydrogenations over Raney nickel and platinum oxide catalysts; a comparison of t h e s e procedures has been made in the preparation of o- and m-aminoacetophenones.69*70 Other methods of preparation for o a m i n o ketones have been summarized." p-Aminophenylacetic a c i d i s best obtained by reduction of the nitro compound with ammonium sulAmino e s t e r s are readily obtained by catalytic reduction of fide nitro e s t e r s over platinum oxide, e.g., ethyl p-aminobenzoate (lOO%)." A novel synthesis of ethyl m-aminophenylacetate from m-nitrobenzaldehyde consists in converting t h i s substance to m-nitro-0-benzoylmandelonitrile by the action of benzoyl chloride and sodium cyanide, followed by alcoholysis and hydrogenation with simultaneous hydrogenolysis (67% over-all)." + C,BSNH, + H, 5 KCH,NHC2HS T h e s e by-products are suppressed by hydrogenating in a n acid mediun;, e.g., in the presence of carbonic, acetic, or oxalic The acid-sensitive amino phenols can be obtained by the reduction of n i u o phenols with sodium sulfide or sodium hydrogen sulfite5' or by treatment of the p-tolylsulfonic e s t e r s with iron and a c e t i c acid.59 Also, hydrogenation over Raney nickel a t 100° gives excellent results.14 Aromatic nitro alcohols are converted by hydrogenation6" or by the action of metals and acids. Various combinations have bcen compared in the preparation of ~-(4-amin0~hen~l)-ethanol.~~ Other functional groups may be present during reduction. Aromatic amino ethers are prepared by the same general procedures described above, e.g., m-aminoanisole and 2aminodiphenyl ether (94%).6s The reduction of o-nitrobenzaldehyde t o the sensitive o-aminobenzaldehyde i s successfully accomplished by the action of ferrous sulfate and ammonia (75%).67 m-Dimethylaminobenzaldehyde i s formed by reduction of the nitro a c e t a l in aqueous solution with sodium sulfide followed by methylation (74% over-all)68 or by catalytic reduction of m-nitrobenzaldehyde in 3-Aminobenzonitrile i s prepared by reduction of 3-nitrobenzoniuile by sodium disulfide in aqueous suspension (63%). T h i s reagent causes some hydrolysis of the cyano A selective hydrogenation of the more reactive nitro group in the presence of the cyano group can a l s o be done, e.g., in the preparation of p-aminobenzyl cyanide (73%).7' Partial reduction of aromatic polynitro compounds leads t o nitro amines. The most successful reagents are the alkali metal or ammonium sulfides in aqueous alcohol."' In some instances, sodium bicarbonate combined with sodium sulfide gives better results because of the formation of sodium hydrosulfide, which i s believed t o b e the main reducing agent. Nitro comAlso, aqueous methanol is preferred t o aqueous ethanol." pounds that are sparingly soluble in alcohol solutions may be reduced by hydrogen sulfide in pyridine solution." Very often reduction of an aromatic nitro compound i s carried out in the presence of acetic anhydride, whereby the corresponding acetamido compound i s formed .49 Amino amides are prepared by catalytic hydrogenation of nitro amides, e.g., 2-aminoacetanilide AMINES Ch. 24 426. Reduction of Oximes R,C =NOH (H? R,CHNH, Reduction of oximes to primary amines proceeds readily and can be accomplished with hydrogen and Raney nickel catalyst with or without 3466349 Primary amines formed from high pressures (50-90%).174' '06* aldoximes are accompanied by secondary amines, (RCH,),NH. The reduction may a l s o be carried out with sodium and absolute ethanol, a s illustrated by the synthesis of n-heptylamine (73%)?50 The action of zinc d u s t and acetic acid is effective in the formation of Pfluorylamine (74%)?51 Lithium aluminum hydride i s a good reagent, a s shown by the reduction of 2,2-diphenylcyclohexanone oxime t o 2,2-diphenylcyclohexylamine (80%).545 Aliphatic diamines are made by reduction of amino oximes by these same general procedure^.'^^"^^ Sometimes catalytic hydrogenation gives low-boiling cleavage products ?l9 T h e reduction of isonitroso ketones with hydrogen and platinum in the presence of hydrochloric acid gives amino ketones or amino alcohols, e.g., l-phenyl-2-amino-l-propanol (98%)356and a-aminopropiophenone (88% T h e reduction of a-oximino acids to a-amino a c i d s i s accomplished by catalytic hydrogenation with a Raney nickel361 or palladium-charcoal36" 363 catalyst or by the action of sodium or aluminum amalgam."41 364-367 Several procedures involving the formation of a-oximino acid intermediates for the synthesis of a-amino acids have been d e s ~ r i b e d ' ~ ~ " ~ ~ (cf. method 385). One outstanding synthesis c o n s i s t s in the production of a-oximino acids or e s t e r s by the action of a nitrite on a substituted acetoacetic or malonic ester?60* Oximes carrying a second group like a hydroxyl, carbonyl, or carbalkoxyl may form cyclic products, such a s pyrazines from a-keto oximes and pyrrolidones from y-oximino esters, upon r e d ~ c t i o n ? ~ ' RCN + H, NH + RCH,NH, Catalytic hydrogenation of aliphatic and aromatic n i u i l e s yields primary and secondary amines ."5* '09 Formation of the secondary products c a n be suppressed (1) by carrying out the reduction in acetic anhydride, which acetylates the primary amine ancl prevents its reaction with the intermediate aldimine (platinum catalyst);307(2) by reducing in the prese n c e of ammonia (nickel catalyst);'03*310 or (3) by simply hydrogenating a s rapidly a s possible with a relatively large amount of ~ a t a l y s t . ' ~ Temperatures above 150' during hydrogenation favor the formation of the secondary amine by the elimination of ammonia from the primary amine, viz., ZRNH, --+ R,NH + NH3?15 A typical procedure employing highpressure equipment and ammonia is illustrated by the s y n t h e s ~ sof P-phenylethylamine ( 8 7 % ) F 0 If hydrogenation of the nitrile i s performed in the presence of a n amine like methylamine or dimethylamine, then the corresponding N-mono- or N,N-di-alkylamine i s formed.34' A Raney nickel catalyst that i s useful for hydrogenation a t room temperature and low pressure has been described?08 Reduction may a l s o be brought about by sodium and alcohol, although extensive cleavage, of the cyanide group may occur, viz., RCN -+ RH + NaCN.303-306 Lithium aluminum hydride has been successfully employed for the reduction of aliphatic and aromatic nit rile^'^"^^^ a s well a s several cyanides in the thiophene s e r i e s .,l4' 544 A large number of aliphatic diamines have been made by the reduction of amino nitriles. Dialkylaminoacetonitriles, R,NCH,CN, are reduced with hydrogen in the presence of ammonia (Raney nickel catalyst)316' Unsubstituted a-amino or with sodium and alcohol (40-8%)?04p nitriles lose hydrogen cyanide on attempted hydrogenation and poison the catalyst; consequently, the stable acetyl derivatives are reduced in acetic anhydride t o give the diacetyl diamine."' Also, the acetamido nitriles may be converted t o 1,2-diamines through the dihydroimidazoles with subsequent hydrolysis, a s illustrated by the preparation of 2-methyl1,2-diaminobutane (53% over-all)."' ""F -cN -A RR'C H -C T N H NHCOCH, RR'F -CH,NH, NH, CH3 427. Reduction of Nitriles RC)+ 659 METHOD 427 H 2 RCH =NH 3 RCH,NH, --+ RCH(NH,)NHCH,R 5 (RCH,),NH + NH, T h e addition of primary or secondary amines to acrylonitriles, followed by catalytic reduction of the P-amino cyanides, constitutes a good synthesis of y-aminopropylamines. T h e yields in the first s t e p are usually in the range of 60% to 95% and in the second about 50% to 7577.195.319, 310 AMINES RNH, + H,C =CHCN 4 RNHCH,CH,CN Ha 8 NHS Ch. 24 RNH(CH,),NH, NI In a similar manner, higher amino nltriles a r e reduced."' Amines containing other functional groups have been prepared. Amino ethers are readily made by catalytic hydrogenation or sodium-alcohol P - H ~ ~amines ~OX may~be reduction of the corresponding prepared by reduction of a-hydroxy or a-keto nitriles. Best results are. obtained when the reduction is carried out with hydrogen and platinum or palladium catalyst in the presence of mineral acid. In t h i s manner, substituted mandelonitriles, ArCHOHCN,112 and aroyl cyanides, ArCOCN,3" yield P-hydroxy-&arylethylamines (24-94%). Reduction of P-keto nitriles gives keto amines or amino alcohols; however, the yields are poor?34 Amino acids and amino e s t e r s are similarly prepared in good yields ."6-540 Cyanides bearing a second group in a suitable position may undergo ring closure on hydrogenation, as illustrated by the formation of piperidine from trimethylene cyanide and pyrrolidines from P-cyapo e s t e r s 34' (cf. method 574). 428. Reduction of Amides RCONH, (2 RCH2NH, Catalytic hydrogenation of amides t o amines requires drastic conditions: in general, a temperature of 250° t o 265O and a pressure of 200 t o 300 atm. over copper-chromium oxide catalyst using dioxane a s the ~ o l v e n t . ' ~T h e yields of primary amines from unsubstituted amides are lowered mainly by the formation of secondary amines, viz., ZRNH, -+ R,NH + NH,. N-Mono- and di-substituted amides yield secondary and tertiary amines, respectively; however, considerable cleavage of the carbon-nitrogen bonds occurs .'43 Amides are more conveniently reduced with lithium aluminum hydride in ether solution t o yield amines with the same carbon content, e.g., triethylamine from N,N-diethylacetamide (50%) and ethyl-n-propylamine from N-eth ylpropionamide (53%).'301 344s 'I9 T h e same conversion h a s been accomplished by an electrolytic r e d u ~ t i o n ? ~34' " 429. Reduction of Schiff B a s e s H1 RCH= NR' ---+ RCH,NHR' Catalyst METHODS 429-430 66 1 Unsymmeaical secondary amines are readily prepared in good yields by the catalytic reduction of Schiff b a s e s a t moderate temperatures in highor low-pressure equipment. Many examples have been cited.202 The intermediate imines are prepared from primary amines and aldehydes-very seldom from ketones-and may be used without isolation (cf. method 431). F o r the preparation of aliphatic amines, e.g., ethyl-n-propylamine and n-butylisoamylamine, a prereduced platinum oxide catalyst i s preferred with alcohol a s the solvent.368s Schiff b a s e s from the condensation of "'or a l i p h a t i ~ ' ~37'' ~ amines aromatic aldehydes with either aromatic are more readily prepared and are reduced over a nickel catalyst. In this manner, a large number of Nalkylbenzylamines having halo,13' h y d r ~ x ~ l , ~ ~ ' or groups on the nucleus have been made. Reductions by means of sodium and alcohol370and lithium aluminum hydride '02' 559 have a l s o been described. 430. Reduction of Aromatic Amines Certain amines are readily prepared by the reduction of aromatic, aryl aliphatic, and heterocyclic amines. For example, aniline is reduced t o cyclohexylamine by high-pressure hydrogenation in the presence of Raney nickel catalyst or a cobalt oxide-calcium oxide catalyst. T h e reaction occurs a t a temperature above 200°, where condensation of the primary amine a l s o t a k e s place, viz., 2C6H11NH, 4 (C6Hl1),NH + NH,. If this s i d e reaction is repressed by the presence of dicyclohexylamine a t the start of the reaction, a 94% yield of cyclohexylamine i s obtained.)77 Hydrogenation of aryl aliphatic amines proceeds more readily, occurring a t moderate temperatures and pressures over platinum catalyst in glacial acetic acid.378s Other reductions using this catalyst are b e s t performed on the amines in the form of their hydro chloride^.^^^ The reduction of N-alkyl-p-nitroanilines t o the corresponding cyclohexanediamines has been carried out with hydrogen over cobalt-on-alumina . and ruthenium catalysts.198 Sometimes a nuclear-substituted aniline i s acetylated before reduction in order to avoid s i d e reactions. Thus, catalytic hydrogenation of p-acetaminophenol "'and ethyl p-acetaminophenylacetate has been successfully accomplished with platinum catalyst a t 50-60° in the presence of acetic acid. Other conditions for the reduction of the aromatic nucleus are discussed in method 4. The hydrogenation of heterocyclic nuclei i s treated in method 554. AMINES 431. Reductive Alkylation (or Reductive Amination) RcOR' + NH, + H, 2 RR'cENH, + H,O 663 METHODS 431-432 Ch. 24 aldehydes (above C,) and simple ketones 'l5 respond best, usually over a platinum catalyst. (R'= H or alkyl) Alkyl groups may be introduced into ammonia, a primary amine, or a secondary amine by means of an aldehyde or ketone in the presence of a reducing agent, such a s molecular hydrogen and a catalyst, active metals and acids, or formic acid or one of its derivatives. When the reducing agent is formic acid or a derivative, the reaction is known a s the Leuckart reaction and i s discussed elsewhere (method 432). An excellent review of the preparation of amines by reductive alkylation h a s been presented. T h i s article includes a discussion of the scope and utility of the reaction, a selection of experimental conditions, illustrative preparations, and a tabulation of primary, secondary, and tertiary amines prepared thereby.'Oa Reductive alkylation of ammonia has been proved a n effective and highly versatile method for obtaining primary amines. The most satisfactory conditions have been catalytic hydrogenation (Raney nickel) of the carbonyl compound in an ethanolic solution of ammonia under pressure ranging from 20 t o 150 atm. and a t temperatures in the range of 40° t o 150°.a03-a06 Typical amines prepared in this manner include benzylamine (83%)'04 and 2-aminoheptane (8%).'06 With liquid ammonia and no solvent, a higher pressure (330 atm.) a t the higher temperature (150°) i s required, a s illustrated by the synthesis of a-phenylethylamine from acetophenone (52%).'08 More recently, improved procedures for hydrogenation a t lower pressures over platinum oxide or Raney nickel have been described.a051 Treatment of benzalacetone and furfuralacetone under t h e s e conditions leads t o saturation of the a,P-olefinic linkage a s well a s t o reductive alkylation?Os In general, the method is particularly successful for obtaining aliphatic amines having five or more carbon atoms. In a l l these reactions for making a primary amine, ammonia i s present in e x c e s s t o minimize the formation of a secondary amine. Secondary amines are prepared by several procedures of reductive alkylation. A procedure similar t o that described for primary amines may be employed; the ratio of reactants must b e changed t o a t least two moles of the carbonyl compound t o one of ammonia. The procedure leads t o symmetrical secondary amines and i s most s u c c e s s f u l starting with aromatic aldehydes, a s in the formation of dibenzylamine (67%)?04 Aromatic amines like aniline, a- and P-naphthylamines, etc., a r e readily converted t o the Nalkylamines by using aldehydes in the presence of Raney nickel, hydrogen, and sodium acetate (24-8~%)."~'"~ Since many aromatic amines are prepared under similar conditions by the reduction of n i u o compounds, it is possible t o combine both reductions in a single , operation and convert nitro compounds t o secondary amines (31-36%).211 Tertiary amines are formed if the reduction of the nitro compound and aldehyde i s carried out with hydrogen and platinum in the presence of acetic acid. Nitroparaffins a s well a s aromatic nitro compounds react (34-92%)."' Reductive dimethylation of amines of the type ArCH(CH,)CH,NH, and ArCH,CH(CH,)NH, with formaldehyde and hydrogen over Raney nickel catalyst occurs in 48-97% yields?14 N-Monoalkylated anilines are methylated in good yields by the action of formaldehyde in the presence of zinc and mineral a c i d F 7 Many tertiary aliphatic amines have been prepared by reductive alkylation of secondary amines with aldehydes and ketones, the aldehydes giving better results.a16 Difunctional compounds are formed by these procedures. Diamines are prepared by reductive amination of amino ketones or by reductive alkylation of diamines ?l9 A few aromatic halo amines "l and amino ethers213 have been made. Hydroxy amines are conveniently formed by the reductive alkylation of amino alcohols160~a2a-aa7 a s illusuated by the synthesis of 2-isopropylaminoethanol (95%)?', N-Alkyl derivatives of S-amino-l-pentanol are readily obtained by the reductive amination of 5-hydroxypentanal?18'230 Several a-diketones have been treated under these conditions giving amino ketones or amino alcohols, only one carbony1 group undergoing reductive amination and the other being unaffected or reduced t o a hydroxyl group.a31 Aliphatic and aromatic amino a c i d s c a n be converted t o their N,N-dimethyl derivatives in excellent yields with formaldehyde and hydrogen over palladium-charcoal catalyst?3a Aromatic nitro acids may be reduced and methylated in one operation. Reductive amination of a-keto a c i d s yields a-amino acids?33 Sometimes a considerable quantity of the corresponding hydroxy acid is a l s o formed; p- and y-keto acids give little or no amino acids?33 432. Reductive Alkylation of Amines (Leuckart) Symmetrical and unsymmetrical secondary amines are made by substituting a primary amine for the ammonia. In t h i s reduction, the higher aliphatic R,CO R,CHNHCHO Heat 3R,CHNH, 664 AMINES Ch. 24 Reductive amination of carbonyl compounds with ammonia or amines in the presence of a reducing agent has been discussed (method 431). When the reducing agent i s formic acid or a derivative, the products are the formyl derivatives of primary or secondary amines or the formates of tertiary amines. T h e s e intermediates readily furnish the amines. A critical discussion of the reaction along with experimental conditions and procedures and a tabular survey of compounds has been presented.'" Many water-insoluble ketones, aliphatic, aryl aliphatic, and heterocyclic, respond favorably t o treatment with ammonium formate or formamide tp form with subsequent hydrolysis the primary amines. A typical procedure for the synthesis of a-phenylethylamine (66%) from acetophenone and ammonium formate has been applied t o many other ketones (65-M%).'Nuclear alkoxyl, halo, and nitro groups are not disturbed.399*40' The reaction with formamide a s the reducing agent is catalyzed by ammonium formate, ammonium sulfate, or magnesium chloride.'05 If the ammonium formate is substituted by N-alkylformamide, then the formyl derivative of a secondary amine is formed. In a similar manner, treatment with a n N,N-dialkylformamide leads to tertiary amines; moreover, magnesium chloride, or better s t i l l calcium chloride, catalyzes the reaction.'" Other factors have been studied.'03 The method i s employed extensively for the methylation of primary and secondary t o the corresponding tertiary amines by the action of formaldehyde and formic acid. METHODS 433-435 433. Reductive Cleavage of Azo Compounds The introduction of amino groups into phenols and ethers c a n be accomplished by the formation and reductive cleavage of their a z o compounds. The diazotizing agent may be prepared from sulfanilic acid, and the reduction c a n be performed with sodium hydrosulfite. Excellent examples are found in the synthesis of l-amino-2-naphthol' (85%) and 4amino-l-naphthol (75%).554 434. Catalytic Debenzylation of N-Benzyldialkylamines C,H,CH,NR, H A R,NH + C6H5CH3 Catalyst The reductive debenzylation of N-benzyldialkylamines with hydrogen in the presence of a platinum or palladium catalyst affords a n excellent synthesis for symmetrical and unsynmetrical secondary amines ."" la5' 444 The starting materials are readily available by dialkylation of benzylamine or by the nonoalkylation of alkylbenzylamines, which in turn are prepared by the reduction of Schiff b a s e s (method 429). T h e method has been extended t o the formation of hydroxy amines? amino esters,'47 and amino a c i d s .447 435. Ammonoly sis of Halogen Compounds RC1 + NH3 -+ RNH, HCI In t h i s manner, N,N-dimethyl-n-b~tylamine"~and N,N-dimethylphenethylamine400 are obtained in yields over 80% from the corresponding primary amines. Higher aliphatic aldehydes do not respond a s satisfactorily a s formaldehyde. By means of a modification of the procedure, aromatic aldehydes may be converted by the action of ammonium formate t o primary amines, e.g., benzylamine (6%) and p-methoxybenzylamine (23%).547 Methylation of diamines with formaldehyde and formic acid yields the In most tetramethyl derivatives, e.g., tetramethyldiaminobutane (92%).'" instances, alkylation of amino a c i d s by t h i s same combination gives complex products, although a-dimethylaminobutyric acid c a n b e made from the corresponding a-amino acid in 80% yield."3 Reaction of the readily available amino alcohols like N-methylethanolamine and 2-isopropylaminoethanol gives the N,N-dialkyl derivatives O.' n T h e direct conversion of halides t o prinary amines i s discussed here. However, it i s usually much n o r e desirable to u s e one of the indirect methods such a s method 437 or 452. T h e reaction of ammonia with primary alkyl halides generally forms a mixture of primary, secondary, and tertiary amines and even a certain amount of the quaternary ammonium halide. Still, the method may be profitable for obtaining primary amines if the halogen compound i s above C, and e x c e s s ammonia i s employed, for then polyalkylation i s l e s s likely and the products, having widely different boiling points, are more readily separated. Thus n-butyl bromide and a large e x c e s s of ammonia in alcohol solution a t room temperature give a 47% yield of n - b ~ t ~ l a m i n e : ~ In general, primary alkyl halides react better than secondary; tertiary halides undergo d e h y d r ~ h a l o ~ e n a t i o nHigh-molecular-weight . alkyl halides are slow t o react and must b e heated with alcoholic ammonia.'5 Anhydrous liquid ammonia favors the formation of primary amines.g6 Aryl- 666 substituted aliphatic halides such a s the arylchloropropanes give 21-51% yields of the corresponding a m i n e ~ : ~ Aryl halides react t o form largely primary amines. High-pressure ammonolysis at an elevated temperature (100-200') in the presence of a copper catalyst is r e q ~ i r e d . ' ~ ' " T h e Phalofluorenes take an anomalous course:' Heterocyclic amines are quite often prepared by ammonolysis of - ' ~ halogen atom in 9-chlorothe halides over a copper ~ a t a l ~ s t . P ~ The acridine is easily replaced by an amino group by heating to 120' with ammonium carbonate and phenol?' Similarly, 2-chlorolepidine i s converted t o 2-aminolepidine (2amino-4-methylquinoline) (78%).P5 Aryl halides in which the halogen atom i s activated by nitro groups are easily converted t o the amines without catalyst, as in the preparation of 2,4dinitroaniline (76%)T3 Preparation of the simplest diamine, ethylene diamine, by ammonolysis of the dihalide i s accompanied by the formation of diethylenediamine and triethylenetetramine;98 other methods for its preparation are more suitable. Only the higher homologs of P-dialkylaminoethyl bromide respond favorably to this treatment. Thus, di-n -butylaminoethyl bromide i s converted t o the diamine in 55% yield whereas the dimethylaminoethyl bromide undergoes extensive dimerization.P7 Trimethylene bromide reacts with liquid ammonia to form trimethylenediamine (50%);'~however, experimental details are lacking. When the two halogens in the dihalide approach one another in s p a c e as in tetra- and penta-methylene dibromides, then nitrogen spiranes a r e the main products.P6 T h e exchange of halogen for the amino group i s important in the formation of other polyfunctional compounds, particularly the amino acids. In several of these transformations with aqueous or liquid ammonia, it h a s been shown that the presence of ammonium s a l t s minimizes the formation of secondary and tertiary a m i n e ~ . ' ~ ~ ' Excellent directions for the synthesis of a-amino a c i d s (C,€,) from U-halo acids and ammonia are given, I O ~ - I I O The methods have been r e v i e ~ e d . ' ~ 'lo3 ~ Long-chain amino acids are prepared by t h i s and other procedures."' Other a s p e c t s of the ammonolysis process have been d i s c ~ s s e d . " ' ~55s ' 436. Alkylation of Amines R'X R'X RNH, -+ RR'NH --+ RR'J HX 667 METHOD 436 Ch. 24 AMINES T h e direct alkylation of a primary amine with an alkyl halide results in the formation of secondary and tertiary amines in varying amounts, depending on the conditions of the reaction. Quite often, these products are accompanied by unchanged amine and quaternary ammonium salt. As in the ammonolysis of halides, formation of a particular product is favored by employing a large e x c e s s of one reactant: e x c e s s alkylating agent for the tertiary amine or e x c e s s amine for the secondary amine. The reaction i s important in the synthesis of aromatic secondary and tertiary amines as well as some aliphatic tertiary amines. Thus, in the synthesis of N-phenylbenzylamine, a n unusually high yield of this secondary amine (96%) i s obtained with a 4 :1 molar ratio of aniline t o benzyl chloride.l14 Other N-monoalkylated anilines are obtained in a similar manner (7585%).11' Also, certain ~ a r y l e t h y l a m i n e s ArCH,C&NHR, , are prepared from P-arylethyl bromides and primary amines by using a large e x c e s s of the latter."' Very often, alkylations of this nature which are carried out in aqueous ethanol are accompanied by hydrolysis and alcoholysis of the halide:6 Some N-alkylated aryl amines like N-ethylm-toluidine may be synthesized in fair yields from reactants which are present in equimolar quantities (66%).11'Conditions for the exclusive formation of N-methylaniline from chlorobenzene and methylamine have been found."7 C,H,Cl + 2CH,NH, % C6H,NHCH3 + CH3NH,. HCI Heat Such a process parallels that for making aniline from chlorobenzene and ammonia and involves a copper catalyst which promotes the reaction of the aryl halogen atom. Sometimes the degree of alkylation can be controlled more carefully by' employing other alkylating agents. Thus, primary amines may b e alkylated t o secondary amines free from tertiary amines by the action of aluminum alkoxides a t 250-350' in a sealed tube. The procedure is illustrated by the treatment of aniline with aluminum ethoxide a t 275' t o form N-ethylaniline (94%)F6 On the other hand, alkylation with alkyl phosphates leads t o tertiary amines, e.g., N,N-diethylaniline (99%) and N,Ndi-n-buty laniline (79%)."lg l'' T h e s e reagents afford a simple and convenient procedure furnishing yields in the range of 53% t o 95%. Other alkylating agents for the formation of dialkylarylamines include the e s t e r s of sulfuric, sulfurous, and p-toluenesulfonic acids."' It has been noted , that pyridine a c t s as a catalyst in the production of N,Ndimethyl-anaphthylamine from a-naphthylamine and dimethyl s ~ l f a t e . " ~ Commercial processes for obtaining the N-alkylated anilines are based on the reaction of aniline s a l t s with alcohol in a n autoclave a t about 200'. A laboratory adaptation of this application of an alcohol a s the alkylating 668 AMINES METHOD 436 Ch. 24 agent c o n s i s t s in heating the alcohol and aniline with a small amount of iodine in an autoclave for 10 hours a t 220° t o 230°. In this manner, either mono- or di-alkylated anilines are prepared (60-90%).'35 Other c a t a l y s t s include copper and sodium halides.'OO The mono- and d i a l k y l a t e d amines may be separated by treatment with a c e t i c anhydride and d i ~ t i l l a t i o n . ' ~ ~ Aliphatic tertiary amines are prepared by the interaction of secondary amines and alkyl bromides. Equimolar quantities of the reactants are treated in alcohol solution in the presence of a n inorganic b a s e for 2 t o 6 days a t room temperature or more quickly in an autoclave a t a higher temperature. Many compounds have been characterized; however, the yields are not always ~ t a t e d . ~ " * " ~N-Alkylated benzylamines are commonly prepared by this pr~cedure;"'~ 'l5* t h e s e compounds are important intermediates in the synthesis of pure secondary amines (method 434). Alkylation of diethylamine with isopropyl bromide has been accomplished, after many unsuccessful attempts, by heating the reactants under reflux in glycerol solution for 72 hours (60%).Ia6 Preparation of aromatic secondary and tertiary amines like diphenyland triphenylamine i s catalyzed by copper powder.'36 Further alkylation of tertiary amines yields quaternary ammonium s a l t s . T h e s e compounds are numerous and are readily prepared by heating the alkyl halide and tertiary amine in the absence of a solvent or in the presence of a l c ~ h o l . ' ~ ~ - ' ~Methylation ' of tertiary amines t o quaternary ammonium s a l t s can be accomplished with methyl h a l i d e ~ ' ~or~di~ ~ ' ~ methyl ~ u l f a t e . ' ~ ~ Monclalkylation of e t h y l e n e d i a m i ~ ewith high-molecular-weight alkyl chlorides and bromides (C, t o C,,) c a n be successfully carried out when a highly concentrated solution (95%) of the diamine is employed. The N,N-Dialkylethylenediamines, );ields are in the range of 83% t o R,NCH,CH,NH,, are prepared by other methods (methods 427, 435, and 452). sym-N,N'-Dialkylethylenediamines, RNHCH,CH,NHR, may be obtained either by the treatment of ethylenediamine with two moles of halide (84-90%)145 or by the reaction of ethylene chloride with a n e x c e s s of the primary amine in a n autoclave, as in the preparation of N,N'-din-butylethylenediamine (50%).'46 Other alkylated diamines are formed by the amination of dialkylaminoethyl ~hloride."~'14' In some instances, a copper-bronze catalyst has been employed;'48' '49 the yield of diethylaminoethylaniline from the alkylation of aniline by diethylaminoethyl chloride is increased from 72% to 88% with this catalyst.'49 A copperbronze or cuprous chloride catalyst i s more frequently employed in the condensation of aryl halides with a m i n e ~ . ' ~ ' Alkylation with allyl halides gives olefinic amines .'? Halo amines are formed by these procedures. Partial amination of a i methylene chlorobromide with diethylamine yields l-dieth~lamino-3- 669 chloropropane (70%) accompanied by the formation of diethylamine hydrobromide.'53 Halo anilines respond t o the usual treatment with dimethyl alkyl h a l i d e ~ , 'or~ ~alkyl phosphates .l3' sulfate ,"Ov Amino alcohols are commonly made by the amination of halo alcohols or by alkylation of amino alcohols. Thus P-diethylaminoethyl alcohol i s synthesized from diethylamine and ethylene chlorohydrin (70%).'* Higher NO is omerization amino alcohols are made in a similar manner .'52' '65-'68 through the formation of an ethylene oxide intermediate occurs during the ~ s e r i e s of alkylaminoalkylcarreaction of a 1 , 2 - ~ h l o r o h ~ d r i n . ' ~Several binols, RNHCH,(CH,),OH, have been prepared by alkplations of ethanolamine (16-53%),'57 2-amino-2-methyl-1-propanol,and 2-amino-l-b~tanol.'~' For the preparation of mixed N,N-dialkyl derivatives, better yields are Aliphatic obtained when the larger alkyl group is introduced first.'60* tertiary amino alcohols of the type (CH,),COH(CH,),N(CH,~, n = 1 to 4, have,been prepared by amination of the corresponding bromohydrins (52%).'6' The latter compounds are readily obtained by the action of methylmagnesium bromide on bromo e s t e r s (method 91). The alkylation of 2-amino-2-methylpropanol with tetramethylene bromide leads t o 241pyrrolidy1)-2-methylpropanol (76%).16' Amino ethers are obtained by the same reactions employed for amino .'51. 170-174 Aliphatic and aryl aliphatic amino ketones are made by the amination of the halogenated carbony l compounds ,'78-1as e.g., dimethylaminclacetone (74%),'78 1-diethylamino-2-penmnone(79%),536 and a-methylaminopropiophenone (57%).'05 It i s noteworthy that this system may undergo a rearrangement, viz., ArCOCH,Br + (C,H5XNH -4 ArCH,CON(C,H5), (45%).539 The reaction of a-halo ketones with arylamines is even more complex.540 Examples of the formation of a-aminoaldehydes by this method are few.'75 However, the same results may be achieved by the amination of the halo acetals with subsequent h y d r o l y s i s ~ 8'76* ' '77 Amination of halogenated acids or e s t e r s i s possible.'87-'9' When circumstances are favorable, dehydrohalogenation occurs, a s in the treatment of ethyl a-bromoisovalerate with diethylamine; the product i s Fedominantly the a,P-unsaturated ester."' The amination of aliphatic chloro and bromo nitriles i s facilitated by the presence of potassium iodide .193-196 Halogen atoms in the o- and p-nitrohalobenzenes are readily 670 Ch. 24 AMINES replac'ed by the dialkylamino group, a s in the preparation of p-nitrodimethylaniline (97%).'"* '" - 437. Interaction of Hexamine and Halogen Compounds RX + (CH2),N4 (CH,),N4 RX H RNH, sHCI + NH,CI The interaction of alkyl halides, preferably iodides or bromides, with hexamine in chloroform or alcohol solution forms quaternary ammonium s a l t s which on heating with hydrochloric acid are readily converted t o primary amines'4l'. The procedure has been employed successfully in the reaction of primary, but not secondary or tertiary, aliphatic halides,'% 236 certain benzyl h a l i d e s ~ " *'" halo ketones,"' halo acid^,"'^ '" '" . METHODS 439-441 Certain aromatic and heterocyclic compounds having reactive nuclear positions undergo direct amination. Thus a-nitronaphthalene on treatment with hydroxylamine in methanolic potassium hydroxide yields 4-niuo-lnaphthylamine ( 6 0 % ) y 7 following the rules of orientation for substitution by a nucleophilic reagent rather than an electrophilic reagent. The amination of heterocyclic b a s e s s u c h a s pyridine, quinoline, and their derivatives by alkali amides furnishes a good method for obtaining the 2 a m i n o compounds (50-100%). The scope and limitations of the reaction have been reviewed; the procedure i s illustrated by the preparation of 2-aminopyr idine (76%).'08 440. Rearrangement of N-Alkylanilines and halo e s t e r s .'40* 24' T h e yields range from 40% t o 85%. Certain quaternary ammonium s a l t s , particularly the hexaminebenzyl halides, form aldehydes when heated with water (method 147). 438. Replacement of Hydroxyl Groups by Amino Groups (NtG)aS03 Cl0H7OH + NH, \ Cl0H7NH, + H,O T h i s equilibrium reaction in the presence of sulfites i s important f a the preparation of certain polyfunctional benzenes and naphthalene derivatives bearing hydroxyl or amino groups (cf. method 94)(Bucherer). A review of the literature t o 1342 has been made.'" T h e hydroxy compounds are converted t o the corresponding primary amines by treatment with aqueous ammonia and ammohium sulfite a t 90-150°, good mixing being essential, a s illustrated by the preparation of 2-naphthylamine (96%) In a similar manner, r e s u c i n o l and 7-methyl-l-naphthylamine (90%):" and its alkylated derivatives have been changed t o the corresponding amino phenols (5 0-80%)."Os "' Benzene derivatives containing one hydroxyl or one amino group a r e much l e s s reactive. Hydroxyquinolines undergo this reaction (65-8~%).'~" 393* 646 Sometimes, replacement c a n be effected by heating with ammonia under pressure in the presence of zinc chloride, e.g., 3-amino-2-naphthoic acid from 3-hydroxy-2-naphthoic acid (70%)."' 439. Amination of Aromatic Nuclei 6 71 C6H,NHR P-RC6H,NH, Heat Treatment of N-monoalkylanilines with anhydrous cobalt chloride a t about 220' for 13 hours c a u s e s a nitrogen-to-carbon rearrangement t o form p-alkylanilines Normal alkyl groups migrate without a.pparent isomerization within the group to give good yields (60-85%); however, sand t a l k y l a n i l i n e s undergo extensive decomposition t o give olefins and aniline. Similar treatment of the aniline s a l t s gives the rearrangement, viz., N-isobutylaniline HCI -4p-amino-t-butylbenzene. In this c a s e , isomerization oizcurs within the alkyl group. . 441. Amination of Cyclic Imines N-Alkyl- and N,N-dialkyl-ethylenediaminesare prepared in a single s t e p (cf. methods 427, 435, and 452) by the addition of gaseous ethylenimine to primary or secondary m i n e s in the presence of anhydrous aluminum chloride (77-89%).4" Primary m i n e s react a t about N o with benzene a s solvent, whereas secondary amines react a t 180° with tetralin or biphenyl a s solvent. In a similar manner, homologs of ethylenimine and ammonia (or amines) react in high-pressure equipment a t loo0 in the presence of ammonium ch10ride.'~~ AMINES Ch. 24 442. Amination of Oxides /O\ CH, CH, - + R,NH The addition of aliphatic and aromatic amines to other unsaturated ketones has been discussed.'.75 a$-Unsaturated aldehydes like acrolein and cmtonaldehyde combine with two moles of amine to form unsaturated 1 , s diamines, RCH(NR,)CH=CHNR,.'53 The addition of primary or secondary amines to acrylic esters has provided a good route to the N-alkyl-P-aminoThe product may add a second molecule of ester propionic to furnish alkyl di-(carbalkoxyethyl)-amine~;'~' however, the course of the reaction can be controlled in many instances to provide largely the secondary or tertiary amine. -+ R,NCH,CH,OH Ammonia and m i n e s open oxide rings to form amino alcohol^;'^"'^^ the yields are markedly higher when amines are employed ( 5 5 9 0 % vs. 1840%).464.*67.468 The ready availability of ethylene and propylene oxides makes this procedure attractive for preparing 2-dialkylamin~ethanols'~' and l-dialkylamino-2-propanols.'6' Thus P-diethylaminoethanol i s conveniently prepared by the addition of ethylene oxide to diethylamine in methanol at 45' to 60° or by a combination of the two reactants in an autoclave at 100' (81%)." Isopropylamine reacts with ethylene oxide in the presence of water and a small amount of hydrochloric acid to form P-isopropylaminoethanol (76%).'63 The reaction i s general and i s shown by higher oxides like isobutylene ~ x i d e , ' ~ styrene ' oxide,'68 and stilbene oxide.'69 - RNH, RaNH * [R,NCH=CH,] Catalyst H C 3 CH R,NCH(CH,)C CH Acetylene and either primary or secondary aliphatic amines react under pressure at 80' to 100' in the presence of a copper catalyst to form Nmono- and N-&-substituted 3-aminobutynes, e.g., 3-diethylamino-I-butyne (65%).'7a Although benzylamine responds favorably, aniline and acetylene furnish only a 25% yield of 3anilino-l-butyne. The treatment of ally1 alcohol with amines in the presence of an equimolar quantity of alkali in an autoclave at about 115' represents a general method for the preparation of N-alkyl-3aminopropanols, e.g., 3-dimethylamino- l-propanol (65%)."' C& =CHCYOH R NH R,NC&C&C&OH NaOH Ammonia and amincs add more easily to a double bond which i s conjugated with a carbonyl or carbalkoxyl group to form &amino compounds. Thus, mesityl oxide and aqueous ammonia react under mild conditions to form diacetonamine (70%).47' CHl- CHCOS' + cy- RNHCH,C&CO,R' CHCO,R' + Other a#-unsaturated esters including methyl m e t h a ~ r y l a t e , 'ethyl ~~ crotonate,"' and ethyl cinnamate"' respond to this treatment. Ammonia adds to ethyl crotonate to form a 55% yield of ethyl P-aminobutyrate; on the other hand, the interaction of ammonia and ethyl acrylate produces only di- and tri-substituted product^.'^' Amination of a,&unsaturated acids i s brought about by treatment with two moles of hydroxylamine in alcohol solution, a s illustrated by the acid (34%).'8'1'86 synthesis of dl-~-amino-~-phenylpropionic 443, ,Amination of Unsaturated Compounds HC=CH 673 METHODS 443-444 C,H, CH(NH,)CH, CO,H \ l l l ~ The interaction of ammonia or amines with a-nitro olefins, RCH=CHNO,, in alcoholic solution at 0' forms nitroamines, e.g., l-nitro-2-aminopropane (55%) and 2-nitro-3-aminobutane (60%). The reaction is general and is applied to numerous nitro olefins readily obtained by the dehydration of aldehyde-nitroparaffin condensation p ~ o d u c t s . ' ~ ~ * ' ~ ~ l ~ RCH =CHNO, + NH, -4 444. Arninomethyla tion (Mannich) l RCOCH, + CH,O + (CH,),NH HCl RCH(NH,)CH,NO, - -H,O RCOCH,C&N(CH,)a HCI Compounds possessing labile hydrogen atoms readily condense with formaldehyde and an amine (primary or secondary) or ammonia, thereby placing an aminomethyl or substituted aminomethyl group at the location 674 of the reactive hydrogen atom. The reactive hydrogen may be present in "~ ester, or nitrothe alpha position of an a l d e h ~ d e , " k~ e t ~ n e , ~ ~ " acid,4a4 paraffin;sg.~.4as.4a6 or it may be in the ortho or para position of a phenol4" or in certain heterocyclic corn pound^.^^^"^^ Secondary products are often formed by the replacement of a second active hydrogen with an aminomethyl group. HC1 RCOC\CH,N(CH,), * RCOCH[C\N(CH,), CH~O HCI], (CH3)aNH' HCl Also, Mannich bases which are themselves primary or secondary amines may undergo further condensation to yield tertiary amines. RCOCH,CH,NHR HC1 CH,O METHODS 446--447 Ch. 24 AMINES > (RCOCH,CH,),NR HCI + H,O RCOCH, The literature of this reaction to 1942 has been reviewed."' Later observations have been made.'""a'*51' The synthesis of P-dimethylaminopropiophenone (72%) exhibits a typical procedure."' poor for the higher amines because of the formation of the corresponding In ~order nitriles and acyl alkyl u r e a ~ . ~ ' ~ ' ~ to overcome this difficulty, the high-molecular-weight aliphatic amides are treated with bromine and sodium methoxide with subsequent hydrolysis of the resulting u r e t h a n e ~ . " ~ RCONH, + Br, + 2NaOCH, 4 RNHCO,CH, + 2NaBr + CH,OH Alicyclic amines have been produced by the same modifi~ation."~~"' A few diamides have been converted to d i a m i n e ~ . ~ ' ~ ~ ~ For ' * the '~~ most part, the conversion of unsaturated amides is unsatisfactory; however, a-allylphenylacetamide is transformed to a-allylbenzylamine in a 90% yield.16' Aromatic amides having free or methylated phenolic groups are treated preferably with sodium hypochlorite rather than hypobromite Certain amino in order to avoid excessive ring halogenati~n.~'~*~~'~~~~ acids like anthranilic acid and P-alanine have been synthesized from the appropriate imides.16' 445. Aminmethylation of Alcohols R,NH 675 (45% yield) + CH,O + R'OH --, R,NCH,OR' The interaction of paraformaldehyde, a secondary amine, and an alcohol occurs vigorously t o form in good yields an aminomethyl alkyl ether. The method is general and has been applied to the formation of many amino ethers.'" - CH,CO,H CH,CO 447. Degradation of Acyl Azides (Curtius) 446. Degradation of Amides (Hofmann) RCONH, NaOBr RNCO 2 RNH, Amides react with alkaline hypochlorite or hypobromite solutions to form primary amines having one l e s s carbon atom. The reaction involves the hydrolysis of an isocyanate, which i s seldom isolated. Isocyanates are also intermediates in the Curtius and Lossen rearrangements (methods 447 and 448). Although these methods have a common mechanism and intermediate, they involve three separate and distinct types of starting materials and are, therefore, treated individually. A comparison of these reactions has been made."' A detailed discussion of the Hofmann reaction, which includes conditions, typical procedures, and compounds prepared thereby, has been presented.'" The method h a s been used for the preparation of aliphatic, aryl aliphatic,15'-"' aromatic,"2s1" and heterocyclic l4,26Ov161,511.5'1 amines. Yields for the lower aliphatic amines (C,-C,) are about 70-90% but are The conversion of an acid to an amine of one l e s s carbon may be conveniently accomplished by way of the azide and rearrangement to the is* cyanate. The azide may be obtained either from the acyl chloride and sodium azide or from an ester by treatment with hydrazine and subsequent diazotization. An excellent review including scope and limitations of the reactions, selection of experimental conditions and procedures, and a tabulation of compounds prepared thereby h a s been presented."' The acyl azide undergoes a rearrangement similar to the Hofmann rearrangement (method 446) and to the Lossen rearrangement (method 448). This step i s carried out in inert solvents like benzene and chloroform to give the isocyanate directly or in solvents like alcohol and water which will react with the isocyanate to form urethanes and ureas. The amines are obtained by hydrolysis of any of these three inter* mediates. When hydrolysis i s impracticable, the alkylureas or urethanes 676 may b e converted with phthalic anhydride to alkylphthalimides which are formed in excellent yields. T h e s e compounds a r e then readily decomposed by hydrazine according t o the usual Gabriel synthesis (method 4 52).272 0 + (RNH),CO --, 2 NR + CO, + H,O T h e Curtius reaction can b e performed on a l i p h a t i ~ , " % a l i c ~ c l i c , ~ ~ ~ ~ " ~ * ~ ~ ~ aroma t i ~ , ~ " - ~or" heterocyclic 2"'283 azides. T h e application of the procedure to azides containing other functional groups h a s a l s o been described.lgO Diamines (from dicarboxylic have been a c i d s ),178-280 arylhaloarnines,28s~ and nitroarylamines successfully prepared, whereas certain groups like the double bond, hydroxyl, carbonyl, and amino often cause the formation of products other than the anticipated amine. For the synthesis of a-amino acids, the readily a c c e s s i b l e alkylcyanoacetic e s t e r s may be employed as starting materials. Their a z i d e s rearrange to cyano isocyanates, which can be e a s i l y hydrolyzed.2"s "' a-Amino acids may a l s o be obtained by applying the Curtius reaction to substituted malonic acid e s t e r s a s in the preparation of ,8-phenylalanine (44% o ~ e r - a l l ) . ~ " * ~ ' ~ ~ ~ ~ ~ 7" 2 C6H5CH,CH \ C6H,CH,CH \ NaNO FH 44% -----3C6H5CH2CH H+ CONNH, CO2 C2Hs METHODS 448-449 Ch. 24 AMINES ---4 \ CON, 677 Alkali s a l t s of hydroxamic acids and their derivatives undergo a rearrangement to give isocyanates. The method h a s had little synthetic application; it h a s been re~iewed.'~' 449. Interaction of Hydrazoic Acid and Carbonyl Compounds (Schmidt) (a) RC0,H (6) RCOR H SO + HN, U RNH, + CO, + N, + HN, H ,SO -3RCONHR --, RNH2 The reaction of equimolar quantities of hydrazoic acid with an acid or ketone affords a convenient method for preparing certain m i n e s . The reaction is carried out by treating the organic compound in an inert solvent in the presence of sulfuric acid with gaseous hydrogen a ~ i d e , ' ~ ~ hydrazoic acid in solution, or sodium azide dire~tly.'~' An e x c e s s of hydrazoic acid should b e avoided in the reaction of ketones, for then tetrazoles are formed. It should b e recalled that hydrazoic acid is toxic and explosive. A discussion of the method including scope and limitations, experimental conditions and procedures, and compounds prepared thereby h a s been presentedz9' Aliphatic,293 alicy ~ l i c , ' ~ and ' aromatic acids 29"298 which are stable to concentrated sulfuric acid undergo the reaction in good yields, although detailed directions are frequently lacking. Amines prepared by this single-step process are often obtained in higher yields than when prepared by either the Hofmann or Curtius degradation.* Benzoic acids substituted with alkyl, halo, hydroxyl, alkoxyl, cyano, or nitro groups react to give the corresponding substituted anilines in 41-80% yields.29s The carboxyl group in an a-amino a c i d d o e s not react with hydrazoic acid; the reaction proceeds, however, if the amino group is further removed. This difference in reactivity is shown by t h e conversion of a-aminoadipic acid to dl-ornithine (75%).,0° + HN3*H H02C(CH2)3CH(NH2)C02H H2N(CHJ3CH(NH2)C02H The conversion of ketones to amides by the Schmidt reaction h a s been mentioned elsewhere (method 362). Since the hydrolysis of the m i d e s s o obtained proceeds readily, the two s t e p s provide a convenient synthesis of amines from ketones. T h e yields are often higher than those obtained from the Beckmann rearrangement with subsequent hydrolysis (method 448. Degradation of Hydroxamic Acids (Lossen) RCONHOH 3 RNCO s o RNH, + CO, Heat *For a comparison of the Schmidt, Hofmann, and Curtius reactions, see ref. 270, p. 363. 678 Ch. 24 AMINES 451).29"299 T h e procedure is convenient for the synthesis of a-amino acids from mono- or di-substituted acetoacetic e s t e r s (80-98%).3D1 450. Hydrolysis of Isocyanates, Isothiocyanates, Urethanes , and Ureas RNCO + H,O + RNH, ArNH, CICO ,CH2CH2C1 have been employed for obtaining d i a m i n e ~ , ~ " * *unsaturated ~' a~nines,*~'**~~ and amino acid^.*^^"^ The deacylation of p- and o-nitroacetanilides is carried out with sodium ethoxide in boiling Certain amines are conveniently prepared by the hydrolysis of Nsubstituted amides which are made by the Beckmann rearrangement (method 359) and the Schmidt reaction (method 362). 452. Hydrolysis of N-Substituted Phthalirnides (Gabriel) + CO, Many important amines have been obtained by the hydrolysis of one of t h e s e substances. Thus, t-butylamine is formed by alkaline hydrolysis of t-butylurea (78%)*'* or by treatment of t-butylisothiocyanate with formic acid (79%).*" Allylamine is synthesized by hydrolysis of ally1 isocyanate with dilute hydrochloric acid (73%).''I T h e hydrolysis of isocyanates, urethanes, and ureas, which occur a s intermediates in the degradation of amides and azides, h a s been discussed under methods 446 and 447, where many examples have been cited. 6 - ~ r y l a m i n o e t h a n o l sare made by the condensation of arylamines with chloroethyl chloroformate followed by treatment of the resulting carbamates with e x c e s s alkali. T h e reaction proceeds by way of an intermediate oxazolidone which need not b e isolated.458 ArNHCO,CH,CH,Cl 4 80% In a similar manner, y-chloropropyl arylcarbamates formed from aromatic amines and y-chloropropyl chloroformate are converted to y-arylaminopropan01s.''~ 679 METHODS 451-452 COOH CO + RNH, CO The facile alkylation of phthalimide and subsequent hydrolysis of the N-substituted derivatives furnishes a convenient synthesis for primary amines. T h e substituted phthalimide was originally prepared by heating a mixture of phthalimide, potassium carbonate, and organic halide in a non-polar solvent for 2 t o 24 hours at looo t o 1 5 0 ~ . * An ~ ~improved procedure c o n s i s t s in performing t h i s initial s t e p in a polar solvent like dirnethylformamide, in which potassium phthalimide is appreciably soluble; the reaction occurs at room temperature within 10 minutes.429 Various esters of p-toluenesulfonic acid may be substituted for the organic halides a s alkylating agents.*)' Tertiary alkyl halides l o s e hydrogen halide in their reaction with potassium phthalimide. However, the t-alkylphthalimides are readily prepared by heating t h e corresponding t-alkylureas and phthalic anhydride to 200° t o 240°.430 Hydrolysis may be carried out directly by refluxing the alkylated phthalimide in b a s i c or acidic solutions or by the action of hydrazine hydrate followed by a ~ i d i f i c a t i o n . ~ ~T'h i s procedure is illustrated by t h e synthesis of t-butylamine (67% ~ v e r - a l l ) . * ) ~ 451. Hydrolysis of N-Substituted Amides T h e N-alkylation of amides followed by hydrolysis furnishes a good route for making secondary amines. The f ~ r m y l , * ~acetyl,"" ' and arylsulfonyl derivatives of amines are best suited for alkylation (method 358). Hydrolysis is accomplished by refluxing concentrated hydrochloric acid alone 3'*"'*4949*'497 or in acetic acid.'9a*s0a~So3N-Alkylformamides prepared by the addition of olefins t o nitriles (method 355) are hydrolyzed with aqueous alkali.'06 Similar hydrolytic procedures Alkylation with organic halides carrying a second functional group affords a good synthesis of some difficultly obtained difunctional compounds including d i a m i n e ~ , ~ ' ~ ~ amino * ~ ~ ' *halides,*)O ~~ hydroxy a m i n e ~ , " ~ amino k e t o n e ~ , ' ~ ~ ' *amino * ~ acids,429~44"443amino cyanides,441~44s and 680 n i u o .amine~.*~'Also t h e stability of the N-substituted phthalimide allows further changes to be made, for example, (a) amination of y-bromopropylphthalimide with various secondary amines (60-80%),*'~ (b) catalytic reduction of N-(m-nitroben ~ y l > p h t h a l i m i d e ,(c) ~ ~ oxidation of &hydroxye ~ h ~ l ~ h t h a l i m i dand e , ~ (4 ' the action of halogen acids on epihydrinphthalimide.*'9 453. Hydrolysis of Nitrosaanilines C,&NRR ,-. (HONO) p-RR'NC,H,NO RR'NH + pHOC6H4N0 This classical method for preparing secondary amines is rarely used. It h a s been applied in the preparation of some a-dialkylamino-w -methylaminoalkanes (65-70%)."' Higher yields have been obtained by hydrolyzing with sodium bisulfite rather than with sodium hydroxide, which is the common reagent. 454. Hydrolysis of Quaternary Imine Salts The alkylation of Schiff bases and hydrolysis of the resulting quaternary salts is an excellent method for obtaining certain secondary amines, RR'NH, particularly where R'-= CH3.Z14 The procedure is l e s s satisfactory for the introduction of large alkyl groups. The Schiff base is usually a derivative of benzaldehyde. It is readily prepared, and, without isolation, is alkylated; furthermore, the s a l t i s seldom isolated. An example is the treatment of the Schiff base from allylamine and benzaldehyde. Methylation is accomplished by the action of methyl iodide a t 80° for 16 hours; subsequent hydrolysis furnishes methylallylamine in 71% yield."' 455. Hydrolysis of Cyanamides 2 ~ ~ r R,NCN ~ *~H ' RzNH ~ +~CO, ~+ NH, * Examples include the synthesis of diallylamine (88%) and di-n-butylamine (75%)."' 456. .Ring Dehydrogenation METHODS 456-460 Ch. 24 AMINES 68 1 Azines of certain carbonyl compounds like f methyl-Falkyl-2-cyclohexen- b o n e s and the alkylated l-teualones have been aromatized to the corresponding fmethyl-5-alkylanilines and l-aminonaphthalenes by boiling with a palladium-carbon catalyst in t r i e t h y l b e n ~ e n e . ~The ~ ~ yields in the first step are in the range 24% to 74% and in the second 20% t o 55%. The nuclear amino group is stable during the sulfur dehydrogenation of 2-amino-9,lO-dihydrophenanthrene(cf. method 2).*." In another instance, i t is protected by acetylation before dehydrogenation:91 457. Condensation of Grignard Reagents and (TMethylhydroxylamine CH,ONH, 2RMgX RNHMgX 2 RNH, A general method for the preparation of primary amines, free from secondary and tertiary amines, involves the interaction of Grignard reagents and (Tmethylhydroxylamine. The yields range from 45% to 90% for many amines including ethylamine (81%), t-butylamine (70%), namylamine (65%), and P-phenylethylamine (68%).'12 Grignard reagents which have been prepared from polymethylene halides and magnesium in the presence of 0.1% water in the ether react readily with 0-methylhydroxylamine to form the corresponding polymethylene diamines (50-68%).512 458. Addition of Grignard Reagents to Schiff Bases ArCHO ArCH=NR R'hlg~ ArCH(RP)NHR L This method is particularly desirable when the stable and readily available Schiff bases from substituted benzaldehydes are employed. It furnishes a good synthesis for amines of the type ArCH(R')NHR where the two R groups may be widely varied to include those from many Grignard reagents and primary aliphatic amines, e.g., N-methyl-1,2-diphenylethylamine (95%)*" and l-ethylamino-l-phenylbutane(90%):'' The reaction of aliphatic aldimines and Grignard reagents h a s been found to proceed l e s s readily."' 459. Interaction of Grignard Reagents and Halo amines"' RMgX + NH,U -+ RNH, + MgXCl or RC1 + MgXNH, 460. Reduction of Unsaturated A r n i n e ~ ~ ~ ' *(cf. " ~ methods 431 and 443) 2HNR RCH= CHCHO 4 RCH(N&)CH= CHNR, H'pPf*RCH(N&)CH,CH,N& 70-9370 682 Ch. 24 AMINES - T A B L E 81. AMINES 461. Interaction of Sodium Arnide and Halogen C~rnpounds'~~"" RX + NaNH, L1 plid RNH, + NaX Arnrnonfa R = n-hew1 (74%);M4 R = 2gyrIdyl TABLE 81. AMINES C, Yield Compound Method (%) (67%)?a7 462. Rearrangement of H y d r a z o b e n z e n e ~ ~ ~ ~ * ~ ~ ~ 5 HaNC6H4C6H4NH, C6H5NHNHC6H5 C2 463. Interaction of Amines and P - ~ e t oEsters"' RCOCH,CO,C,H, R'NH a b RC(NHR') =CHCO,C,H, 4 6 4 Condensation of Unsaturated Amines and Aromatic Compounds496 CH, =CHCH,NH, + ArH 683 Ethylmine Dimechylamine C, n-Propylamine Isopropylamine Trimethylamhe C4 ~Butylamine ArCH(CH,)CH,NH, Isobutylamine Methylisopropylamine Teaamethylammonium chloride 1Aminopenmne 3 Aminopenmne Isoamylamine Neopentylamine hydrochloride For explanations and symbols s e e pp. xi-xii. chapterref. B.p./mm., a;, ( u p . ) , Deriv. 684 685 T A B L E 81. AMINES Ch. 24 AMINES TABLE 8 1 (continued) c, Compound (%) chapterref. B.p./mm.. nb. (M.P.), Deriv. Aliphatic Amines (c~ntinued) C 5 Methybn-butylamine Ethykn-propylamine N,N-Diethylmethylamine C6 ~ H e x y l a m i n e lMethyl-4aminopentane 2,lDimethyl-3 aminobutane Ethyl-n-butylamine Dimethyl-n-butylamine Triethylamine C, Method ~Heptylamine 2-Aminohep tane n-Propyl-n-butylamine Isopropyl-n-butylamine Diethyli sopropylamine n-Butyltrimethylammonium bromide C O Ethyl-n-hexylamine Di-n- butylamine C Di-n-hexylamine 429 428 429 431 26t 53 43t 92 24369 24'" 24'24'" 91/750, 1.4011 78, 223HU 80/738, 1.3966, 224HU 185Pi 427 446 449 461 431 431 70 70 75 74 55 51 241m 24'4 24'24'24M 24= 130 128 126Pi 109, 1.4063'~, 139HU* 102, 297HC1 429 432 428 52t 80 50 24'241U 241U 109/737, 1.4056, 197HC1 94 89 426 426 427 431 446 449 426 431 432 429 429 436 436 64 73 95 63 65 75 80 80 55 54t 52t 60 93 24'" 24lW 24'24= 24w 24'9' 24'24'24= 24'24'24lS 24U9 153 15>157 58/23, 122Pi 156 119Pi 142.5 142. 1.4150'~. 83HU 142.5 93/200, 1.4112, 268HU 125/748, 1.4050 108 ( 198) 434 455 434 76 75 24'" 2424'" 158/743, 191HU 160 122/15, 2 7 0 H a lob ~ ane 4Methyl- l-aminocyclohexan e PCyclohexylethylamine amin e N-Ethylcyclohexylamine C9 l-Cyclohexyl-laminopropane P Meth yl-pcyclohexylethylamine N-Methyl-pcydohexylethylamine Clo ~ h m i n o d e c a l i n C,, Dicyclohexylamine 50t 80 24'w 24U 50/750, 149Pi C6 426 426 430 431 432 449 60 90 94 50 75 82 24'2424'" 24'm 2dS4, 24'94 135 48-52/30, 446 77t 24"' 150, 1.457516, 147Bz C, Cydohexylamine >Methyl-l-aminocyclohexane m aapter'ef. ~.p./mm., nb, (M.P.), Deriv. 446 90 24'" 150/743, 1.4535 l', 260HC1 430 426 79 80 24'" 24'" 85/25, L4656. 2 5 6 H a 151/745, 65/17, 198Pi 430 91 24= 165/745 430 77 24'" 87/21, 1.4615, 1 9 2 H a 430 86 24"' 91/17, 1.4718, 1 % ~ d 430 85 24'" 78/9. 1.4586. 172HC1 425 430 431 73 95 70 24' 2414 24'' 92/12, 1rlSBz 145/30 llF120/10, 333Ha C6 Aniline 425 447 449 86 76 85 24' 24"' 24'94 184, 1 9 5 H a ll5Ac C, Benzylamine 426 427 427 431 432 435 437 446 447 449 451 452 457 431 436 436 425 425 425 73 72 69 89 60 53 84 85 94t 75 81 75t 57 24'24= 2424" 24s47 24% 2424'" 24'" 2dao4 24'" 24U' 24'" 24'" 24'" 24*' 244 24-' 244 74/15 N-Methylaniline 1.4569", ( Aroma tic Amines Alicyclic Amines 446 426 Yield Alicyclic Amines (continued) ttms 1Ethylcyclohexyl- C , Cyclopropylamine C 5 Cyclopentylamine Method Compound 206HU o-Toluidine m-Toluidine p-Toluidine 50 90 73 73 25t 91 For explanations and symbols s e e pp. xi-xii. 85/24 80/8 182/680, 198Pi 75/14, lO5Bz* 184 184,258HCl 257HU 84/20, 60Ac 187, 60Ac 90/ 12. 194Pi 196. IOlAc 199*, l l l A c 201/756, G5Ac 200a, 149Ac 6 86 Ch. 24 AMINES T A B L E 81. AMINES TABLE 81 (continued) C, Compound Method (%) chapterref. TABLE 8 1 (continued) B.p./mm., nb. (M.P.), this. c, Compound Aromauc Amines (continued) &Ethyl mtoluidine Benzyldirncthylamine N-Mcthyl-N-ethylaniline N.N-dimethyl-mmluidine N,N-Dimcthyl-p-toluidinc P h cnyl Pimethylammonium sulfete FAminohydrindcne 2Methylarnino- l-phenylpropane N-Ethyl-a-phcnethylaminc N,N-Dimcthylphenethylamine Denzylrnethylerhylamine N,N-Diethylandinc p-Dimcthylaminoethylbenzene l-Naphthylamine l-Phenyl- l-aminopmpane 2Phenyl- 1-aminopropane 2Naphth ylamine l,2,3,rtTctrshydre2naphthylamine C,, a,a-Dimethylbenzylaminc pn-Propylaniline 0-Isopropylaniline (pcumidine) N-Methyl-a-phene thylamine (%) C m l-Phenyl-3-aminobutane 2 A m i n e 3-phenyl butane o-Amino-l- butylbenzene p- Amino-K-butyl benzene 2-Amino+-cymene 3,rtDiethylaniline l-hkthylamine l-phenylpropane l-Mcthylamine 2phcnylpropane l , YDimethyl- F a m i n e benzene N- Ethylaniline C9 Method ~ h a p t e r ~ eB.p./mm., ~. Aromatic Amines (continued) C* 3-Amino- 1,Idimethylbenzene &Amino- 1,ldimethylbenzene 687 l-Ethylamine2-phenylpropane l-Dirnerhylamino-2 phenylpropane 2-Dirnethylamino- lphenylpropane 7-Methyl. l-naphthylamine For cxplanations and symbols s e c pp. xi-xii. n;, (M.P.). Deriv. 1 688 AMINES T A B L E 81. AMINES Ch. 24 TABLE 8 1 (continued) p '=?I Compound Method Yidd ~ h a p t e r ' e ~ . B.p./-.. (R n b , (M.p.), Derir. c71 - - -- Compound N-Methylnaphthylamine 437 451 73 70 Cla p(a-Naphthy1)eQylamine a-(,&Naphthyl)ethylamine N-Ethyl-a-naphthylamine N-Ethyl-pnaphthylamine N,N-Dimethyl-a-naphthylamine N,N-Emethyl-pnaphthylamine 2-Aminotiphenyl fAminotipheny1 4Aminobiphenyl o-Aminocydohexylbenzene fAminoacenaphthene 447 432 431 431 436 45t 84 88 64 70 436 64 425 425 425 425 425 93 99 93 85 85 C,, 426 432 427 423 436 451 431 425 426 432 452 87 96 60 97 87 40t 65 82 74 75 87t Benzhydrylamine o-Phenylbenzylamine N-Phenyl benzylamine (benzylaniline) N-Phenyl-p-mluidine Methyldiphmylamine 2-Aminofluorene ~Aminotluorene C14 P,PDiphenylethylamine Dibenzylamine m-Tolyl benzylamine Erhyldiphenylamine %Dimethylaminobiphenyl N,N-Diethyl-a-naphthylamine l-Aminophenanthrene Method (7.) c h a p t e P f . B.p./mm, Aromatic Amines (codinued) Aroma tic Amines (continued) C,, Cl' 689 P,yDiphenylpropylamine y,y-Diphenylpropylamine N-Methyl- 1.2-diphenylethylamine FAminomethylphenanthrene Cl@ Triphenylamine C,, p-Aminoteuaphenylmethane 427 427 458 88 81 95 24"' 24'" 244'0 427 435 100 70 24JU 24" 436 1 85 74 24" 24'" Heterocydic Amines C, ZAminofuran CS Furfurylamine %Methyl-3 aminohran 2-Methylaminofuran 2-Tlenylamine a-Thienylaminomethane 2-Aminopyridine f Aminopyridine C6 N-Methylfurfurylamine l-(a-Thienyl) laminoethane ,&(>Tlienyl)ethylamine For explanations and symbols s e e pp. xi-xii. ntD. (Up.). Deriv. AMINES Ch. 24 TABLE 81 (continred) c, Jd Method Yi(7%) Compound Chapter'ef. B.p./mm.. TABLE 8 1 (continued) n tD. (M.P.), Deriv. c, Compound Heterocyclic Amines (continued) 2Dimethylaminomethylpyrrole a-(Ethy1amino)-pyridine C O l-(a-Furyl)3aminobutane N-Ethyl->methylfurfurylamine NJU-Dimethyl-5-methylfurfurylamine ,B-(3Pyridyl)-isopropylamine y-Pipaidinopropylamine 3- Aminothianaphthene FAminothianaphthene C9 N,N-Diethylfudurylamine 8-Piperidinoburylamine 2Aminoquinoline 3- Aminoquinoline 691 T A B L E 82. DIAMINES Method (7%) Chupter'ef- B.p./mm., Heterocyclic Amines (continued) N,N-Diethyl-ppyridylmethylamine 2 Aminolepidine 428 435 78 24" (133), 232Ac C,, f Dimethylaminomethyl- 444 100 24"' (134). 142Pi indole 2-Dimethylaminoquinoline 436 91 24U7 (7 1) 435 425 438 446 425 435 451 461 435 24 91 45 55 91 62 72 50 371 64 ~ 4 ~ ' (74). 205Ac 24-l (94) 24"' (85). 24%' 24" (133) ~ 4 ~ ' (129). 178Ac 24"'131) 24'" (122).200Ac ~ 4 ~ ' (1 10), 198Ac 24" (1 10) 60 89 39"' 39"' l- Aminodi benzofuran 3-Aminodi benzofuran 4-Aminodi benzofuran 2Aminodibenzothiophene fAminodibenwthiophene 4-Aminodibenzothiophene Cl, 2Aminoacridine PAminoacridine .... .... 435 24'* - C I, C,, 55 n h , (h4.p.). Deriv. 100/12, 170Fi (2 16) (233) For explanations and symbols s e e pp. xi-xii. TABLE 82. DIAMINES c, Compound Method Yidd (7.) chapterref. B.p.hm.. *b. @LP.), Deriv. Aliphatic Diamines C' Ethylenediamine 447 452 75t 60 GAminoisoquinoline cistrcas-Decuhydmquinoline C, ,B-jTbianaphhylethy1amine l-@Diethylaminoethyl)pyrrole For explanations and symbols s e e pp. xi-xii. 24= 24"' 172Ac 116, 172Ac 692 AMINES TABLE 82 (nmtinued) TABLE 8 2 (nmtinued) c, Compound Method Yield (%) Chapterref. B.p./mm., n;, (M.P.). cm Deriv. Compound 2,f Diaminobutane Isobutylmediamine y-Methylaminopropylamine N-Monoethylethyl- 425 427 427 451 40 80 70 201 24m 24'" 24'19 24m 3 lWCl 115/754*, 100Ac 141, 1.4479, 22GPi 131/759. W5Pi l C B l-Diethylamin*>aminobutane l-Diethylamin* faminobutane 4-Diethylaminobutylamine 1,3-bisDimethylamine butane 1,4-bisDimethylamine butane l-Diethylaminc-f methylaminopropane diamine C S Pentamethylmediamine (cadaverine) 2-Methyl- l,>diamine butane >Methyl- 1,4-diamin* butane Z,>Dimethyl-1,fpmpanedi ami ne y-Ethylaminopro~lamine l-Dimethylamin*> aminopropane C 6 Hexamethylenediamine l-Ethylamin*> aminobu cane >Methyl->methylamin* l-aminobutaae f Ethylamino-2-methyl-> aminopropane BDiethylaminoethylamine C7 l-Diethylamin*> aminopropane ~-Diethylamino~ro~~lamine l-Dimethylamin*3methylaminobutaae l,fbisfimethylamin* propane BDiethylaminoethylmethyl amine 457 68 24'= 180, 237Pi 427 611 24'= 143/752. 1.4483. 229Pi 446 72 24'" 154Bz 425 425 427 431 90 67 74 40 24' 24" 2419' 24"' 78/50, (29), 257HCla 153/737, 1.4566, 240Pi 156/735, 1.444 1, 193Pi 113. 1 . 4 1 7 7 ~ 452 457 441 861 51 20 24U' 24'* 24W 258HCI 204, 220Pi 157, 1.4431, 116Bz 24'= 155/737. 1.4502, 203Pi 427 Method (%) ~ h a ~ t e r r e fB.p./mm., . nb, (h4.p.). Derir. Aliphatic Diamines (nmtinued) &liphatic Diamines (continued) C, 693 T A B L E 82. DIAMINES Ch. 24 441 42 24U' 141, 1.4300, lO8Bz 427 427 441 452 53 62 89 57 24'M 24=' 244U 24's 145/760, 99/ 13, 207Pi 144- 150, 2 1Pi 431 431 427 452 436 62 65 72 GO 100 460 78 436 40 1 4 F 149 C9 l-Diethylamin*3amino pen tan e Teaaethylmethylenediamine Clo Decamethylmediamine l-Diethylamin*4aminohexane ,B-Diethylaminoethyldiethylamine 425 441 426 431 427 427 436 4G0 436 55 54 24" 2424'U 24'24'= 24'" 24" 24m 241U 80/ Ilj 173, 1.4347 74/12, 1.4428'' 70/10, 1.4430" 88/ 18, 1.4462.. 86/16, 1.4420" 56/ 12 72 97 50 100 74 92 453 65 24'" 60/8, t439019 426 75 24U* 86-95/22, 1.4421, 155Pi .... 76 24'U 167/757 427 426 80 64 24'= 24'" 146/ 14, (GO) 105-1 12/20 436 50 24'" 151Pi GO 15GPi 167, 199Pi Alicyclic Diamines C 4 t r a n s 1,2-Diaminocycl* butane 447 449 121 551 24"' 24"' 74/50, 1.4837 74/50, 1.4837 C, 430 447 450 447 60 501 100 72 1 24'" 24'" 24'" 24"' 265Pi W8/760, 2 6 P i 198/7GO, 265Pi 427 331 24'" 115/8, 350HC1 427 22 1 430 63 24"' 87/11, 1.4767" 430 70 2419' 85/4, 1 . 4 7 2 0 ~ 1,f Diaminocyclohexane 1,4-Diaminocyclohexane C B cis-1,4-Diaminomethylcyclohexane tr-l,4-Diaminomethylcyclohexane N-Ethyl- 1.4-cyclohexanedi ami ne Clo N,N-Diethyl-l,+cycloher anediamine 118/10, (27), 380HC1 Aromatic Diamines C, o-Phmylenediamine m-Phenylenediamine sym-Tri amino benzene 425 425 425 85 95 76 For explanations and symbols s e e pp. xi-xii. 24U 2414 244 ( 101) 154/10, 70Ac (84). (112). 357Bz 694 Ch. 2 4 AMINES TABLE 8 2 (c~tllirued) c, Compound TABLE 83 (continued) Yield Method ~ h a p t c f l ~B.p./mm., ~. (9.) ")D, (M.P.), Deriv. Aromatic Diamincs (continued) C, C. C,, Cl' C,, o-Aminobenzylamine m-Aminobenzylamine 2,ltDiaminotolume symTriaminotolueac 425 452 425 425 43 28t 74 60 24" 24" 24U 24U 85-9W1, (59), 1 3 8 k 134/4, 16092, 174Bz (9 S) (122) Phenylcthylencdiaminc mXy lylendiamine N-Phcnylaminocthylamine p-Aminodimethylaniline 427 452 441 90 38t 89 24'U 2424& 159Ac 141/14, 135Ac .... 75 24"' 140/12, 13OAc m-~henylen-P,P'diethylamine p-~henylen-P,P: dicchylamine N-(ZDimethylminw echy1)-aniline 427 79 24'- 161/14, N 2 H U 3,3'-Diaminobiphenyl 4,4'-Diminobiphmyl (bwzidine) 4,d-Diami~odiphen~lmechane C,, p,pcbis-~minomethyltiphenyl Cl' p,p'-bis- hinomethyldiphenylmethane 695 T A B L E 85. HALO AMINES ! 75 24'= 116/0.9, (36), 2lOAc 436 88 24" 127/3, 1.5251", 425 425 95 82 2414 24U (125) .... 70 24- (91). 237Ac 124HU n;, (h4.p.). Deriv. Compound Method C, l-Dimechylamino-bpmtme Allyldiechylamine pAminostyrene 29 436 19 80 84 20 19s 24"' 2'- 118/750, 1.4202" 111, 1.4170m, 91Pi 79/2.5. 1.6070a' l-Dicchylamino-bpentene 29 19 451 85 87 63 19s 2'" 2449' 156/746. 1.4310 87/2, 1.5676" 80/2 425 72 W) 69 89 81 C. C9 ~(o-Aminopheny1)-propene N-Allylaniline 427 chapterref. B.p./mm.. c, C,, cisp Aminostilbmc t r m p Aminostilben c ciso.0'-~iaminortilbene cisp.p'-~iminostilbmc trunsp,p'-Diaminosdl bene cis-pep'-~iaminostilbene trmmp.p'-Diaminostilbenc 30 425 (7.) For explanations and symbols s e c pp. xi-xii. TABLE 84. ACETYLENIC AMNES '% 427 80 24" 180/0.5, (145). 235Pi 427 80 24'" (90). 22482 For explanationr and symbols s e e pp. xi-xii. Method '"ld (So) d a P t & e f . Compound C, C, C, 3-Dimcthylamino-l-hwne l-Diechylamino-2-propyne fDiethylamino-l-bucync l-Dicthylamino-2-hwne C,, fDiethylamino- l-phenyl-lpropyne C,, p,p'-~iaminotolane ~.p./mm., n;, ( ~ p . ) ,briv. 443 43 443 44 444 63 83 65 74 80 24,,' 3" 24,,' 3 ss 244U 95 120, 1.42%" 126, (10). 1 7 9 H a 153, 1 . 4 4 1 3 ~ 137/18. 137HC1 425 60 244 (235). 28lAc For explanations and aymbolr s e e pp. xi-xii. c, C, C, Compound Nlylamine Methallyl m i n e Allylmethylamine Method 450 435 450 451 454 Yield (%) 73 70 35 48 71 TABLE 85. HALO AMINES Chapterref. B.p./mm., 24U6 24'" 244n 2424'* n;, (M.P.), Daiv. 57/746 78.8, 1.431 62, 1.4155, l58Pi 65, 1.4065 64 c, Compound Mcchod Yield C h a p t a n f . B.p./mm., t nD, (M.P.), Deriv. Aliphatic and Alicyclic Halo Aminer C, PBromocthylamine P-Iodoehy laminc N-Tetrachloro- 1,2diaminocthane 51 52 .... 83 72 80 51 69 92 77 For explanations and symbols see pp. xi-xii. 4 4"' 24'= 4 4- . 173HBr (174) 78/10, (4.5) AMINES Ch. 24 T A B L E 85. HALO AMINES TABLE 85 ( c o n t i m e 4 c, Compound Method 'liddchapterref. B.p.hm., (%) TABLE 85 fantim+) n tD. (Mp.). Deriv. GB Aliphatic and Alicyclic Halo Amines (continued) C, C4 C, l-Amino-2- bromopmpaoe 'y-Bromopropylamine Isopropyldichloroamine 2-Chloroethylethylamim P,,B'-Dichlorodiethylamine P-Dimethylaminoethyl chloride pDimethylaminoethy1 bromide I- Burylchloroamine n-Butyldichloroamin e N-Chlorodiethylamine hexane l-Diethylamina- fchlorobutane CP l-Dimethylamino- f chlorobutane PDiethylaminoethyl chloride PDiethylaminoerhyl bromide P,P ',P"-~richlorouiethylamine o-Chlorn~~dohexylamiae o- Bromocycloh exylamine Cyclohexyldichloroamine C, l-Methylamino-6 bromohexene l-Diethylamino- 2-chloropropane l-Diethylamino-f chloropropane - Chapterref- B.p./m., ---- 4 174 53 436 87 68 53 72 24'" 4 174 73 30 4- 54 98 n b , (M.P.), Daiv. 73 75 4- ~ o-Aminobenzyl chloride o-Aminobenzyl bromide 4-Amino-f chlorotoluene l-Phmyl-l-amino-2chloroethane N,N-Dimethyl-o-chloroaniline N,N-Dimethyl-o-bromoaniline For explanations and symbols see pp. xi-xii. 72/17, 82HC1 84HC1 87/18 67/5 377 Aromatic Halo Amines C8 EDiethylamino- l-chloiopropane f Bromopropyldiethylamine l-Diethylamina-f chlorapentane l-Dierhylamino-tchloropentane Clo l-BromwGdiethylaminohexane 1-Diethylamina-tmethyltchloropenrane l-Dimethylamino-2chloropropan e l-Dimethylamino- f chloropropaoe 1Dimethylamina- 1chloropropane f Bromopropyldimethylamine C6 Yield Aliphatic and Alicyclic Halo Amines (contimedJ 52 452 69 53 53 Method Compound 65/3, 1.4459 698 AMINES I Ch. 2 4 TABLE 85 (wtllinued) c, Compound Method Yield (%) chapterref. B.p./nun., n L, (M.P.), Deriv. TABLE 86 (continued) C, N,N-Dimethyl-mchloroaniline N,N-Dimebyl-mbromoaniline N.N-Dirnechyl-p-fluoro aniline N.N-Dimethyl-p-chloroanilin N,N-Dimethyl-piode aniline C, C,, 75 24U' 232/740 436 54 241U 119/8. 135Pi 436 45 24'" 56 4% 436 59 80 70 72 48 4'" ~ 4 24U' 4-l 436 91 ~ 4% 95 24-' 436 95 ~ 462 75 ~4~~ C, (33.5) ' (35.5) 2361740, (33) (81) C, 4 ~ ' 221/740, 164Pi l-Amino-4-pentam1 >Methyl-Eamino- 1htanol >Amino-f methyl- 1butanol (wlinol) >Me&yl-f amino-> butanol ~Methylamino->me&yl>propan01 ~Isopmpylaminoethanol 250/740 4 ~ ' 253/740. (46) (129) Compound Method (%) Chapterref. B.p./mm., nD. t (M.P.), Derir. 2-Dimethylaminelpropanol f Dimethylamino- 1propaaol 1-Dimethylamino-2 propanol >Amino-i-ethyl-1.3 propanediol ' Aliphrrtic Hydcoxy Amines EAmino-l-propanol l-Amino-Phydroxypropane 3- H ~ d r o w p r o ~ ~ l a r n i n e >Amino- 1.3 propanediol >(N-Methy1amino)- 1ethanol Dime&ylaminomethanoI C, >Amino- l-butanol l-Amino->butan01 ( a s oxdate) f Ami no- >butan01 >Amino-Emethyl- 1propm01 4-Aminel-pmtanol ?Amino- l-pentmol f Amino-i-pmtanol N,N-Diethyl-o-chlorw aniline N,N-Diethyl-mchloroaniline N,N-Diethyl-p-chloroaniline 3,3'-~ibromobenzidene TABLE 8 6 IfYDROXY AMINES C, l-Amino->methyl-2 propanol p- Ethyl aminoethanol >Amino-1,f tutanediol >Amino->methyl- 1,f propanediol (35) For explanations and symbols s e e pp. xi-xii. c, (S.) 84 80 5" 425 434 442 74 95 25 24" 2424-' 452 84 84 85 80 63 24= .... 70 24"' 1.4050 173. 80/11 (ZOOd), 113Bz 5 l' 5" 425 90 24' 434 425 100 83 2424"' 435 84 425 49 80 90 24&' 5" 24' Chapterref. B.p./mm., ntD. (MP.), Duiv. Aliphatic Hydcoxy Amines (continued) 436 ~ Method "'ld Compound Aromatic Halo Amines (continued) C8 699 T A B L E 86. HYDROXY AMINES 80/18. 1.4502. 114Pi 78/15 73/ 11 65/4. 158/738 186 116/1, 1.4891, 97HU 56/11, 1.4385, 148Pi 162/742, 1.4482 69/10, 1.4486, iU5HU C, >Amino-l-hexaaol 2 H y h x y - f aminohexme >Amino-4-methyl-lpentanol 4-Methyl-4-amino-> pmmol ~~eth~lamino-l-pentanol 2,pDimethyl-f methylamino- l-propaaol l-Isopropylamino-ipropanol fEthylamino->me&yl-2 propanol f Dimethylamino-l-bum01 .442 30 24& 145155 4% 442 84 425 35 55 80 96 2424-' 5 l' 24' 169, 1.4440 16f) 113/2, 1.4833" 426 431 452 425 436 425 80 77 60 92 32 86 24'" 24" 2424" ~ 4 24" 119/25, lOOBz 81/1, (39) 271 100/10, 1.4419 '81/1, 1.4551" 98/10,1.4468 84 ~ 5" (119) 117Hd 91 6(, 5*' 4% 52 ~4~ 143. 1.4338. 138Pi 431 442 4% 95 76 82 24= 24" 24" 87/23 171 65/37 443 65 24"' 113/150 442 70 24- 126/758 425 92 24' 84 97 84 434 79 65 45 55 30 34 5* 5"' 5 ~4~ 104/13, 114Pi 95/20, 207Db 95/11, (44), 1 6 3 H a 99/11 75/ 15 431 79 436 431 50t 72 57 97 245," 24= 24= 97/3 70-82/12 71/14, (46). 1 7 3 ~ C 1 76/22. 1.4322a5, 131Pi 436 56 ~ 79 35 For explanations and symbols see pp. xi-xii. 1" 4 5'" ' ~153. 1.4344. 133Pi 7~ 14, ~ O S B Z H C ~ l 700 T A B L E 86. HYDROXY AMINES Ch. 24 AMINES TABLE 86 (c~ntinued) TABLE 86 (continued) c, Compound Mehod y(i2:d . . chapterwf- B.p./mm.. c, n b . (M.p.b Deriv. C, C8 Cp C , 4Dimerhylamincr2butanol f Dimethylamincr2methyll-pmpanol fDimethylamino->methylIpropanol P-Dierfiylaminoethanol >Amino-2,4dimethyl-lpentanol 1-Ethylamincrtpentanol 5.Dimethylamino- 1pentanol 4.Dimethylamino->methyl2 butanol 2Diethylamino- l-propanol f Di ethylamincr l-propanol 2,EDimethy l- f dimethylamino- l-propanol ' l-Diethylamincr2propanol 5.Isopropylamino- lpen tanol ~Dimethylamino-Emethyl2pentanol f Diethylamincr l-butanol 4Diethylamincr 1-butanol l-Diethylamincr f butanol 5.Diethylaminw l-pentanol 2-Diethylamino- f methyl1- butanol 2,2Dimethyl-f diethylamino- l-propanol 1-Diethylamino->-hexan01 5~7a 5" 79 84 85 50 tram- IAminocydcr pentanol C6 2Aminocyclohexanol cis2Aminocyclohexanol ems-2-Aminocydohexanol ds2Aminocyclohexanol t r m s ~Aminocydohexanol 436 40 t 24'" 130/743, 1.4215, ll5HCl 436 442 70 81 24= 24-' 65/18, 1.4389" 160/741, 1.4389" 84 80 5" 436 431 32 59t 24U' 24'% 81/1.0, 1.45511', 114/23 436 34t 24'" 160/743, 1.4295, 141HCI 84 436 436 63 91 64 5" 24'" 24m 66/18, 1.4332 95/28 63/ 15, 132HC1 442 88 24m 63/22, 1.4265.. 431 71t 24U0 98tia 436 34f 24'" 99/30, 1.4400, 154HCI 79 84 79 436 45 52 40 E0 5~8s 506 516' 24'- 85/13, l6lBzHCl 92/9. 1.4474 73/20, ll6HCl 82/18, 1.4372". 116HC1 95 84 68 44 5 5" 131/23, 1.4544 90/14 79 86 5 88/12 80 88 5"' 108/10, 1.4490" 24- 194HCI 442 447 63 68 24"' 24'" 214, (66) 110/15, (70), 185HC1 108/15, (67), 175HU 24" 24" 24w l- Aminomethylcyclohexanol 2-Aminomethylcyclohexanol l-Amino- l-hydroxymethylcyclohexane ( %) ~ h a p t e f l e ~B.p./mm.. . C O 2(N-Cydohexylamino> lerhanol C Q 2-Amino-2cyclohexyl- 1propanol 2Amincrf cyclohexyl- 1propanol 139HClm 40 50 72 64 C, 148HBr 442 435 43'5 442 ds-frm-4Aminocyclohexanol 1- Amino- l-hydroxymethylcyclopen tane l-Aminomethyl cydopentanol 98/12, 1.4563 Aromatic Hydroxy Amines - I ! I 1 Method C, 164 Alicyclic Hydroxy Amines C, COmpound Alicyclic liydroxy Amines (continued) Aliphatic I$drory Amines (continued) C, 70 1 (73)- 187HC1 104/7, (66). 175MC1 l l l / l h , (69), 16902 C 6 o-Aminophenol mAminopheno1 C, o-Aminobenzyl almhol mAminobazyl alcohol 446 438 84 425 72 50 78 100 C, 427 442 84 80 18 93 24"' 245 425 88 24,' 425 94 24m 425 426 84 87 71t 52 24" 24'= 5 O' 79 70 5m 79 90 5 436 450 69 80 /?-Amino-a-phenylethyl alcohol &Amino-pphenylethyl alcohol p(rtAminophenyl> ethanol mAminophenylmethy1- C Q >Amino- l-phenyl- lpropanol 2-Amino- f phenyl-1propanol fAmino-l-phenyl-l*propanol a-Phenyl-&methylaminoethanol fAniline l-propanol For explanations and symbols s e e pp. xi-xii. 24= 241W 5" 24,' "' 24lS9 24&' n b . (M.P.), Dcriv. 702 T A B L E 87. AMINO E T H E R S Ch. 24 AMINES TABLE 8 6 (continued) c, Compound Merhod '"ld (%) TABLE 87 (continued) Chapteflef. B.p./mm., n b , (M.P.), Deriv. c, Compound 79 C, C l-Amino- Ephenyl-Ebutanol EAmino-f phenyl-pbutanol Ehkthylaminel-phenyl- 1propanol P Erhylaminw a-phenylethyl alcohol &Amino- l-naphthol l-Amino-Enaphthol ,, EAminwj-phenyl-3pentanol 1-Phenyl-Emethylaminw l-bulanol EMerhylaminwf phenylf bu tan01 5-Aniline l-pentanol 2-Dierhylaminomethylphenol C,, Phenyl-ydimethylaminopropylcarbinol /-Diethylaminwa-phenylethyl alcohol 6-Anilino- l-hexanol 5' 57B1 ... 96 65 1.5775" 125/1, 1.5727" 89 89 431 79 442 73 63 81 90 56 ~4~ 433 433 75 85 24'" 24'" 89 93 5a 222HC1 79 79 89 GO 90 75 5 5 167 5a 202HC1, 168Pi (90) 235HC1 436 444 45 69 ~4~~ ~ 4 5a 5a 24" 18 lHC1 239HC1 115-120/5 (77) 14+164/14, 167 ~ C, (78) C9 C,, C,, 16411.4 '67/2, 1.5108" C, 5a 436 66 ~4~ 145/14, 1.5101" 436 74 241e7 138/0.05, (42) Merhod 427 427 428 427 C, 435 436 GO 79 24'" ~4~ 69/13, 1.4271 84/15 l-Erhylaminw Gmethoxyherane l-Methoxy-4-ethylaminohexane l-DimethylaminwG methoxyhexane 436 73 24'" 90/2, 1.4269'~ 436 GO 24'' 89/16 436 78 2417' 78/11 1-Dierhylaminw5-merhoxypentane /,,R',/"-~riethoxytriethdamine 436 91 24"' 77/18, 1.2490 115 66 6 P Erhoxy-~hexylamine Aromatic Amino Ethers 107/0.07, (48) C, ( %) c h a p r n m f . B.p./mm., 50 50 42 59 24'" 24"' 24'24'- P - m-Aminoanisole (manisidine) /-Phenoxy ethylamine p- Aminophenetole 3,&Dimethoxyaniline (4- aminoveratrole) C9 y-Phenoxypropyl amine EPhenoxyisopropylamine N-Ethyl-p-anisiane p-Methoxydimethylaminw benzene n b , (M.P.), Detiv. C,, 6-Phenoxy-n-butylamine Phenoxypropylmethylamine PEthoxy-Pphenylethyl amine f Aliphatic Amino Ethers C6 P E t h o x y - ~ b u t y lamine Diethylaminomethyl methyl ether Di-(y-aminopropyl) ether ~ 4 24'* - ? 1.4220 ~ 56/15, ' 134/756 44 69 l-MerhylaminwGmethoxyhexane TABLE 87. AMINO ETHERS Compound chapterref. B.p./mm., n b . @LP.), Deriv. 435 445 C 7 PErhoxy-n-amyl amine Dierhylaminomethyl ethyl For explanations and symbols s e e pp. xi-xii. c, (K) Aliphatic Amino Ethers (continued) Aromatic Hydroxy Amines (continued) C 9 p-Dimethylaminobenzyl alcohol Method C,, f Phen~xy~ropylethylarnine j-Phenoxypropyldimethylamin e p-Methoxydiethylaminw benzene C,, EAminodiphenyl ether 2-Merhoxy-f aminohexme For explanations and symbols see pp. xi-xii. 137/12, 195HC.l 704 Ch. 24 AMINES T A B L E 89. AMINO K E T O N E S TABLE 8 7 (continued) c, Compound Method ( %) TABLE 89. AMlNO KETONES a a p t e s e f . B.p./mm-, n h , (M.p.), Deriv. Aromatic Amino E th ers (continue4 Cl, C,, C,, 115 57 614 191/14. (37) 4-Aminodiphenyl ether 425 115 84 65 2464 614 148/1, 141HC1 (83.5) 425 100 24= l89/l4. (83.5) 436 94 24'" 150/20, 1.4987, 102tlU 436 90 24'14 148/3. 1.5010, 135HC1 For explanations and symbols s e e p p . xi-xii. TABLE 88. AhiINO ALDEHYDES cn C, C, Compound Method Yield (%) chapterref. B.p./mm., a-Dimethylaminoisobutyraldehyde a,a-Dimethyl-pdimethylaminopropional dehyde o-Aminobenzaldehyde nr-Aminobenzaldehyde p-Aminobenzaldehyde 24'' (%) Chapterref. B.p./mm., n h . (M.P.). Deriv. Aliphatic and Alicyclic Amino Ketones f Aminodiphenyl ether f Phenoxypropyldiethylamine l-Phenoxy-Gethylaminohexane Method Compound C, 426 426 436 444 96 83 74 45 24"' 24'" 24"' 24U' 75HC1 443 70 2404 (127) C, Diethylaminoacetone C O l-Diethylamino-f butanone Diacetonethylamine 436 444 72 59 24'" 2441' 70/32, 1.4249, 143Se 70/11, 1.4333'~ 443 42 24416 191 Cp 184 46 10- 83/11 4% 79 24*' 91/24, 104Se 436 443 444 55 37 71 24'24"' 24410 184 42 10'" 95/16, 1.4337'' 184 44t 10'~ 108/20 184 60' 10'~ 98/11, 1.4380'' 444 85 2441' 103/13 C, C, n b , (M.P.), Deriv. 129 C,, C O m-Dimethylaminobenr aldehyde P-Dimethylaminobenzaldehyde Aminoacetone Diaminoacetone Dimethylaminoacetone l-Dimethylamino-3butanone Di ace tonamine ( a s acid oxalate) l-Dimethylamino-f methyl- Fhexanone l-Diethylamino-2pentanone l-Diethylamino- f pentanone 2-Dimethylaminomethylcyclohexanone FDiethylamino-2hexanone l-Diethylamino-4 hexanone l-Diethylamino-F hexanone 2-Diethylaminomethylcyclopentanone 36/25. 1.4128, 137SeD 70/40, 1.4213'' . 84/13, 1.4368'' 56/36, 102Se 97/11.5, 146HU Aromatic Amino Ketones C p-Formylphenyl-trimethylammonium iodide C,, mDiethylaminobenzaldehyde p-Diethylaminobenzaldehyde For explanations and symbols s e e pp. xi-xii. CO ~Aminoacetophenone hydrochloride o-hinoacetophenone m-hinoacetophenone p-Acetylandine N.N-Dimethyl-Pbrormaniline 437 75 24"' (187) 425 425 178 431 78 71 88 24,' 24" 10" 24"' 113/6, 75Ac (99), 128Ac 168/6, (106), 166Ac 145/22, (53) C9 426 452 425 425 88 80 76 96 24"' 2424'' 24" 114HC1 127HC1 1 6 / 1 7 , 74Ac 169/15, (42), 93Ac 436 80 24"' 121/4, (52) a-Aminopropiophenone /?-Aminopropiophenone o- Aminopropiophenone m~minopropiophenone CI0 2-Phenylamino-f butanone 19 For explanations and symbols see pp. xi-xii. AMINES TABLE 90 (continued TABLE 8 9 (continued 1 c, Compound Method Yield Chapterref- B.p./mm., n h , (M.P.), Deriv. (%) Aromatic Amino Ketones (mntinued) Clo a-Methylaminopropiophenone o-Dimethylaminoacetophenone Cl, 3Phenylamino-2pentanone a-Methylaminoburyrophenone l-Phenyl-f dimethylamino-lpropanone P-Dimethylamin~~ropiophenone C,, C l-Dimethylaminet phenyl-lbutanone PDimethylamineamerhylpmpiophenone ,, 1Aminobenzophenone 44'-~iaminobenzophenone 1-Amino fluorenone 4-Aminofluorenone C,, l-Phenyl- l-phenylaminopropanone C16 P-Dhethylaminobenzil c, C, 436 57 24'- 177HCl 436 56 24'- 94A.5, 184F'i 436 72 24m 120/1 436 70 24'- 194IIU 187 53 10676 141/2G, 127Pi 444 72 24U0 156HU 436 43 24'" 107/3.5, 1.5070 444 74 24a 82/1, 1 . 5 1 ~ 2 ~ ' ,154HCI 446 183 446 446 92 70 t 56 74 24lS9 10le 2416' 2416' (107) (245), 241Ph (118.5), 138Ac 436 74 24"' (91.5) 179 90 10'~~ (1 16) C, C, Aminoacetic a c i d (glycine) Method Yield (so) (1 39) chapterref. B.p./mm., C S a-Aminopropionic acid (alanine) 92 87 77 54t 85t 72f 60 13'19 13'" 241M 24"' 24*U 13,19 13'~ n b , (Map.), Deriv. PAminopropionic acid (palmine) 253 435 451 247 247 44t 70 71 90 86 13'" 24lW 24= 1313," (263), 6 7 h * (246), 62An* (2364 a-Amino-n-buryric acid a-Methyl-P-alanine N-Methylalanine N-Ethyldycine N,N-Dimethylglycine a- Aminosuccinic (maspartic) acid a,y-Diaminoburydc acid meso- a , p D i a m i n e succinic acid a-AmineP-hydroxyburyric acid C, 247 247 435 447 452 247 247 PAminopropionic acid ( p a l a n h e ) (cot3 inued) y-Aminoburyric acid a-hminoisobutyric acid TABLE 90. AMINO ACIDS Compound Compound a-Aminephydroxypre pionic acid (serine) For explanations and symbols s e e pp. d-xii. c, 707 T A B L E 90. AMINO ACIDS Ch. 2 4 Method (5%) n k , (Up.), Deriv. 247 247 247 248 249 427 437 446 97 247 90 75t 69t 70 72 75 85 45 40t 51t 13"a 13'" 13"' 13'01 13'~ 24'% 24lS9 24'" 5'" 13'" (198) (200) (197) 247 253 278 431 435 447 452 247 247 247 253 280 427 451 451 431 278 451 449 434 6lt 50t 82 58 13"~ 13"~ 13'~ 24"' 24'" 241W 24u' 13'" 13'" 13'19 13'" 13= 24'" 24"9 24'P9 24=' 13OU 24"' 242dW (304), 75hm* 140Dz 142Dz 60 2lt 62 70 33 731 771 76 73 81 70 100 43 95 41 90 a-hminovaleric acid (norvaline) y-Aminovaleric a c i d 6-Aminovaleric acid (295), 62Am* (295) 163Bz (2954 Chapterref. B.p./mm., a-Aminoisovaleric acid (d-valine) (198), 123HC1* add For explanations and symbols s e e pp. xi-xii. (195) (195) (2004 (198d) (244), l5OBz 182HC1 198Bz 127h* (182) (317d). 129Dz (182d) (183) 162Bz (280d) (215d), 181Pi (3064 1 708 Ch. 24 AMINES l TABLE 90 (continued) GJ C, Compound d-a-Methylminobutyric acid 7-N-Methylaminobucyric acid N-Methyl-a-aminoisobutyric acid N,N-Dimethylalanine monohydrate a- Aminoglutaric ( d glutamic) acid a-Amincra-methylsuccinic acid a, F-Diamino-~valeric acid (d-ornithine) Methyliminodiacetic acid 7-Methylmercaptcra-amincr butyric acid ( d methionine) C, Method 431 (%) 62 c h a p t e 6 e f . d.p./mm., 24-' I n b . (M.P.). Deriv. TABLE 90 (continued) c, a- Amino-a-ethylbutyric acid a-Dimethylminoi scr butyric acid a-Aminoadipic acid a,F-Diaminoadipic acid a.c-Diaminocaproic acid (d-lysine) d - l y s i n e dihydmchloride 1-Cy stine Method I (%l c h a p t e r r e f B.p./mm.. n D . (M.P.). Deriv. C 6 Histidine I-Histidine hydrochloride dArginine hydrochloride 278 .... .... .... CT a- Aminoheptanoic acid 7-Aminoheptanoic acid P,PDiethyl-,E-amincr propionic acid N,N-Dimethyl-d-valine a-Methyl-y-dimethylaminobutyric acid P-Dimethylaminopivalic acid p 2-Thienylalanine C, 45 90 13'~' 1313'" (272) (252) (220) 278 427 443 55 30 30 13'~ 243'7 24a6 (281). 13592 (187) (184) 431 249 100 24"' 13'~ ( 152), 164tiCI 90 253 74 1 426 68 24'14 (275) 55 92 40t 13= 13"' 13'" (273), 128132 a- Amincra-phenyl- 278 280 247 (267) propionic acid a- Amino-Pphenylpropionic acid 278 278 83 67 13'" 13'~ 146Ac (257), 431 435 447 447 446 62 621 50 441 264 264 443 260 50 70 34 481 3 (76) ~ (99) a - ~ m i n & c t a n o i c acid N,N-Dimethyl-d-leucine a- Aminophmylacetic acid o:Aminophenylacetic acid m- Aminophenylacetic acid p- Aminophenylacetic acid d-a-Aminwz-caproic acid (norleucine) 7-Aminen-caproic acid E-Aminocapmic acid d-a- Amino-pmethylvaleric acid a- Aminoisocaproic acid (1 eucin e) Compound p-Aminomethy1)benzoic acid Cp a-Aminononanoic acid d-a-Amino-,E-phenylpropionic acid PAmincra-phenylpropionic acid PAmino-pphenylpropionic acid p- @- Aminoethyl) b m z o i c acid m-Dimethylaminobenzoic acid p-Dimethylaminobmzoic acid ' 66 431 100 431 263 80 50 For explanations and symbols s e e ppr xi-xii. 710 AMINES Ch. 24 TABLE 90 (mnlinud) TABLE 91 (continued) p p - Compound 249 65 13" Cm d-y-Phenyl-a-amine butyric acid c11 T W P W P ~ ~ ~ ~ 431 62 24- 278 278 45t 88 1313=' --- Method (9;) _. (282). 206Ac 193Bz ~ h a ~ t c r r eB.p./mm., ~. nb, (M.p.), Deriv. C, Methyl a-aminoiaobutyrate Ethyl a-aminopmpionate Ethyl /3-aminopmpionate Methyl pmethylaminopropionate C, Ethyl p a m i n m b u t y t a t e Ethyl pmethylamine propionate C7 C, Ethyl /3-arnho-wvderate Ethyl a-methylasnine butyrate Ethyl ,&methylaminenbutyrav Ethyl aminomalonate ( a s acetyl derivaave) Ethyl a-aminmcaproate Ethyl pamin-caproate Isobutyl a-aminoise butyrate Ethyl pethylaminenburyraw Methyl pdiethylamine propionace Ethyl a-eminosuccinate (dl-asparac e stet) . 14" 1417' 51/12 143Ha 134, 183HC1 40 14~' 14' 24'a 24M 24M 56/ 10 67Ha 50/ 11 426 443 443 21 t 55 49 24'" 24a 24," 69/17, 148Pi 62/10. 74Am 68/18. 1.4218~' 426 436 23t 63 24&' 24- 84/17 65/20, 1.4174, 104Pi 443 89 24a 66/10 426 44t 24'- (90 . 426 426 285 86 48 66 24" 24s' 14" 88/11 104/25 6 Y 4 1.4210, l03HU 431 68 24s' 75/12 285 285 427 434 443 443 67 90 64 95 74 100 LOO 24+" -. 70 24% -. __p--. .. . .-. __ .._.__. - . - 285 63' 14'- 83/16 436 74 24"' 63/3, lO2HCl 436 84 24'" 75/13 436 74 24"' 117/15, 1.4320'' 285 70t 14"' 105/17, 1.4342 . . . p . C,, ~ - ----~----p Methyl p-aminobcnwate , propionate Ethyl p a m i n e p p h e n y l propionate For explanations and symbols see pp. xi-xii. TABLE 92. AMINO CYANIDES Chaptermf. B.p./mm., Compound c, . -.- -- - - - --- - (7.) -- - - -- ..- Aminoacetonitrile hydre chloride Aminoacetonitrile hydrogen sulfate 391 95 X)'" .... 81 24'" For explanations and symbols see pp. xi-xii. t nD , (Mg.), Dedv. - ---- .. -_-- Alipharic and Nicyclic Amino Cyanides 66.5/8 98/ 1 Methyl o-aminobenzoate Methyl m-amino benzoate C p E h y l p-aminobenzoate Ethyl a-aminophenylC acetate Ethyl m-aminophenylacetate Ethyl p-(aminomethyl) bcnzoate Methyl Panilinopropionate Methyl o-dimethylamin@ benzoa te C, 426 - Aromaac Amino Esters - 292 293 -_ _ .. _ __-_. -___.----p. Ethyl a-methyl-ydimethylaminobutyrate Methyl y-diethylamin@ tutyrate Ethyl a-diethylamin@ propionate Diethyl dimethylamine malonate C,, Ethyl y-diethylamin@ butyrate . p Methylpaminopropionate Ethyl aminoacemte . .- Yield Chapter'ef. B.p./mm.. ntD, (MP.), Deriv. Method (7.) C' ALiphatic Amino Esters C, .-.. Aliphaac Amino Esters (currtinued) TABLE 9 l. AMINO ESTERS Compound . Compound __________ (60) For explanations and symbols s e e pp. xi-rii. c, - C C9 p-Anilinopropionic acid 71 1 T A B L E 92. AMINO CYANIDES (166) 712 Ch. 24 AMINES TABLE 92 (continued) - C, Compound Method (%) chapterref. B.p./mm., n L , (M.p.). Deriv. C, C, ,E-Aminopropionitrile Methylaminoacetonitrile Methyleneaminoacem nitrile 388 391 391 33 93 71 20'" 203" 203" 65/20 (129) 3Aminen-propyl cyanide 452 391 jsf 77 2420"' 97/20. 1 4 0 H a 48/11 391 388 80 78 203" 20" 68/24, 1.4198 74/16, 1 . 4 3 4 2 ~ 391 391 392 70 83 100 20"~ 20'~ 2oSU 83/29 134- 137, 1 . 4 0 9 5 ~ ~ (75) 391 57 203" 54/18, 133/747, 1.4176 388 391 30 89 2oaS0 20'" 203* 95/30, 1.4322 169HC1 85/20 118/14, 98Bz 71/11 85/25 74/14, 167, t436214, 1 0 3 ~ i 70/2O a- Aminoisotutyronitrile P-Methylaminopropioninile Ethylaminoacetoniuile Dimethylaminoacetoniuile Iminodiacetonitrile C, C6 a-Methylaminoisobutyroninile PEfhylaminopropioni trile Isopropylaminoacetonitrile 5-hino-n-amyl cyanide a-Aminodiethylacete niaile a-Methyladno-nvaletonitrile a-Methylaminoiscr valeronitrile a-Methylamino-a-methyln-butyronitrile 391 30 452 391 68f 40 24" 203" 391 392 391 85 77 80 203* 20"' 203g0 391 83 2 P-n-Pro~ylamino~ropie 388 niuile P - I s ~ p r o p y l a m i n o ~ r o ~ i e 388 niuile a-Dimethylaminobutyre 391 nitrile 4-Dimethylaminobutyre 387 niaile a-Dimethylaminoisobutyro- 391 nitrile 391 391 Diethylaminoacetwiuile C, a-Aminomefhylbutylacete nitrile a-Aminomethylisobutylacc toniuile 0 89/20, 1.3496 ~ 68/17, ~ ~ 1.4282". 92 20'~ 121/K), 1.4362 95 20U' 87/17, 1.4230U 78 2o3I9 68/23 64 20"' 44-47/1.5 C7 69 20"~ 57/25 m 203" 2tj312 50/2O, 1.4215 63/14. 1.4230" 391 51 20317 391 53 2o3l7 a-Methylaminea-ethylbutyronitrile a-Dimethylamino-a-methylbutyroninile a-Mefhylethylaminoisobutyronitrile a-Diethylaminopmpie nitrile ,E-Diethylaminopropicnitrile l-Aminel-cy a n o c y d e hexane hydrochloride acetoni mile a-Dimethylaminea-methyl- isovaleronitrile a-Dimerhylaminea-ethylbutymnivile 7-Diefhylaminobutyre niuile a-Diethylaminoisobutyre niuile chapterref. B.p./mm., n L , (M.P.), Deriv. 391 73 203" 167/765 391 70 203" 63/12 391 53 2O3I9 58/14 391 391 388 436 65 68 97 56 77 203= 203" 20'~ 24194 203~ 49/7,68/17 55/11 120/70. 1.4353 84/13, 1.4343" (204) 391 49 2OsU 7 5/ 10 391 75 20 319 69-73/10 378 387 436 391 391 84 83 97 59 39 2oU3 20aU 24"' 203" 2o3l9 93/14 89/9 103/21, 1.4351, 70Pi 68/14, 1.4312 74/14 391 39 203" @/4 388 92 20aa 124/4, 1.4764 436 391 90 92 2419, 102/4,62Pi 2 0 ~ ' ~ 89/11 83Bz valeronitril e a-Diethyl aminoise valeroniuile ,E-Cyclohexylamine propionitrile C, 88 (9%) Aliphatic and Alicyclic Amino Cyanides (continued) Aliphatic and Alicydic Amino Cyanides (continued) C, ..-, Compound a-Dierhylaminocaprmiuile a-Diethylaminea-isotutylacetoninil e Aromatic Amino Cyanides 88/ 10 C, m-Aminobenzoniuile C B c-Aminobenzyl cyanide p-Aminobenzyl cyanide Anilinoacetonitril e 425 425 425 391 63 88 79 35 24" 24'" 24" 20~'~ (53). 131Ac (72) 147/1 (4 7) C 9 Methylphenylaminoacem niuile 391 76 203" 14V9 76/ 10 For explanations and symbols s e e pp. xi-xii. 7 14 AMINES l Ch. 24 REFERENCES FOR CHAPTER 24 REFERENCES FOR CHAPTER 24 c, Compound Method Yield chapterref' B.p./mm., 'Senkus, Ind. Eng. Chem, 40, 506 (1948); cf. ref. 54. ntD, (M.P.), Deriv. ' Johnson and Degering, J. Am. Chem Soc., 61, 3194 (1939); Hass and Riley, Chem Revs., 32, 389 (1943). 'Clemo and Ormston, J. Chem Soc., 1778 (1932). Aromatic Amino Cyanides (cvntinued) C m PBenzylaminopr~~ie nitrile a-Dimethylamin~phen~lacetoniuile 388 73 20'" 185/23 391 29 20'~ 90/6 C ,a a-Diethylaminophenylacetoniuile 391 391 83 56 20'~ 20" 11217. 131/11 124/9 ,, a- Aminodiphenylaceto- 392 77 20"' (102) 386 74 201W 12211 392 X) 20'~ (36) C nitrile y-Dierhylamino-a-phenylbu tyron i tril e 9Aminepcyanofluorene For explanations and symbols see pp. xi-xii. 4Hazlet and Dornfeld, J. Am. Chem Soc., 66, 1781 (1944); cf. refs. G and 18. 'Gattermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 165; cf. ref. 4. 6West, J . Chem Soc., 127, 494 (1925). 'Cline and Reid, J. A n Chem Soc., 49, 3150 (1927). 'Haworth and Barker, J . Chem Soc., 1302 (1939); Stevens and Beutel, J. Am Chem Soc., 63, 311 (1941). 'Marvel e t al., J. A n Chem Soc., 66, 916 (1944); ref. 10. 'O Craig, J. Am Chem Soc., 57, 195 (1935). l' Fieser and Cason, J. Am Chem Soc.. 61, 1744 (1939); Emerson and Smith, i b i d , 62, 141 (1940). Birch e t al., J. Am. Chem. Soc., 71, 1362 (1949). Lambooy, J. Am Chem Soc., 71, 3756 (1949). l 4Adkins, Reactions of Hydrogen, University of Wisconsin Press, Madison, 1937. "Allen and Van Allan, Org. Syntheses, 22, 9 (1942). l6 Adams, Cohen, and Rees, J . Am. Chem Soc., 49, 1093 (1927). ''UcGuine and Dull, J. Am Chem Soc., 69, 1469 (1947). "Jenkins, McCullough, and Booth, l n d Eng. Chem, 22, 3 1 (1930). 19Campaigne and Reid, J. Am Chem Soc., 68, 1663 (1946). O ' Bartlett and Cohen, J. Am Chem Soc., 62, 1187 (1940). Kuhn, Org. Syntheses, Coll. Vol. 11, 447 (1943); Sampey and Reid, J. Am Chem. Soc., 69, 712 (1947). "Morgan and Harrison, J. Soc. Chem l n d (London), 60, 120T (1941); Friedman e t al., J. Am Chem Soc., 71, 3012 (1949). "Binz and v. Schickh, Ber., 68, 320 ( 1935). 14Renshaw and Friedman, J. Am. Chem. Soc., 61, 3320 (1939). "Drake e t al., J. Am. Chem. Soc., 68, 1605 (1946); refs. 26 and 27. 'l6 Fieser and Hershberg, J. Am. Chem. Soc., 62, 1640 (1940); cf. ref. 27. "Winterbottom, J. Am. Chem. Soc., 62, 160 (1940). "Linsker and Evans, J. Am. Chem. Soc., 68, 149 (1946); also ref. 27. * Linsker and Evans, 1. Am Chem. Soc., 68, 874 (1946). 'OAlbert and Ritchie, J . Soc. Chem. lnd. (London), 60, 120T (1941). Gilsdorf and Nord, J. &g. Chem., 15, 807 (1950). Fieser and Kennelly, J. Am Chem Soc., 57, 1614 (1935). "Craig and Cass, J . Am Chem Soc., 61, 783 (1942). Fries and Hemmecke, Am., 470, 7 (1929). "Gilman and Nobis, J . Am C h e n Soc., 71, 274 (1949); cf. ref. 36. Gilman and Avakian, J. Am Chem Soc., 68, l 5 l 4 (1946). ''Rockett and Whitmore, J. Am Chem Soc., 71, 3249 (1949). "Kornblum andIffland, J. Am Chem. Soc., 71, 2137 (1949). Cerf, Bull. SOC. c h i n France, (5) 4, 1460 (1937). "Senkus, J . Am Chem Soc., 68, 10 (1946); Johnson, i b i d , 12, 14 (1946). 4'Martin, Otg. Syntheses. Coll. Vol. 11, 501 (1943). 4'Gill, MacGillivray, and Munro, J . Chem Soc., 1753 (1949). " I " " " " f 716 AMINES Ch. 24 U Mahood and Schaffner, Org. Syntheses, Coll. V o l . 11, 160 (1943). *Morgan and Walls, I. Soc. C h e m Ind., (London), 50, 94T (1931). 45Ruggli and Lang, Helv. Chim. Acta, 19, 996 (1936). "Huang-Minlon, I. A m C h e m Soc., 7 0 , 2802 (1948); c f . ref. 326. " R u g g l i and Lang, Helv. C h i m Acta, 21, 38 (1938). "Weygand and Gabler, Ber., 7 1 , 2474 (1938). Kiewiet and Stephen, I. C h e m Soc., 82 (1931). "Winans, J. A m C h e m Soc., 6 1 , 3564 (1939). Mathieson and Newbery, I. C h e m Soc., 1 l 3 6 (1949); Natelson and Gottfried, I. A m C h e m Soc., 61, 1001 (1939). Bradlow and Vanderwerf, I. A m C h e m Soc., 7 0 , 654 (1948); Dunker and Starkey, i b i d , 61, 3005 (1939); Schiemam and Pillarsky, Ber., 62, 3041 (1929). "Steck, Hallock, and Holland, I. Am. C h e m Soc., 68, 1243 (1946); von Baeyer, Ber.. 38, 2761 (1905). 54 Johnson and Degering, 1. Org. C h e m , 8 , 7 (1943); Vanderbilt and Hass, Ind. Eng. G e m . 32, 34 (1940). "Hoover and Hass, 1. Org. C h e m , 12, 506 (1947). s6Gakenheirner and Hartung, J. Org. C h e m , 9, 85 (1944). "Attenburrow e t al., I. C h e m Soc., 514 (1949). "Galatis, I. prakt. C h e m , 151, 334 (1938); Hewitt and King, I. Chem. Soc., 822 (1926). "Rupe and Brentano, Helv. C h i m Acta, 19, 594 (1936). 60Marvel and Overberger, I. Am. C h e m Soc., 6 8 , 185 (1946). "Phillips and Maggiolo, I . Org. C h e m , 15, 659 (1950). "Woodburn and Stuntz, J. Am. C h e m Soc., 7 2 , 1361 (1950). "Lempert and Robinson, I. Chem Soc., 1420 (1934); c f . ref. 6. 64Clinton and Suter, I. Am. Chem. Soc., 6 9 , 704 (1947). 6STarbell e t al., I. A m C h e m Soc., 7 0 , 1384 (1948); c f . ref. 66. 9 u t e r , I. Am. C h e m Soc., 51, 2581 (1929). % n i t h and Opie, Org. Syntheses, 28, 11 (1948). 68Cocker, Harris, and Loach, 1. Chem. Soc., 751 (1938). 69Leonard and Boyd, J . Org. Chem., 11, 405 (1946). "Marvel, Allen, and Overberger, I. Am. C h e m Soc., 6 8 , 1088 (1946); King, McWhirter, and Barton, ibid., 6 7 , 2091 (1945); a l s o ref. 69. "Keneford and Sirnpson, I. C h e m Soc., 356 (1948). 'asimpson e t al., I. C h e m Soc., 646 (1945). '3Robertson, Org. Syntheses, Coll. Vol. I , 52 (1941). "Hahn and Tulus, Ser., 7 4 , 515 (1941). "Adams and Cohen, Org. Syntheses, Coll. Vol. I , 240 (1941). W n g n a d e and Henick, I. A m C h e m Soc., 6 4 , 1737 (1942). " G o n y n , I. Org. C h e m 14, 1013 (1949). "Wawzonek, I. Am. C h e m Soc.. 68, 1157 (1946). '9Blanksrna and P e a i , Rec. trav. c h i m , 6 6 , 353 (1947). "Gattermann and Wieland, Laboratory Methods of Organic Chemistry, T h e Macmillan Co., New Y o r k , 1938, p. 171. UHodgsoa and Ward, 1. C h e m Soc., 663, 794 (1945). "Hodgson and Birtwell, I. C h e m Soc., 318 (1943); B r a d y e t al., i b i d , 226.4 (1929). "Fieser and Martin, I. A m ChZm. Soc., 57, 1838 (1935). "Whitmare and Langlois, I. Am. C h e m Soc., 54, 3441 (1932). " " " . REFERENCES F O R C H A P T E R 2 4 717 8'Westphal and Jerchel, Ber., 7 3 , 1002 (1940); v. Braun and Klar, ibid., 7 3 , 1417 (1940)" P a a i c k , McBee, and Hass, I. Am. C h e m Soc., 6 8 , 1009 (1946). 8'Wisansky and Ansbacher, Org. Syntheses, 28, 46 (1948). 88Grogginsand Stirton, Ind. Eng. C h e m , 28, l051 (1936); 29, 1353 (1937). 89Pinck and Hilbert, I . Am. C h e m Soc., 68, 377 (1946). "Gilman and V a n E s s , J. A m C h e m Soc.. 6 1 , 1369 (1939). 9'Gilman and Jacoby, I. Org. C h e m , 3 , 108 (1938). "Albert e t al., Org. Syntheses, 22, 5 (1942); 1. Soc. Chem. lnd. (London), 6.4, 170 (1945). "Hertog and Wibaut, Rec. trav. c h i m , 55, 122 (1936); Maier-Bode, Bet., 69, 1534 (1936). 94 J a n s e n and Wibaut, Rec. trav. c h i m , 56, 709 (1937). 9sKaye, J. A m C h e m Soc., 7 1 , 2322 (1949). -v. Braun, Ber., 7 0 , 979 (1937). 9'Amundsen and Krantt, I. Am. C h e m Soc., 6 3 , 305 (1941); Org. Syntheses, 23, 23 (1943). 98Fargher,I. C h e m Soc., 117, 1351 (1920); Groggins and Stirton, lnd. Eng. C k m , 29, 1355 (1937). 990sterberg and Kendall, I . A m C h e m Soc., 4 2 , 2616 (1920); Johnson and Schubert, ibid., 7 2 , 2189 (1950); Wilson and Read, 1. Chem. Soc., 1272 (1935). 'OOTamele e t al., 1nd Eng. Chem., 33, 115 (1941). '''Wernert and Brode, I. A m C h e m Soc., 54, 4365 (1932). 'OaCheronis e t al., 1. Org. C h e m , 6 , 349, 467 (1941). "'Block, C h e m Revs., 38, 501 (1946). '040rten and Hill, Org. Syntheses, Coll. V o l . I , 300 (1941); Tobie and Ayres, I. A m C h e m Soc., 6 4 , 725 (1942). IMTobie and Ayres, Org. Syntheses, Coll. Vol. 1, 23 (1941). '06Marvel, Org. Syntheses, 20, 106 (1940). 'O'Marvel, Org. Syntheses, 21, 7 4 (1941). '08Marvel and du Vigneaud, Org. Syntheses, Coll. Vol. I, 48 (1941). lWMarvel, Org. Syntheses, 21, 60 (1941). "OEck and Marvel, Org. Syntheses, Coll. Vol. 11, 374 (1943). "'Marvel, Org. Syntheses, 21, 101 (1941). ' l a E l k s , Hems, and Ryman, 1. C h e m Soc., 1386 (1948). "'Wells and Allen, Org. Syntheses, Coll. Vol. 11, 221 (1943). ' 114Willsonand Wheeler, Org. Syntheses, Coll. Vol. I , 102 (1941). llsBuck and Ferry, Org. Syntheses. Coll. V o l . Il, 230 (1943). '16Lazier and Adkins, I. A m C h e m Soc., 46, 741 (1924). "'Hughes, Veatch, and Elersich, 1nd Eng. C h e m , 4 2 , 787 (1950). "'Speer and Hill, I. Org. Chem., 2, 139 (1937). 1'9Hickinbottom, I. Chem. Soc., 992 (1930). '"Zanetti and Bashour, I. Am. C h e m Soc., 6 1 , 3133 (1939), c f . r e f . 138. '"Blicke, Monroe, and Zienty, I. A m C h e m Soc., 6 1 , 91, 93, 771, 775 (1939). '"Buck and Baltzly, J. Am. C h e m Soc., 6 3 , 1964 (1941). "'Clarke, Gillespie, and Weisshaus, I. Am. C h e m Soc.. 55, 4571 (1933). 'a4Borrows e t al., I. C h e m Soc., 197 (1947). " S K i n g and Work, I. C h e m SOC., 401 (1942). la6Caspe,I. Am. C h e m Soc., 54, 4457 (1932). "'Adams, Brown, and Marvel, Org. Syntheses, Coll. Vol. I , 528, 531 (1941). 1a8Marveland J e n k i n s , Org. Syntheses, Coll. Vol. I , 347 (1941). 718 AMlNES Ch. 24 "'Werner, I . Chem Soc., 11 1, 850 (1917). lWEvans and Williams, 1. Chem Soc., 1199 (1939). "'Billman, Radike, and Mundy, I . A m Chem Soc., 64, 2977 (1942). "'Thornas, Billman, and Davis, I. Am. Chem Soc., 68, 835 (1946). ' " ~ o k h l &and Mason, 1. C k m Soc.. 1757 (1930); c f . ref. 134. "4Germuth, I . Am. Chem. Soc., 51, l555 (1929). 1'5Knoevenagel, I . praki. Chem, 89, 30 ( 1913). "'Hager, Org. Syntheses, Coll. Vol. 1, 544 (1941). "'Gilman et al., I . A m Chem Soc., 67, 2106 (1945). '"Lutz et al., 1. Org. Chem, 12, 760 (1947). lS9Hurdand Drake, I . A m Chem Soc., 61, 1943 (1939). '"Shelton et al., I . A m Chem Soc., 68, 753, 755, 757 (1946). '41Weilmuenster and Jordan, I . A m Chem Soc., 67, 415 (1945). I4'Reck, Harwood, and Ralston, 1. Org. Chem., 12, 517 (1947). 'UGroenewoud and Robinson, I . Chem Soc., 1692 (1934). '"Linsker and Evans, I . A m Chem SOC., 67, 1581 (1945). lYLinsker and Evans, I . Am. Chem. Soc., 68, 1432 (1946). '46Doniaet al., I. Org. Chem, 14, 946 (1949). I4'Kermack and Wight, I . Chem. Soc., 1425 (1935). '4'Mannich and Margotte, Ber., 68, 273 (1935). ' 4 9 S t a h m a and ~ Cope, 1. Am. Chem Soc., 68, 2494 (1946). "O~inskerand Evans, 1. Org. Chem, 10, 283 (1945). "'Cope and Towle, 1. A m Chem Soc., 7 1 , 3423 (1949). "'Elderfield et al., I . A m Chem Soc., 68, 1579 (1946). '"Breslow et al., I . A m Chem Soc., 67, 1472 (1945). "4Davies and Cox, 1. Chem Soc., 614 (1937); c f . ref. 130. '5aGilmanand Banner, I. A m Chem Soc., 62, 344 (1940). 156Hartman,Org. Syntheses, Coll. Vol. 11, 183 (1943). 1a7Pierce,Salsbury, and Fredericksen, I. A m Chem Soc.. 64, 1691 (1942). "'Munch, Thannhauser, and Cottle, I. A m Chem Soc., 68, 1297 (1946). ''9Rindfusz and Harnack, I . A m Chem Soc., 42, 1723 (1920). '"''Hancock e t al., I . A m Chem Soc., 66, 1747 (1944). "'Bachman and Mayhew, I . Org. Chem., 10, 243 (1945). "'Kremer and Waldman, I . A m Chem Soc., 64, 1089 (1942); Pierce et al., ibid.. 64, 2884 (1942). '"Campbell and Campbell, I . A m Chem Soc., 60, 1372 (1938). '64Goldberg, Ringk, and Spoerri, I . A m C h e m Soc., 61, 3562 (1939). '6.1Elderfieldet al., 1. A m Chem Soc., 68, 1516 (1946). '"Fourneau, Benoit, and Firmenich, Bull. soc. c h i m France, ( 4 ) 47, 880 (1930). "'Kon and Roberts, I . Chem Soc., 980 (1950). "Elderfield et al., I . Am. Chem. Soc., 69, 1258 (1947); Campbell et al., i b i d , 68, 1556 (1946); c f . ref. 174. 'b9Moffert,I . Org. Chem. 14, 862 (1949). 170Marvel,Zartman, and Bllnhardt, I . A m Chem Soc., 49, 2300 (1927). "'Gibbs, Littmann, and Marvel, I . Am. Chem Soc., 55, 753 (1933). , "'Cowan and Marvel, I . A m Chem Soc., 58, 2277 (1936). "'Drake et al., I. Am. Chem. Soc., 68, 1536 (1946). '74Campbell et al., .l.Am. Chem Soc., 68, 1556 (1946). '''Alexander, I. A m Chem. Soc., 70, 2592 (1948). '"Johnson et al., I. A m Chem. Soc., 69, 2364 (1947). "'Cocker and Harris, 1. Chem Soc., 1092 (1939). REFERENCES FOR CHAPTER 24 ""Zaugg and Horrom, I . A m C , m . Soc.. 72, 3004 (1950). '*Magee and Henze, I . A m Chem. Soc., 60, 2148 (1938); c f . ref. 218. "'Adamson et al., I . Chem. SOC., 1578 (1937). '''Janetzky and Verkade, Rec. trav. c h i m , 65, 903 (1946). lB'Janetzkyand Verkade, Rec. trav. c h i m , 65, 697 (1946). '"Verkade and J a n e t z k ~Rec. , trav. c h i m , 62, 780 (1943). '04Henze and Holder, I . Am. Chem Soc., 63, 1943 (1941). l''Hyde, Browning, and Adams, I . Am. Chem. Soc., 50, 2287 (1928); Fourneau and Barrelet, Bull. SOC. chim. France, 47, 72 (1930). "'Bogert and Nabenhauer, I . Am. Chem Soc.. 46, 1702 (1924). lB7Berchet,Org. Syntheses, Coll. Vol. 11, 397 (1943). '8'Biilmann and Berg, Bull. SOC. c h i m France, ( 5 ) l , 1657 (1934). lWBlicke, Wright, and Zienty, J . Am. Chem. Soc., 63, 2488 (1941). lWLeonard and Ruyle, I . A m Chem Soc., 71, 3094 (1949). 191Magidsonet al., Arch. Pharm, 272, 77' (1934). 19'Mills and Dazeley, I . Chem Soc., 460 (1939)l9'Clark and Mosher, I . A m Chem Soc., 7 2 , 1026 (1950); ref. 195. 194Utermohlenand Hamilton, I . A m C h e m Soc., 6 3 , 156 (1941). 195Whitmoreet al., I . Am. Chem Soc., 66, 725 (1944). 196Breslowand Mauser, I . A m C h m . SOC., 67, 686 (1945). 197Campbell,1. Am. Chem. Soc., 7 1 , 740 (1949). 198Behret al., I . Am. Chem Soc., 68, 1296 (1946). 199Burckhalteret al., I . Am. Chem. Soc., 7 0 , 1363 (1948). 'mJohnson, Hill, and Donleavy, Ind Eng. Chem, 12, 636 (1920); ibid., 13, 504 (1921). 'OISwann in Technique o/ Organic Chemistry, Vol. 11, Interscience Publishers, New York, p p 143-208. '"Emerson in Organic Reactions, Vol. 4, John Wiley h Sons, New Y a k , 1948, p. 174. 'O'Schwoegler and Adkins, I . Am. Chem SOC., 61, 3499 (1939). lmWinans, I . A m Chem Soc., 61, 3566 (1939). 'OaHaskelberg, I . A m Chem. Soc., 7 0 , 2811 (1948). 'QRohrrnann and Schonle, I . A m Chem Soc., 66, 1516 (1944). '"Alexander and Misegades, I . Am. Chem Soc., 7 0 , 1315 (1948); c f . ref. 203. ' m R ~ b i n s o nand Snyder, Org. Syntheses, 23, 68 (1943). 'OPFleury-Larsonneau, Bull. soc. c h i m France, ( 5 ) 6 , 1576 (1939). "'Emerson and Walters, J . A m Chem. SOC., 60, 2023 (1938). "'Emerson and Mohrrnan, I . A m Chem Soc., 62, 69 (1940); c f . ref. 210. "'Emerson and Uraneck, I . A m Chem Soc., 63, 749 (1941). "'Emerson and Robb, I . Am. Chem SW., 61, 3145 (1939). "4Woodruff, Larnbooy, and Burr, I . A m Chem. SW., 62, 922 (1940). '"Winans and Adkins, I . A m C h e m SW., 54, 306 (1932). "'Skita, Keil, and Havemann, Ber., 63, 39 (1930); i b i d , 66, 1400 (1933). "'Wagner, I . A m Chem. Soc., 55, 724 (1933). "aBreslow et al., J . A m Chem Soc., 68, 100 (1946). "9Pearson, Jones, and Cope, I . A m Chem Soc., 68, 1225 (1946). "'Gum and Robinson, J . Chem Soc., 561 (1943). "'Emerson, Dorf, and Deutschman, I. Am. Chem Soc., 62, 2159 (1940). "'Cope and Hancock, I . A m Chem. SW., 64, 1503 (1942). "'Hancock and Cope, Org. Syntheses, 26, 38 (1946). n 4 C ~ p eand Hancock, I . A m Chem Soc., 66, 1453 (1944). "'Hancock and Cope, I . A m Chem Soc., 66. 1738 (1944). 720 1 AMINES REFERENCES FOR CHAPTER 24 Ch. 24 I "'Engelhirdt, G o s s l e y , and Sprague, J . Am. Chem. Soc., 72, 2718 (1950). "'Drake e t al., J . Am. C h e m Soc., 71, 455 (1949). "8Woods and Sanders, J . Am. C h e m Soc.. 68, 2111 (1946); cf. ref. 229. "9Scriabine, Bull. soc. c h i m France, (5)14, 455 (1947). '"Drake e t al., J . Am. C k m Soc., 68, 1529 (1946). "'Skita, Keil, and Baesler, Ber., 66, 858 (1933). "'Bowman and Stroud, J . C h e m Soc., 1342 (1950). "'Knoop a n d Oesterlin, Z. physioL Chem.. 148, 294 (1925);170, 186 (1927). "4Heidelberger, An Advanced Laboratory Manual /aOrganic Chemistry, Chemical Catalog Co., New York, 1923, p. 24;Delgpine, Bull. SOC. chim. France, (3)17, 293 (1897);cf. ref. 235. "'Galat and Elion, J . Am. Chem Soc.. 61, 3585 (1939). "'~el;pine, Bull. SOC. c h i m France, (4)31, 108 (1922). "'Graymore, J. Chem Soc., 1116 (1947). '''Mamich and Hahn, Ber., 44, 1542 (1911). "9Wendler, J . Am. C h e m Soc., 71, 375 (1949). 140Blicke and Lilienfeld, J . Am. Chem Soc., 65, 2281 (1943). 14'Baniel e t al., I. Org. C h e m , 13, 791 (1948). '4'Blicke and Burckhalter, J . Am. Chem Soc., 64, 477 (1942). '"Blicke and Maxwell, J. Am. C k m Soc., 61, 1780 (1939). 'UWallis and L a n e in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 267. a4'Hofmam, Ber., 15, 762 (1882). '"Hoogewerff and van Dorp, Rec. trav. c h i m , 6, 386 (1887). a47Whitmoreand Thorpe, J . Am. C h e m Soc., 63, l118 (1941). '48Whitmore and Homeyer, J. A m Chem. Soc., 54, 3435 (1932). Jeffreys, Am. Chem. J., 22, 14 (1899). a'OSchlatter, J . Am. Chem Soc.. 63, 1733 (1941). "'Gum, Ber., 40, 2061 (1307). '=Hauser a n d Renfrow, J. A m C h e m Soc.. 59, 121 (1937). "'Beckmam and Correns, Ber.. 55, 848 (1922). "4Hoogewerff and van Dorp, Rec. trav. c h i m . 5, 252 (1886). "'Arcus and Kenyon, J . Chem. Soc., 916 (1939). a'bWoodruff and Conger, J . Am. Chem Soc., 60, 465 (1938). "'Woodruff a n d Pierson, J . Am. Chem Soc.. 60, 1075 (1938). '58Cope, Foster, and Towle, J . Am. Chem Soc., 71, 3932 (1949). '"Hewett et al., J . Chem. Soc., 292 (1948). lWGraf, 1. p a k . Chem, 133, 19 (1932). '"Gilman and Swiss, J . Am. C h e m Soc., 66, 1884 (1944); cf. ref. 90. "'v. Braun and Lemke, Ber., 55, 3526 (1922). '6'v. Braun and J o s t e s , Ber., 59, 1091 (1926). 'b4Horowitz and Geissman, J . Am. Chem. Soc., 72, 1518 (1950). 'b5Buck and Ide, Org. Syntheses, Coll. Vol. II, 44 (1943). '"Graebe and Rostovzeff, Ber.. 35, 2747 (1902). '67Hunuess, Pfister, and Pfister, J . Am. Chem. Soc., 64, 2845 (1942). "OClarke and Behr, Org. Syntheses, Coll. Vol. 11, 19 (1943). '69Natarajan and Swaminathan, J . Am Chem. Soc., 69, 2560 (1947). "OSmith in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 337. "'Naegeli, ~ r i i n t u c h ,and Lendorff, Helv. Chim Acta, 12, 227 (1929). lnManske, J. A m Chem. Soc.. 51, 1202 (1929). "'Buchman e t al., J . Am. Chem Soc., 64, 2696 (1942). a74McCoubreya n d Mathieson, J . Chem. Soc., 696 (1949). '"Kenyon and Young, J . Chem Soc., 263 (1941). '"Mayer and Sieglitz, Ber., 55, 1847 (1922). a7'Goldberg, Ordas, and Carsch, J . Am. C h e m Soc., 69, 260 (1947). a78Smith, ref. 270, p. 381. '"Skits and Rzssler, Ber., 72, 461 (1939). "ONaegeli a n d Lendorff, Helv. Chim. A c t a 15, 49 (1932). '"Stevenson and Johnson, J . A m C h e m Soc., 59, 2525 (1937). '"Singleton and Edwards, J . Am. Chem Soc., 60, 540 (1938). '"Mayer a n d Krieger, Ber., 55, 1659 (1922). '"Mousseron and Jacquier, Bull. soc. chim. France, (5)17, 238 (1950). 2 8 s C u r t i ~ sJ, . p a k t . Chem., 89, 508 (1914). "'Curtius, J . p a k t . C h e m , 58, 190 (1898); Naegeli and Tyabji, Helv. C h i m Acta. 16, 349 (1933)'87Darapsky, J . p a k t . C h e m , 146, 250 (1936). '%agnon, Gaudry, and King, J . C h e m Soc., 13 (1944). a89Curtius, J. prakt. C h e m , 125, 211 (1930). a90Curtius and Sieber, Ber., 55, 1543 (1922). 19'Yale, Chem. Revs., 33, 209 (1943). '9'Wolff in Organic Reactions, Vol. 3, John Wiley & Sons, New York, 1946, p. 307. '9'Adamson and Kenner, J. Chem. Soc., 842 (1934). a940esterlin, Z.angew. C h e m , 45, 536 (1932). '95Briggs and Lyttleton, J . Chem. Soc., 421 (1943). '96v. Braun and Friehmelt, Ber., 66, 684 (1933). "'Benson, Hartzel, and Savell, J. Am. C h e m SOC., 71, 1 1 1 1 (1949). '98Dice a n d Smith, J. Org. Chem, 14, 179 (1949). '99Fuson, Maynert, and Shenk, J. Am. C k m Soc., 67, 1939 (1945). 'ODAdamson, J. Chem Soc.. 1501 (1939). 'OISchmidt, Ber., 57, 704 (1924). 'OaNystrorn and Brown, J . Am. C b e m Soc., 70, 3738 (1948). 'O'Adams and Marvel, J. Am C h e m Soc., 42, 314 (1920);Suter and Moffett, ibid. 56, 487 (1934). '04Bloom, Breslow, and Hauser, J . A m Chem. Soc., 67, 539 (1945). '05Walter and McElvain, J . A m C h e m Soc., 56, 1614 (1934). 'WSuida and Drahowzal, Ber., 75, 995 (1942). '07Carothers and Adams, J . A m C h e m Soc., 47, 3051 (1925). '08Adkins and Billica, J . Am. C h e m Soc., 70, 695 (1948). '"Adkins and G a m e r , J . A m Chem. Soc., 52, 4349 (1930). "ORobinson and Snyder, Org. Syntheses, 23, 71 (1943),footnote 5. "'Freeman, R h & , and Spoeni, J . Am. C h e m Soc., 69, 858 (1947). "'Geissman and T e s s , J . Am. Chem Soc., 62, 514 (1940);St. Goldschmidt and Veer, Rec. trav. c h i m , 67, 489 (1948). "'van d e Kamp, Burger, and Mosettig, J . A m C h e m Soc., 60, 1321 (1938). "4Crowe a n d Nord, 1. Org. Chem, 15, 81 (1950). "5Kolloff and Hunter, J . Am. Chem. Soc., 63, 490 (1941);cf. P r i j s , Lutz, and E r l e n m e ~ e r ,Helv. C h i m Acta. 31, 571 (1948,. "'Turner, 1. A m Chem Soc., 68, 1607 (1946). "'King and Acheson, J . Chem Soc., 683 (1946). '"Reihlen e t al., An=, 493, 20 (1932). 722 AMINES Ch. 24 ueTarbell e t al., 1. A m Chem Soc.. 68. 1217 (1946). ''°Corse, Bryant, and Shonle, J. Am. Chem. S a ; , 68, 1905 (1946). '=Huber, J. A m C h e m Soc., 66, 876 (1344). "'Hawkins and Briggs, I. Am. Chem. Soc., 71, 2530 (1949). '"Biggs and Bishop, Org. Syntheses, 27, 18 (1947). "4Malachowski e t al., Rer., 71, 759 (1938). "'Ruggli and Prijs, Helv. Chim. Acta. 28, 674 (1945). m'Albert, Mills, and Royer, 1. Chem Soc., 1452 (1947). "'Paul and Cottin, Bull. soc. c h i m France, (5) 4, 933 (1937). "aWiley, 1. A m C h e m Soc., 68, 1867 (1946). "'Utermohlen, I. A m C h e m Soc., 67, 1505 (1945). ''OTarbell and Noble, 1. Am. Chem Soc., 72, 2657 (1950). "'Marvel a n d Tanenbaum, J. A m Chem Soc., 44, 2649 (1922). "=Buck, I. A m Chem Soc., 55, 2593, 3388 (1933). "'Kindler and Peschke, A r c h P h a n , 269, 581 (1931). "4Wiley and Adkins, I. A m Chem Soc., 60, 914 (1938). "'Mousseron, Jullien, and Winternitz, Bull. soc. c h i m France,. (5) 15, 884 (1948). "'Ruggli and Businget, Helv. Chim Acta, 25, 35 (1942). "'Schultz, I . A m C h e m Soc., 69, 1056 (1947). "'Albert and Magrath, J. Cbem Soc., 678 (1944); Havinga and Veldstra, Rec. trov. c h i m , 66, 271 (1947). "'Pollack, I. A m C h e m Soc.. 65, 1335 (1343). '"'Weygand, Ber., 74, 256 ( 1941). '41Winans and Adkins, J. A m Chem Soc., 55, 4167 (1933). 'aBiggs and Bishop, Ind. Eng. C b e m , 38, 1084 (1946); Kindler and Hess, Arch. Pharm, 271, 439 (1933). 'UWojcik and Adkins, J , A m C h e m Soc., 56, 2419 (1934). '"Uffer and Schlirtler, Helv. Chim. Acta, 31, 1397 (1948). 'UGavrilw, Koperina, and Klyuchareva, Bull. soc. c h i m France, (5) 12, 773 (1945). '"Winans and Adkins, J . A m Chem Soc., 55, 2051 (1933). '"Paul, Bull. scc. c h i m France, (5) 4, 112 1 (1937). '48King, Barluop, and Walley, J. C h e m Soc., 277 (1945). "'Hass, Susie, and Heider, J. Org. Chem, 15, 8 (1950). 'IOLycan, Puntambeker, a n d Marvel, Org. Syntheses, Coll. Vol. II, 318 (1943). '"Pinck and Hilbert, J . A m Chem Soc., 54, 710 (1932). '"Breslow e t al., I. A m C h e m Soc., 66, 1921 (1944). "'Magidson and Grigacnasky, Ber., 69, 396 (1936). "4Carmack e t al., J. A m C h e m Soc., 68, 1220 (1946). '=Hurd and Perletz, J. Am. Chem Soc., 68, 38 (1946). "'Hartung and Munch, J. A m C h e m Soc., 51, 2262 (1929). "'Mills and Grigor, J. Chem. Soc., 1568 (1934). "'Fischer, Sturm, a n d Friedrich, A n n , 461, 257 (1928). "'Koessler and Hanke, I . A m C h e m Soc., 40, 1716 (1918). '60Barry and Hartung, J. Org. C b e m , 12, 460 (1947). '61Shivers and Hauser, J. A m Chem Soc., 69, 1264 (1947). "Hamlin a n d Hartung, J . Biol. C h e m , 145, 349 (1942). '6'Snyder and Smith, J. Am. Chem Soc., 66, 350 (1944). 'UGrlinacher, Helv. Chim. Acta, 6, 458 (1923). '"Cocker, I. Chem Soc., 1489 (1340). REFERENCES FOR CHAPTER 24 'aMiiller and Feld, Momtsh., 58, 22 (1931)'"Decombe, Ann. c h i m . (10) 18, 126 (1932). ''8Campbell, Sommers, and Campbell, J. Am. Chem. Soc.. 66, 82 (1944). '"Henze and Humpheys, I. A m Chem. Soc., 64, 2878 (1942); cf. ref. 368. "OTiollais, Bull. soc. c h i m France, (5) 14, 959 (1947). '"Campbell, Sommers, and Campbell, Otg. Syntheses, 27, 12 (1947). "'Alien and Van Allan, Org. Syntheses. 21, 108 (1941). "'Gomwell, Babson, and Harris, I. A m C h e m Soc., 65, 312 (1943). "4Gomwell and Heksema, J. Am. Chem SOC., 67, 1658 (1945). "'Phillips, I . Soc. C k m Ind (London), 66, 325 (1947). "'Coleolan and Blomquist, J. A m Chem Soc., 63, 1692 (1941). "'Winans, I d Eng. C h e m , 32, 1215 (1940). "OZenitz, Macks, and M o a e , I. Am. C h e m Soc., 69, 1117 (1947); cf. ref. 379. '"Kindler, Hedemann, and Schzrfe, Ann., 560, 215 (1948); ~ h ~ eAnn. r , cbim., (12) 4, 226 (1949). "ONienberg, Ber., 70, 635 (1937). '"Ferber and BGckner, Bet., ?2, 995 (1939). 'UFerber and Bendix, Bet., 72, 839 (1939). '"Waser and M;illering, Org. Syntbeses, Coll. Vol. I, 499 (1941); cf. ref. 309. '"Sheve e t al., I d Eng. C h e m , 29, 1361 (1937); 33, 218 (1941). '"Gilman and Nobis, J. A m Chem Soc., 67, 1479 (1945). '"Homing and Bergsuom, J. Am. Chem Soc., 61, 2110 (1345). '"Hauser and Weiss, J. Org. Chem., 14, 310 (1949). "'Eisleb, Bar., 74, 1433 (1941). "'Drake in Organic Reactions. Vol. 1, John Wiley & Sons, New York, 1942, p. 105. ' T k u t a , A m C h e m J., 15, 39 (1893). '"Hartung, Minnick, and Kcehler, J. A m C h e m Soc., 63, 507 (1941). '"Robinson, I. A m Chem Soc., 69, 1942 (1947). '''Waoshtzow and Kogan, Bet., 65, 142 (1932). '04Gilman and Swiss, J . A m Chem. Soc., 66, 1884 (1944). '"Davies a n d Hulben, J. Soc. Cbem Ind (London), 57, 349T (1938). '''Hickinbottom, J . Chem. Soc., 1119 (1937). '"Moore in Organic Reactions, Vol. 5, John Wiley & Sons, New York, 1949, p. 301. '-Stevens and Richmond, 1. A m Chem Soc., 63, 3132 (1941); cf. ref. 397. "'Ingersoll, Org. Syntheses, Coll. Vol. 11, 503 (1943); Ingersoll e t al., J. A m Chem Soc., 58, 1808 (1936). 4mIcke, Wisegarver, and Alles, Org. S y ~ h e s e s .25, 89 (1945). 4aNovelli, J. A m C h e m Soc., 61, 520 (1939). U"BunnCrt and Marks, J. A m Chem Soc., 71, 1587 (1949). 4"Staple and Wagner, J. Org. C h e m , 14, 559 (1949). 4MSchiedt, J . prakt. C h e m , (2) 157, 203 (1941). -Webers and Bruce, J . A m C h e m Soc., 70, 1422 (1948). 4WBurger a n d Walters, J. Ant. C h e m Soc., 72, 1988 (1950). @'Niemann, Benson, and Mead, J . Org. Chem., 8, 401 (1943). 4'"Wrinht - e t al., J. Am. C h e m Soc., 72, 3536 (1950); Biel, ibid., 71, 1306 ( 1949). -Herz. Ditaner, and G i s t o l , J. A m C h e m Soc., 69, 1698 (1347); Bachman and ~ e i s & , ibid,.68, 2496 (1946). 4'0Holdren and Hixon, I . A m Chem SOC.. 68, 1198 (1940. 724 AMINES Ch. 24 411Hartoughet al., I. ' ~ m C. h e m Soc.. 7 0 , 4013, 401 8 (1948). 4 1 a ~ i i hand n Stein, Ber., 7 0 , 567 (1937). "'Mannich and Chang, Ber., 66, 418 (1933). 414Jones,Marszak, and Bader, I. Chem Soc., 1578 (1947). 41sGillot and G a m l e y , I. A m Chem. Soc.. 67, 1968 (1945). 4 1 6 M a ~ i c hLesser, , and Silten, Ber., 6 5 , 378 (1932). 417Wildsand Shunk, 1. Am. C h e m Soc.. 6 5 , 469 (1943); Spaeth, Geissman, and Jacobs, l . Org. C h e m , 11, 399 (1946). 41aSkoda, Bull. soc. c h i n France, ( 5 ) 13, 328 (1946). U9Howton,I. Org. C h e m . 12, 379 (1947); c f . Mannich, Ber., 7 5 , 49 (1942). 4'0Maxwell, Org. Syntheses, 23, 30 (1943). 4''Ruddy and Buckley, I. Am. Chem. Soc., 7 2 , 718 (1950); Buckhalter and Fuson, ibid., 7 0 , 4184 (1948). 4 ' a F ~1. , &g. C h e m . 10, 259 (1945); Winstein e t al., ibid.. 11, 215 (1946). U s p h i et al., I. Org. Chem., 14, 543, 873 (1949). 4 ' 4 M a ~ i c hand Ganz, Ber..' 55, 3486 (1922). U'Butler and MacMillan, 1. Am. Chem. Soc., 7 2 , 2978 (1950). "6Blomquist and Shelley, 1. A m Chem. Soc., 7 0 , 147 (1948). "'Blicke in Organic Reactions, Vol. 1, John Wiley & Sons, New York, 1942, P. 303"OIng and Manske, 1. C h e m Soc., 2348 (1926); c f . &g. Syntheses. Coll. Vol. 11, 83 (1943). 4'9Sheehan and Bolhofer, I. Am. Chem. Soc., 7 2 , 2786 (1950). 4'0Smith and Emerson, &g. Syntheses, 29, 18 (1949). 4''Loevenich, Becker, and Schr"or, I. prakt. C h e m , 127, 254 (1930). 4'aPutochin, Ber., 59, 625 (1926); C. A. 24, 3756 (1930); c f . ref. 428; also Bailar, J . A m C h e m Soc., 56, 955 (1934). 4"Amundsen and Sanderson, &g. Syntheses, 24, 44 (1944); Shriner and Hickey, l . A m C k m Soc., 61, 888 (1939). U4Chambret and J o l y , Bull. SOC. chim. France, ( 5 ) 14, 1023 (1947). 4''Miiller and Feld, Monatsh, 58, 15 (1931). 4 3 6 R ~ g g l Leupin, i, and Dahn, Helv. Chim. Acta. 30, 1845 (1947). 4"Sakellarios, Helv, C h i m Acta. 29, 1675 (1946). 4'8Hamer and Rathbone, J. C h e m Soc., 246 (1943). 4'9Weizmann and Malkowa, Bull. soc. c h i m France, ( 4 ) 47, 356 (1930). ""Davies and Powell, 1. A m Chem Soc., 67, 1466 (1945). "'DeWitt, &g. Syntheses, Coll. Vol. U, 25 (1943). 44'Cloke e t al., I. Am. C k m Soc., 67, 1587 (1945). 44'Billman and Parker, 1. Am. C h e m Soc., 65, 761 (1943). U4Birkofer,Ber.. 7 5 , 429 (1942). "'Goldberg and Kelly, l . C h e m Soc., 1369 (1947). U6Stololl,Peyer, and Hofmann, H e b . Chim. Acta. 26, 929 (1943). "'Mattocks and Hartung, 1. Am. Chem. Soc., 68, 2108 (1946). 44Wenner, j. @g. Chem., 13, 26 (1948). 44gHorning,Homing, and Platt, 1. A m C b e m Soc., 7 0 , 288 (1948). "ORiegel, Gold, and Kubico, I . Am. C h e m Soc., 64, 2221 (1942). 4"Coleman and Callen, I. A m C h e m Soc., 68, 2006 (1946). "'Clapp, I. Am. C h e m Soc.. 7 0 , 184 (1948); c f . ref. 451. "'Mannich, Handke, and Roth, Bet.. 69, 21 12 (1936). "'Pearson, Baxter, and Carter, Org. Syntheses, 29, 21 (1949); c f . ref. 455. 4"Schmidt e t al., Am., 568, 192 (1950). REFERENCES FOR C H A P T E R 24 4'6Leffler,&g. Syntheses, Coll. Vol. U, 24 (1943). 4'7Krueger and Schwarcz, 1. A m Chem. Soc., 63, 2512 (1941). 4saAdams and Segur, 1. A m Chem. Soc., 45, 785 (1923). 4'9Pierce and Adams, j. A m Chem. Soc., 45, 790 (1923). 460Vliet,Org. Syntheses, Coll. Vol. 1, 201, 203 (1943). 46'Headlee, Collett, and Lazzell, I. Am. Chem. Soc., 55, 1066 (1933); Horne and Shriner, i b i d . 54, 2925 (1932). 46'Lasselle and Suadet, J . A m C h e m Soc., 6 3 , 2374 (1941). " B i e l , 1. Am. Chem. Soc., 7 1 , 1306 (1949). Q4Goldfarb,1. Am. C h e m Soc., 63, 2280 (1941). "'Cairns and Fletcher, 1. A m C h e m Soc., 63, 1034 (1941). 4"McCasland and Smith, J. Am. Chem. Soc., 7 2 , 2190 (1950). 467Lefflerand Adams, I . A m Chem. Soc., 59, 2252 (1937). 46aEmerson,I . Am. Chem. Soc.. 67, 516 (1945). 4 6 9 L ~ t zFreek, , and Murphey, I. A m Chem. Soc., 7 0 , 2015 (1948). 4mMoffettand Hoehn, I. Am. Chem Soc., 69, 1792 (1947). 471Campbellet al., I. Am. C h e m Soc., 70, 3868 (1948). 47'Gardner et al., I. Chem. Soc., 780 (1949). 47'Kyrides et al., I . Am. C h e m Soc., 7 2 , 745 (1950); Gawron and Spoeni, i b i d . 67, 514 (1945); Hromatka, Be?., 7 5 , 131 (1942). 474Haeseler,&g. Syntheses, Coll. Vol. 1 196 (1941). 47'Gomwell, Chem. Revs., 38, 83 (1946). 476Kohn,Monatsh., 25, 841 (1904). 477Morsch,Monatsh., 63, 220 (1934). 47aHolleyand Holley, 1. Am. C h e m Soc., 7 1 , 2124 (1949)4T9Johnson,Woroch, and Buell, I. Am. C h e m Soc., 7 1 , 1901 (1949); Southwick and Seivard, ibid., 71, 2532 (1949). 4a0Stork and McElvain, 1. A m C h e m Soc., 69, 971 (1947). 4a'Mozingo and McCracken, Org. Syntheses. 20, 35 (1940); Fuson, Parham, and Reed, I. A m C h e m Soc., 6 8 , 1239 (1946); McElvain and Rorig, h i d , 70, 1820, 1826 (1948). 4a'Morsch, Momtsh., 60, 50 (1932). 4B'Morsch, Monatsh., 61, 299 (1932). 4a4McElvainand Stork, 1. Am. C h e m Soc., 6 8 , 1049 (1946)48'Steiger, Org. Syntheses, 22, 26 (1942). 4a6Philippi,Hendgen, and Hernler, Momtsh., 69, 282 (1936). 4a7Heathand Rose, I. Chem. Soc., 1471, 1486 (1947). 4aaWonall,I. A m Chem. Soc., 49, 1598 (1927). 489Snyder,Weaver, and Marshall, 1. A m C h e m Soc., 7 1 , 289 (1949). 490Robinson,I. C h e m Soc., 220 (1941). 491Bachmann,I. Am. C h e m SOC., 59, 420 (1937). "'Pschon and Karo, Ber., 39, 3140 (1906). 49'Weston and Adkins, I. Am. Chem Soc., 50, 859 (1928). 4g4Blickeand T s a o , I. A m C h e m Soc., 6 8 , 905 (1946). "'Fones, I. &g. C h e m , 14, 1099 (1949). 4g6Weston,Ruddy, and Suter, 1. A m Chem. Soc., 65, 674 (1943). "Aspinall, I. A m C h e m SOC., 63, 852 (1941). 49aKlostermanand Painter, 1. Am. C h e m Soc., 69, 1674 (1947). 4ggCocker,I. C h e m Soc., 1693 (1937); 1290 (1940). 'WBillman and Parker, 1. Am. C h e m Soc., 65, 2455 (1943). s0'Verka& and Witjens, Rec. trav. chim., 6Z1 201 (1943). 7 26 AMINES Ch. 24 'OaKrueger and Mosettig, J . Org. Chem., 5, 313 (1940). '05~osettigand Krueger, I . Org. Chetn. 3, 317 (1938). '"'Bachmann and Roatner, I. Am Chem. Soc.. 58, 2097 (1936). "Baker, I. Chem Soc., 476 (1937). '06Ritter and Kalish, I. Am. C k m SOC., 70, 4048 (1948). 'O'Price and Voong, Org. Syntheses, 28, 80 (1948). "Leffler in Organic Reactions. Vol. 1, John Wiley & Sons, New York, 1942, p. 91; cf. Deasy, I. Org. C k m . 10, 141 (1945). '09Parker and Shive, I. Am. Chem SOC., 69, 63 (1947). 510Bergstrom, Sturz, and Tracy, I. Org. Chem, 11, 239 (1946). '"Glickman and Cope, I. Am C k m Soc., 67, 1017 (1945); Coffey, Thomson, and Wilson, I. Chem Soc.. 856 (1936); D&cornbe, Ann chim., (10) 18, 103 (1932). '"Brown and Jones, I. Chem. Soc.. 781 (1946). "'Stewart and Bradley, I. Am Chem. SOC., 54, 4172 (1932). '14Alexander and Underhill, I. Am Chem SOC., 71, 4014 (1949). sL'Masters and Bogert, I. Am Chem Soc., 64, 2710 (1942). "'Rivier and Farine, Helv. Chim Acta, 12, 866 (1929); Scanlan, I. Am Chem. Son.. 57, 887 (1935). "'Gattermann and Wieland, Laboratory Methods o j Organic Chemistry, The Macmillan Co., New York, 1938, p. 317. "'Lambert, Scaife, and WilderSmith, I . Chem. Soc., 1474 (1947). "9Buckley, Heath, and Rose, I. C h a Soc., 1500 (1947). "ORousseau and Lindwall, I . Am Chem. Soc.. 72, 3047 (1950). "'Jones and Wilson, I. Chem. Soc., 550 (1949). "'Barger and Easson, I. Chem Soc., 2100 (1938). '"Hiers and Adams, 1. Am. Chem Soc., 49, 1099 (1927); Ber., 59, 162 (1926). 'UAllen and Rell, &g. Syntheses, 22, 19 (1942). snAnslow and King, Org. Syntheses. Coll. Vol. I, 298 (1941). s2'Neunhoeffer and Liebich, Ber., 71, 2247 (1938); Bell, Kenyon, and Robinson, $. Chetn Soc., 1243 (1926). "'Kamm, &g. Syntheses, Coll. Vol. 1, 445 (1941). '"Salzberg, I. Am. Chem Soc., 72, 4307 (1950). s'9Ettlin8er, I. Am. Chem. Soc.. 72, 4795 (1950). "qngram, I. Chem. Soc.. 2247 (1950). sUTheilacker and Wendtland, Ann, 570, 50 (1950). s5aHauser and Reynolds, I. Org. Chem. 15, 1224 (1950). "'Degering and Boatright, I. Am. Chem Soc., 72, 5137 (1950). s'4Waalkes e t al., 1. Am. Chem. Soc., 72, 5760 ( 1950). sUGroggins, Unit Processes in Organic Synthesis, McGraw-Hill Book Co., New Y a k , 1947, pp. 73-128. "'Ref. 535, pp. 338-423. '"Baret and ~ & v e ~ uBull. e , SOC. chim France, (5) 16, 832 (1949). '"Elderfield and Ressler, I. Am. Chem Soc., 72, 4067 (1950). "9May and Mosettig, I. Am. Chem. Soc., 70, 1077 (1948). '40JJian e t al., I. Am Chem. Soc., 67, 1203 (1945). '"Hass and Huffman, I . Am Chem Soc., 63, 1233 (1941). '"Allen and Wolf, Org. Syntheses, 30, 3 (1950). s4'Tchouhr, Bull. SOC. chim France, (5) 16, 160 (1949). -Haz, I. Am. Chem Soc., 72, 4999 (1950). CUBurgerand Bennet, I. Am Chem Soc., 72, 5414 (1950). sUManake and Kulka, I. Am Chem SOC., 72, 4997 (1950). REFERENCES FOR CHAPTER 24 s4'Lewis, I. Chem Soc., 2249 (1950). smSnyder and Hamlin, I. Am Chem Soc., 72, 5082 (1950). i. ref. sewinstein and Boschan, j . Am Chem. Soc., 72, 4675 (1950); ssORoederand Day, I. Org. Chem., 6, 28 (1941). sslGilman and Avakian, I . Am Chem. Soc., 68, 580 (1946). ss'Witten and Reid, Org. Syntheses. 30, 5 (1950). s5'Morrison and Rinderknecht, I. Chem. Soc., 1478 (1950). ss4Fieser, Org. Syntheses, Coll. Vol. U, 35, 39 (1943). sssStevenson, I n d Eng. Chem., 42, 1664 (1950). "'Kremer, I. Am. Chem Soc., 61, 1321 (1939). "'King and Work, I. Chem Soc., 1307 (1940). ss'Wilkinson and Finar, 1. Chem. Soc., 759 (1947). Yak, s 5 * B r ~ in ~ nOrganic Reactions, Vol. 6, John Wiley & Sons, Ne p. 469. sroCampaigne, Budde, and Schaefer, Org. Syntheses, 31, 6 (1951). s61Schultz, Org. Syntbeses, 31, 45 (1951). / 729 METHODS 465-468 A successful conversion of pfluorenone t o its ketimine h a s been described in which anhydrous ammonia is passed through the moltec ketone a t l65O (66%).' Invariably, the combination of ammonia and aldehydes forms other products; these reactions have been reviewed.' Monochloramine (NH2Cl) reacts readily with substituted bentaldehydes t o form aldchlorimines ( ArCH =NU).'' Imines CONTENTS METHOD PAGE 465. Condensation of Carbonyl Compounds with Amines .................................. 728 466. Cyclization of ,&Amino Alcohols .................................................................. 729 467. Action of Grignard Reagents on Oximes ...................................................... 729 468. Action of Grignard Reagents on Nitriles ...................................................... 727 469. ,LWminonitriles by Condensation of Nitriles ................................................ 730 470. Ethylene Imino Ketones by the Action of Amines on a,,&Dibromo Ketones ............................................................................................................ 730 ...................................................................................................... 731 ................................................................................................................ 732 Table 93. Imines References 465. Condensation of Carbonyl Compounds with Amines RCHO + R'NH, + RCH =NR' + H20 Both aliphatic and aromatic aldehydes condense with primary amines, aliphatic and aromatic, to form N-substituted imines. The purely aliphatic imines (C, t o C,,) can be obtained in 50-80% yield; however, t h e s e compounds are unstable and should b e used immediately after distillation.' Side reactions which may occur during their formation have been studied.' On the other hand, Schiff b a s e s from substituted bentaldehydes and amines, aliphatic and aromatic, are more stable and have been prepared in large n ~ m b e r s . " ~ The benzaldehyde entity may carry a halo, hydroiyl, methoxyl, dialkylamino, or nitro goup.' Usually, an immediate reaction occurs upon mixing the two reactants either without a solvent or in dilute alcohol, a s illustrated by the synthesis of benzalaniline, C,H,CH=NC,H, (87%).' The formation of Schiff b a s e s by the reaction of ketones with amines is more difficult. Acetophenone and other aryl alkyl ketones which are slow t o react under the usual conditions will combine with aromatic amines a t 160-180° in the presence of a zinc chloride-aniline salt." In another procedure, 2-acetylthiophene and aniline are condensed in boiling toluene with the aid of a water separator." Ketones like acetophenone have been heated with ammonia in the presence of a dehydrating agent, but the formation of the ketimines is 466, Cyclization of p - ~ m i n oAlcohols Ethylenimine is conveniently prepared from ethanolamine by heating the inner salt of the sulfate e s t e r with aqueous alkali (37%)." The method h a s been applied to other p-amino alcohols to form the C-alkyl homologs of ethylenimine in which one to three of the four hydrogens may b e substituted." The general procedure is illustrated by the synthesis of 2,2-dimethylethylenimine (51%).13 T h e N-alkyl analogs can be made by treating the N-alkylethanolamine hydrochlorides with chlorosulfonic acid followed by the action of b a s e on the intermediate sulfuric acid esters, a s in the preparation of N-ethylethylenimine (70%).14 Aryl-substituted amino alcohols fail t o undergo t h i s reaction but ins t e a d are dehydrated to vinylamines. The reactions of ethylenimine have been studied extensively." 467. Action of Grignard Reagents on Oximes R AIC II -CH, R I 2RMgX+ H 0 Ar-C-CH2 I Ar-C-CH2 \/ \ / Certain substituted ethylenimines are obtained by the action of aliphatic or aromatic Grignard reagents on aryl alkyl ketoximes with s u b sequent non-acidic decomposition of the intermediate complex (2060%).~~*~' 468. Action of Grignard Reagents on Nitriles ArCN RMEX A NH ArRC =NMgX 3 ArRC =NH TABLE 93. IMINES IMINES The interaction of Grignard reagents and nitriles produces kecimines which may be hydroly~edto ketones without isolation (method 187). Many of the alkyl aryl ketimines have been isolated for further study. For this purpose, the intermediate addition compound i s decomposed by treatment with anhydrous hydrogen chloride or, preferably, with anhydrous ammonia."-19 The yields range from 50% to 86%. Often, the ketimines are non-hydrolytable or hpfrolyted with difficulty, allowing them to be easily isolated;" others must be isolated and stored under anhydrous condition^.'^^*^^ 469. p ~ m i n o n i t r i l e sby Condensation of Nitrilesaa 470. Ethylene Imino Ketones by the Action of Amines on a$-~ibromo I Ketones a 3 73 1 TABLE 93. IMINES Cn Compound Method % -- l,2-Butylenimine trrms-2,f Butylenimine 2,2-Dimethylethylenimine N-Ethylethylenimine Propylidenemethylamin e Ethylidene-ethylamine Propylidene-ethylamine Butylidenemethylamine Burylidene-ethylamine N-Benzylidenemethylamine N-Benzylidencetb ylamine 2-Phenyl-2-ethylechylenimine N-Pheiyl 2-thienyl methyl ketimine Diphenylmethane imine hy&ochloride Fluorenyllidenimine N-Benzylideneaniline (benzalaniline) - For explanations and symbols s e e pp. xi-xii. Chapterref. B.p./mm.. nb, (Mp.). Deriv. IMINES Ch. 25 REFERENCES FOR CHAPTER 25 lTiollais, Bull. SOC. chim. France, (5) 14, 708 (1947); Campbell, Sommers, and Campbell, 1, A m C h e m Soc., 66, 82 (1944). 'Emerson, Hess, and Uhle, I . A m Chem. Soc., 63, 872 (1941); Paquin, C h e m Ber.. 82.. 316 - (1949). . - - , 'Bigelow and Eatough, Org. Syntheses, Coll. Vol. I, 80 (1941). 4Gomwell, Babson, and Harris, I . A m C k m Soc., 65, 312 (1943); ref. 6. 'Cromwell and Hoeksema, I. A m C h e m Soc., 67, 1658 (1945); Moffett and Hoehn, ibid. 69, 1792 (1947); Lutz et al., I . Org. Chem., 12, 760 (1947); Jensen and Bang, Ann., 548, 106 (1941). 6Campbell e t al., I . A m C h e m Soc., 70, 3868 (1948). 'Strain, 1. Am. C h e m Soc., 52, 820 (1930). 'Harris, Harrhan, and Wheeler, I . A m Chem. Soc., 68, 846 (1946). 'Sprung, Chem. R e v s . , 26, 297 (1940). ''Hauser, Gillaspie, and LeMaistre, I . Am. C h e m Soc., 57, 567 (1935). llAllen, Spangler, and Webster, Org. Syntheses, 30, 38 (1950); Leighton, Perkins, and Renquist, I . Am C h e m Soc., 69, 1540 (1947); cf. ref. 12. 12Joneset al., I. Org. C h e m , 9, 125, 484 (1344). 13Campbell, Sommers, and Campbell, @g. Syntheses, 27, 12 (1947). 14Elderfield and Hageman, I . Org. C h e m , 14, 622 (1949). lSCampbell et al., I . Org. C h e m , 8, 103 (1943). 16Campbellet al., I . Org. C h e m , 9, 184 (1944). "Moureu and Mignonac, Ann. c h i m , (9) 14, 322 (1920). laPickard and Vaughan, I. A m C h e m Soc., 72, 876, 5017 (1950). lgCloke, I . Am. C h e m Soc.. 62, 117 (1940). "Lachman, Org. Syntheses, Coll. Vol. 11, 234 (1941). llReddelien, Ann., 388, 165 (1912); Ber., 43, 2476 (1910). "Adkins and Whitman, I . A m C h e m Soc., 64, 150 (1942); Darnow, Kihlcke, and Bawann, C k m . Bet., 82, 254 (1949). "Cromwell and Caughlan, I . A m C h e m Soc., 67, 2235 (1945); 69, 258 (1947). '4Campbell et al., I . Am. Chem. Soc., 70, 3868 (1948). "Bestian, Ann., 566, 210 (1950). a6Harrough,I . Am. C h e m Soc., 70, 1282 (1948). Hydrazines CONTENTS PAGE METHOD 471. Alkylation of Hydrazines .............................................................................. 733 472. Interaction of Amines and Hydroxylamine-0-Sulfonic Acid ...................... 734 473. Reduction of Diazonium Compound s ............................................................ 734 734 474. Reduction of Nitrosoamines ....................................................................... 475. Reduction of Azo Compounds .................................................................. 735 476. Action of &ignard Reagents on Diazomethane .......................................... 735 477. Reductive Hydrazination of Carbonyl Compounds ...................................... 735 478. Addition of Grignard Reagents to Dialkyl-alkylidenhydrazones .............. 735 These compounds are prepared in part by methods similar to those for amines; in addition, specific methods are employed including the reduction of diazonium compounds, reduction of azo compounds, and reduction of nitrosamines leading to sym- or unsym-substituted hydrazines. 471. Alkylation of Hydrazines High-molecular-weight monoalkylhydrazines (C, and above) can b e made from anhydrous hydrazine33 and alkyl halides in a manner similar to the alkylation of amines.' o n the other hand, alkylation with the lower halides leads chiefly to di-, tri-, and tetra-substituted hydrazines.' Ethylhydrazine h a s been obtained by alkylation of hydrazine with ethyl sulfate (32%).' Methylhydrazine is synthesized by a special variation of this method (547QO9 If activated by niuo groups, aryl halogens are easily replaced by the hydrazino group, a s illusuated by the synthesis of 2,4-diniuophenylhydrazine (85%).' Other nitrophenylhydrarines may be obtained by the action of hydrazine or methylhydra~ine.~ Alkali metal phenylhydrazines, ArN(Na)NH,, which are prepared by the direct reaction of primary hydrazines with alkali amide in liquid IH il' 734 Ch. 26 HYDRAZINES ammonia are readily alkylated by alkyl halides to furnish N,N-alkylaqdhydrazines, Ar(R)NN& (73-94%).' sym-Hydrazines, RNHNHR, are prepared by the alkylation of dibenzoylhydrazine (GH,CONHNHCOC&) followed by hydrolytic treatment, a s shown by the synthesis of sym-dimethylhydrazine (73% over-all).' T h i s procedure may b e applied to dibenzoylalkylhydrazines which upon alkylation and hydrolysis yield sym-hydrazines substituted with different groups, e.g., sym-methylisopropylhydrazine.'O T h e interaction of hydrazine hydrate and ethyl chlorocarbonate in methanol solution yields methyl hydrazinecarboxylate, &NNHCO,CH, (49%)." 4 7 2 Interaction of Amines and Hydroxy lamine-0-Sulfclnic Acid RNH, + NH,O.SO,OH RNHNH, METHODS 475-478 475. Reduction of Azo Compounds Aromatic sym-&substituted hydrazines are obtained by reduction of azo compounds, which in turn are intermediates in properly controlled reductions of nitro compounds. The over-all reduction can b e accomplished with zinc dust and alkali or electrolytically. For example, hydnmbenzene, the simplest member, is made by both procedure^.^^*'^ Chemical reduction is carried out on o-nitrobromobenzene t o form 2,Ydibromohydrazobenzene (57%), the halo groups remaining intact." Many examples of the electrolytic procedure have been cited; the yields vary from 50% to 95%."' 0 a limited extent, a magnesium-magnesium iodide system h a s been employed a s a reducting agent for the a ~ o b e n z e n e s . ' ~ 476. Action of Grignard Reagents o n Diazomethanez9 Monoalkylhydrazines (C, to C,) are readily prepared by heating amines with hydroxylamine-0-sulfonic acid in the presence of alkali (31-a%).' T h e products are isolated a s the oxalate salts. - 477. Reductive Hydrazination of Carbonyl Compounds 'O 473. Reduction of Diazonium Compounds NalS 0, A~N~CI- ArNHNH, HCI T h e reduction of diazonium s a l t s by sodium sulfite forms monosubs u t u t e d arylhydrazines. An improved procedure for the synthesis of phenylhydrazine in 84% yield is typical." Arylhydrazine s a l t s substituted in the nucleus with halo,14 ether," c a r b o ~ y l , ' ~ *or ' ~n i t r ~ " ~ " groups have been prepared T h e free b a s e s are liberated from the s a l t s by the action of aqueous sodium hydroxide or sodium acetate. 474 Reduction of Nitrosoamines R , ~ H(HONO)+ R$JNO Zn R,NNH, CH,COOH unsym-Disubstituted hydrazines, R&NH,, are prepared by the zincacetic acid reduction of either aliphatic or aromatic nitrosoamines. In this manner, unsym-dimethylhydrazine is synthesized in 73% yield from nitrosodimethylamine.'O Similarly, a-methyl-a-phenylhydrazineis prepared (56%)." Preparations of the nitrosoamines from the corresponding secondary amines are a l s o described. Ethylhydrazine is made from nitrosodiethylurea, C,H,N(NO)CONHGH,, by the usual s t e p s of reduction and h y d r o l y s i ~ . ~ ~ R =iaopmpyl (80%) 478. Addition of Grignard Reagents t o Dialkylalkylidenhydrazones"*" R = ethyl (227. over-all) I C1 Cl C, Compound Methylhydrazine (as sul fate) Ethylhydrazine Ethylhydratine (as oxalate) symDimethylhydrazine (as hydrochloride) unsymDimethylhydrazine Methyl hydrazinocarboxylate rrPropylhydrazine (as oxalate) Isopropylhy drazine Isopropylhydrazine (as oralate) C4 rrhtylhydrazine (as oxalate) symMethylisopropy1hydrazine ~,~-~imeth~l-~'ethylhydrazine CS n-Amylhydrazine (as oxalate) symMethy1-n-butylhydraan e C6 n-Hexylhydrazine symDii sopmpylhydrazine Tdethylhydrazine Phenylhydrazhe pFluoropheaylhydrazine cr Nitrophenylhy drdzine PNitmpheaylhydrazine 2,CDinimphaylhydrazine Method N.N-Ethylphcnylhydrarine 2-Phenoryphenylhydrazine Hydrazobenzene 2,~'-Dibromohydrazobenzene chap1eflef. B.p./m., n b. (Kp.), Dedr. cn Compound 471 54 269 (142) cl, 471 472 32 42 26* 26' 99.5/709, l lOHCl (171) cj4 ~ e t r a ~ h a y l h y d r a z i n e 471 78 26' ( 167) 474 471 73 49 26m 26" 65/765, 82HCl 108/12, (63), 160HC1 472 52 26' (175) 477 472 90 44 26* 26' 107/750, 114HC1 (172) 472 45 26' (165) 471 50 26'' 79/37 478 65 26" 77/720, 93Pi 472 31 26' (164 476 53 26 471 477 26 100 26' 26* 81/14 1241750, 1.4125'4 478 473 473 473 473 471 474 22' 84 74 64 66 85 56 26*' 26U 2614 26" 2617 264 26= 39/37 13W18, (23) 129/21, (39) (90)*, 140Ac* (157), 120Pi* (193 109/13 84 76 2616 2619 (247), 190HCI 253HC1 88 45 85 57 267 26Is 26= 26" 120-7/25, 147HC1 (1 54) (124) (98) C 7 a-Methyl-a-phgylh ydrazine crCarboryphenylhydratine 473 PCarbox~phenylh~drazine 473 Cm C,, TABLE 94 (cvntimcod) ':id 471 473 475 475 " 737 T A B L E 94. HYDRAZINES TABLE 94. HYDRAZINES cn Ch. 26 HYDRAZINES 736 ll5HCl 4,4'-=hydradnodiphenylmethane Method (%) C haptexef. ~.p./mm., ntD. 473 35 z6" (141) .... 70 26" (144 gor erplanations and symbols see PP. xi-& WPA Deriv. HYDRAZLNES Ch. 26 REFERENCES FOR CHAPTER 26 'Gever and Hayes, l . 0%. Chem. 14, 813 (1949). 'Westphal, Ber., 74, 759 (1941). 'Brown and Kearley, 1. Am Chem. Soc., 72, 2762 (1950). 4Allen, Org. Syntheses, Coll. Vol. 11, 228 (1943). 'Vis, Rec. trav. cbim.. 58, 387 (1939). 6Koenigs and Loesch, 1. prakt. C h a . 143, 59 (1935). 'Audrieth, Weisigcr, and Carter, I. Org. Chem., 6, 417 (1941). "Haa, Org. Syntbeses. Coll. Vol. 11, 208 (1943). 'Has, .Org. Syntheses. Coll. Vol. II, 395 (1943). "~amsperger, 1. Am Cbem Soc.. 51, 918 (1929). "Diels and Fritzsche, Ber., 44, 3022 (1911). "Coleman, Org. Syntheses, Coll. Vol. I, 442 (1941). "Parkes and Morley, I. Chem Soc.. 315 (1936). 14Schiemamand Winkelm"uller, Ber.. 66,729 (1933). UTarbell et al., I. Am Chem Soc., 70, 1381 (1948). '6Pfannstiel and Janecke, Ber., 75, 1096 (1942). "Davies, I. Chem Soc.. 715 (1922). '"Brady and Repolds, 1. Chem. Soc., 196 (1928). "Veibel and Hauge, Bull. SOC. chim. France, (5) 5, 1506 (1938). ' O ~ a a , Org. Syntbeses. Coll. Vol. 11, 211 (1943). "Hartman and Roll, Org. Syntheses, Coll. Vol. 11, 418 (1943). "Weygand, Organic Preparations, Interscience Publishers, New York, 1945, p. 241. "Ganermann and Wieland, Laboratory Methods of Organic Chemistry, The Macmillan Co., New York, 1938, p. 183; cf. ref. 24. 14McKeeand Gerapostolou, Tmns. Electrochem. Soc., 68, 329 (1935). %nyder, Weaver, and Marshall, I. Am Chem. Soc., 71, 289 (1949). "Swann, Trans. Electrocbem Soc., 69, 307 (1936); 77,479 (1940); Swann in Technique of Organic Chemistry, Vol. 11, Interscience Publishers, New York, 1948, P. 143. "Bachmam, 1. Am Chem Soc.. 53, 1524 (1931). '"See ref. 23, p. 355. a9Colemanet al., I. Org. Chem. 3, 99 (1938). 'O~ochte,Noyes, and Bailey, I. Am Cbem. Soc.. 44, 2556 (1922). " ~ l a g e s et al., Ann. 547, 1, 28 (1941). "Westphal and Eucken, Be?., 76, 1137 (1943). "Smith and Howard, Org. Syntheses, 24, 53 (1944); cf. Barber and Wragg, I. Chem Soc.. 1458 (1948). Oximes and Nitroso Compounds CONTENTS PAGE METHOD 739 479. Oximination of Carbonyl Compounds .......................................................... 480. Niuosation of Active Methylene Compounds ............................................ 740 740 481. Partial Reduction of Nitro Compounds .................................................... 741 482. Hydroxylamination of Dihydropyridines ...................................................... 741 483. Niuosation of Secondary Amines ............................................................. 742 484. Niuosation of an Aromatic Nucleus .......................................................... 742 485. Oxidation of Hy&oxylamines and Amines ............................................... Table 95. Oximes (Isoniuoso Compounds) ........................................................ Table 9 6 Niuoso Compounds .................................................................... .. . . 743 744 ......................................................................................... :............ 745 References 479. Oxirnination of Carbonyl Compounds R,CO + H,NOHoHCl + NaOH 4 R,C=NOH + H,O + NaCl Oximes are commonly prepared by the interaction of ketones with hydroxylamioe hydrochloride (or sulfate) in the presence of an inorganic base. T h e reaction is reversible, but t h e s t a t e of equilibrium highly favors the desired products. Preparations of large quantities for synthetic work are illustrated for methyl ethyl ketoxime,' cyclohexanone oxime,'p3 hepta l d o ~ i m e ,and ~ benzophenone ~ x i m e t,h~e procedures varying somewhat with the oature of the carbonyl compound. In some instances, a readily available and cheap reagent like sodium hydroxylamine disulfonate, HON(SO,Na),, is first prepared from sodium nitrite and sodium bisulfite and, without isolation, treated with the carbonyl compound,'*617*" Hydroxylamine-0-sulfonic acid, H,NOSO,H, is still another reagent and, l i k e sodium hydroxylamine disulfonate, is u s e d in the absence of a base. T h e preparation of hydroxylamine hydrochloride is described.' T h e oximes of ketones with large hydrocarbon radicals like t h e acetylphenanthrenes are readily prepared by the action of hydroxylamine hydrochloride in the presence of pyridine." Special studies have been made for the synthesis of 1,2-cyclohexanedione d i ~ x i m e 'a~s well a s the next higher homolog." Dimethylglyoxime, CH3C(=NOH)C(=NOH)CH3, is 740 OXIMES AND NITROSO COMPOUNDS prepared by the action of sodium hydroxylamine monosulfonate on biacetyl monoxime." 480. Nitrosation of Active Methylene Compounds RCOCH,R + R'ONO 2RCOC(=NOH)R + R'OH Compounds having active methylene groups react with nitrous acid to form oximino derivatives. The attack on the a-methylene group of ketones i s illustiated by the action of ethyl nitrite on methyl ethyl ketone, and by t h e action of methyl nitrite on propiophenone, to form biacetyl monoxime (60%)'' and isonitrosopropiophenone (68%),16 respectively. Methyl and ethyl nitrites are p a s s e d in gaseous form into the ketones in the presence of hydrochloric acid. In other preparations, ~ b u t y l ,amyl, or octyl nitrite in liquid form is empl~yed."~''*'~ Similarly, the a-methylene group of acetoacetic ester is oximinated by the action of sodium nitrite in glacial acetic acid (63%).19 Nitrosaacetoacetic," and benzoylacetic2' e s t e r s tion of alkylated malonic, "*" with subsequent cleavage affords an excellent s y n t h e s i s for a-oximino esters, RC(-NOH)CO,GHS. A survey of several possible procedures for t h i s conversion h a s been made." If a P-keto a c i d is nitrosated, then the carboxyl group is l o s t and an a-oximino ketone is formed, viz., CH,COCHRCOIH (HONO) CH,COC(=NOH)R + CO, The conversion of o- and p-nitroethylbenzenes with t-butyl nitrite and sodium t-butoxide into the corresponding nitroacetophenone oximes is accomplished in 67-74% yields." 481. Partial Reduction of Nitro Compounds Various procedures have been developed for the production of oximes from nitroparaffins. Direct reduction with zinc dust and a c e t i c acid h a s been proposed, but the yields are poor because of the simultaneous formation of a m i n e ~ . ' ~A synthesis for cyclohexanone oxime h a s been demonstrated which involves the formation and selective hydrogenation of 1chloro-I-nitrocyclohexane. T h e halogenated intermediate is prepared in quantitative yield by chlorination of the sodium s a l t of aci-nitrocyclohexane, and subsequent hydrogenation is performed in an 80% yield over palladium-on-~harcoal,~' Still another scheme is concerned with the zinc-acetic acid reduction of a n aliphatic nitro olefin, which i s readily prepared by the condensation of an aldehyde with the nitroparaffin (method 37)." 74 1 METHODS 481-483 Ch. 27 l a-Nitrostilbene, C6H5CH=C(N0,)C6H5, is selectively hydrogenated over a palladium catalyst t o desoxybenzoin oxime in an almost quantitative yield.a9 4 8 2 Hydroxylamination of Dihydropyridines3' H (90% over-all) 483. Nitrosation of Secondary Amines R,NH HCI (HONO) + R,NNO Aliphatic and aromatic amines react with nitrous acid t o form N-nitroso derivatives. For example, dimethylamine hydrochloride on treatment with sodium nitrite and hydrochloric acid is converted t o nitrosodimethylamine i n 90% yieldbS9 In like manner, N-nitrosomethylaniline i s synthesized from N-methylaniline in 93% yield.40 The ready formation of t h e s e derivatives and the e a s y reconversion t o t h e amine by reduction affords an advantageous procedure for separating secondary amines from primary and tertiary amines, a s shown in t h e s y n t h e s i s of N-ethyl-m-toluidine and other N-alkyl derivatives by t h e alkylation of m-t~luidine.~' Certain N-nitroso derivatives are important intermediates in the synthesis of diazomethane and homologs. One synthesis involves t h e nitrosation of a P-alkylaminoisobutyl methyl ketone; the corresponding Nnitrosoamine is readily decomposed to the diazoalkane and mesityl oxide by treatment with sodium i s o p r ~ p o x i d e . ~ ' (CH,),CC&COCH, I (HONO) * (CH,),CCH,COCH, I - NaOR CH,N, + Other intermediates for the synthesis of diazomethane are nitrosomethylurea, CH,N(NO)CONH,,'~ and nitrosomethylurethane, CH,N(NO)CO,C,H,.'~ Certain a-anilino a c i d s like phenylglycine and a-anilinopropionic acid have been converted t o their N-nitroso derivatives4' 744 Ch. 27 OXIMES AND NITROSO COMPOUNDS TABLE 96. NITRaSO COMPOUNDS C,# Compound Melbd (X) Chapterref. B.p./mm., nf,, MP.) GNiuoso Gmpounds l C, Nitrosobezae pfinitmsobezae ~Chloronitmsobezene ~Bromonimsobazee pNimsopheno1 485 484 485 485 484 53 40' 40 35 80 27' 27'' 27" 2747 27= C o-Nitrosotoluene CO pNitmsodimethylaniline C, p-Nitcosodibhylmiline 485 20 89 95 2747 27" 27" , 484 484 (67) (180) (56) (97) (1254 (72.5) N-Nitrow, Compounds C, C, C, Nimsodimethylamine Niuosomethylurea 483 483 90 72 27'9 27U 150/755 N-Nitroso-p-methylamino isobutyl methyl ketone N-Nieosomethylmiline N-Nitrosopheylglycine 483 80' 27" 10Yl.5 483 483 93 90 27" 27U 137/13 (403d) For explanations md symbols see pp. xi-xii. REFERENCES FOR CHAPTER 27 REFERENCES FOR CHAPTER 27 'Marvel and Noyes, 1. A n C h e m Soc., 42, 2276 (1920). 'Eck and Marvel, Org. Syntheses, Coll. Vol. 11, 76 (1943). 'Bouquet, &g. Syntheses. Coll. Vol. 11, 313 (1943). 4Lachman, &g. Syntheses, Coll. Vol. 11, 70 (1943). 'Fox, Dunn, and Stoddard, 1. Org. C k m . , 6, 410 (1941). bSemon, &g. Syntheses. Coll. Vol. I, 318 (1941). 'Semon and Damerell, 1. A m C h e m Soc., 46, 1290 (1924). asanford e t al., 1. Am. Chem. Soc., 67, 1941 (1945). Tampbell, Campbell, and Chaput, 1. Org. C h e m , 8, 99 (1943). 'Ocampbell and McKenna, 1. &g. C h e m , 4, 198 (1939). "Lachman, 1. A m C h e n Soc., 47, 262 (1925). UBachmann and Boatner, 1. Am. Cbem. Soc., 58, 2097 (1936). "Haar, Voter, and Banks, 1. Org. C b e m , 14, 836 (1949). I4Banks and Diehl, 1. &g. C h e m , 10, 199 (1945). "Semon and Damerell, Org. Syntheses, Coll. Vol. 11, 204 (1943). lbHartung and G o s s l e y , Org. Syntheses, Coll. Vol. 11, 363 (1943); cf. ref. 17. "Hartung and Munch, 1. A m C h e m Soc., 51, 2262 (1929). 'ONoyes, Org. Syntheses, Coll. Vol. II, 108 (1943). '9Adkins and Reeve, 1. A m C h e m Soc., 60, 1328 (1938). 1°Shivers and Hauser, 1. A m C h e m Soc., 69, 1264 (1947). "Barry and Hartung, 1. &g. C h e m , 12, 460 (1947); cf. Weaver and Hartung, ibid., 15, 741 (1950). "Hauser and Reynolds, 1. A m C h e m Soc., 70, 4250 (1948). "Cox e t al., 1. C h e n Soc.. 129 (1936). '4Wieland, Ber., 40, 1677 (1907), footnote 1. "Food-Moore and Rydon, 1. C h e m Soc., 679 (1946). 'bJohnson and Degering, 1. A m C h e m Soc., 61, 3194 (1939). 17Robertson, 1. &g. C h e m , 13, 395 (1948). 1oNi8htingale and Janes, 1. A m C h e m Soc., 66, 352 (1944). '9Reichert and Hoffmann, Arch. Pharm, 274, 161 (1936). 'OShaw, 1. C h e m Soc., 300 (1937). "Bennett and Bell, Org. Syntheses, Coll. Vol. 11, 223 (1943); cf. Hodgson and Nicholson, 1. C h e m Soc., 470 (1941). "Marvel and Porter, Org. S y n t b e s e s , Coll. Vol. I, 411 (1941). "Bridge, Ann., 277, 85 (1893). s411inski and Henriques, Ber., 18, 706 (1885). "Cronheim, 1. Org; Chem., 1, 7 (1947). sbHodgson e t al., 1. Chem. Soc., 1405 (1939); 221 (1943). "Ruggli and Bartusch, Helv. C h i m Acta. 27, 1371 (1944). 'ONeber and Rauscher, Ann., 550, 182 (1942). '9Haa, Org. Syntheses, Coll. Vol. II, 211 (1943). 40Hartman and Roll, &g. Syntheses, Coll. Vol. 11, 460 (1943). 4 1 B ~ and ~ k Ferry, &g. Syntheses, Coll. Vol. II, 290 (1943). 4aRedemann e t al., &g. Syntheses, 25, 28 (1945); Adamson and Kenner, 1. C h e m Soc., 1551 (1937). 4'Amdt, &g. Syntheses, Coll. Vol. II, 461 (1943). UHartman and Phillips, &g. Syntheses, Coll. Vol. 11, 464 (1943). 4'Earl and Mackne~,1. Chem. Soc., 899 (1935). 46Coleman, McCloskey, and Stuart, Org. Syntheses, 25, 80 (1945). 4 7 L ~ tand z Lytton, 1. Org. C h e m , 2, 73 (1937); ref. 48. 4oBarrow and Thorneycroft, 1. C h e m Soc., 773 (1939). 49Lan81ey, Org. S y n t b e s e s , 22, 44 (1942).
© Copyright 2026 Paperzz